中文版 | English
题名

选区激光熔化镍的氢脆机理与抗氢脆性能优化研究

其他题名
STUDY ON THE MECHANISMS AND MITIGATING OF HYDROGEN EMBRITTLEMENT IN SELECTIVE LASER MELTING MANUFACTURED NICKEL
姓名
姓名拼音
HE Jing
学号
11930737
学位类型
博士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
王帅
导师单位
机械与能源工程系
论文答辩日期
2023-05-19
论文提交日期
2023-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氢脆是指氢进入大多数金属中会导致材料力学性能下降,危害材料的服役安全。随着绿色产业升级,航空航天、国防、新能源产业的飞速发展,临氢环境日益普遍,对先进金属材料的氢脆机理和抗氢脆工艺的研究具有重要的战略意义。选区激光熔化是一种先进的金属增材制造技术,已被用于制造临氢关键部件。然而,目前对增材制造金属的氢脆机理及抗氢脆工艺原理尚不清楚,使得增材制造金属在临氢环境的性能调控尚缺乏理论指导。基于此,本论文以典型氢脆材料纯Ni为研究对象,开展了选区激光熔化Ni的氢脆机理研究,然后在氢脆机理的基础上探索了打印参数对抗氢脆性能的影响规律,利用增材制造产生的孔隙,引入有效氢陷阱,综合提升了其抗氢脆能力,为进一步提升增材制造金属的抗氢脆性能提供了理论基础和技术支撑。同时,利用电脉冲技术对已经发生氢脆的含氢材料进行除氢和性能修复研究,为延长临氢材料的使用寿命提供了新的方法。

在氢脆机理研究方面,针对增材制造金属产生的位错胞状组织对氢脆的作用仍存在争议,本文以典型氢脆材料纯Ni为研究对象,通过热处理改变选区激光熔化Ni中形成的位错胞状组织,并在充氢后通过慢速率拉伸实验,分析了Ni中位错胞状组织与氢脆敏感性的关系,结果表明增材制造产生的初始位错胞状组织会提升Ni的氢脆敏感性,降低Ni的抗氢脆性能。同时,通过位错观察发现热处理与未热处理的充氢Ni样品在拉伸断裂后,其断口附近的位错密度是相似的,由此得到氢引起的Ni的沿晶断裂会在位错演化到特定的临界位错密度时触发。

在抗氢脆性能的研究方面,通过对充氢Ni样品进行慢速率拉伸实验,分析了扫描策略与Ni的氢脆敏感性的关系,结果表明每层旋转0°的样品比其他旋转角度的样品显示出更好的抗氢脆性能。通过进一步观察断口形貌,发现不同扫描策略(每层旋转67°90°)获得的Ni样品在充氢后,断口形貌均为沿晶断裂,且裂纹均倾向于沿细晶区扩展。结果表明通过调整扫描策略优化晶粒分布可以改变Ni的沿晶断口形貌,并提升Ni抵抗沿晶断裂的能力。

工艺优化虽然能在一定程度上提升Ni的抗氢脆性能,但工艺优化后的Ni仍表现出明显的氢脆现象。为进一步提升选区激光熔化Ni的抗氢脆能力,提出通过增材制造产生的微孔隙(氢陷阱)来提升Ni的抗氢脆性能。通过慢速率拉伸实验,对比了有孔隙与无孔隙Ni样品的抗氢脆性能,结果表明孔隙的存在可以有效缓解Ni的氢脆。通过氢含量测试发现,有孔隙Ni的氢含量远小于无孔隙Ni的氢含量,因此,孔隙引起的Ni的抗氢脆性能提升,与孔隙作为氢陷阱,阻碍了氢进入Ni中有关。同时,分析了不同孔隙分布对Ni的抗氢脆性能影响,结果表明孔隙分布对Ni的力学性能影响很大,需要适当的孔隙分布才能有效的提升Ni的抗氢脆性能。

针对已经面临氢脆问题的含氢材料,提出了利用电脉冲技术来去除材料内部的氢。通过力学性能测试及慢速率拉伸实验,分析了不同脉冲参数对材料的力学性能及抗氢脆性能的影响规律,结果表明适当的电脉冲参数能够有效降低含氢Ni的氢含量并保持其力学性能。通过与传统热处理去氢的方式进行对比,发现电脉冲处理具有更快的去氢效率。同时,通过对含裂纹的选区激光熔化Ni进行电脉冲处理,分析了电脉冲对裂纹治愈的影响,结果表明电脉冲技术可以用来修复增材制造材料内部的裂纹。

综上,本文为增材制造金属材料的抗氢脆设计提供了理论指导和新思路,尝试为临氢环境下材料的长久安全服役提供解决办法,促进了选区激光熔化技术和电脉冲技术在抗氢脆材料制造及服役中的应用。

其他摘要

Hydrogen embrittlement refers to the reduction of mechanical properties of materials due to the entry of hydrogen, which brings risk to the safety of the materials. With the upgrading of green industries and the rapid development of aerospace, national defense, and new energy industries, hydrogen-containing environment is becoming more and more common, so it is of great strategic significance to study the hydrogen embrittlement mechanism and anti-hydrogen embrittlement technology of advanced metal materials. Selective laser melting is an advanced metal additive manufacturing technology that has been used to manufacture hydrogen-related critical components. However, the mechanism of hydrogen embrittlement and the principles of anti-hydrogen embrittlement technology for additive manufactured metals are remain unclear, making it difficult to design the performance of additive manufacturing metals in hydrogen-containing environments. Based on this, this paper studies the hydrogen embrittlement mechanism of pure nickel, a typical hydrogen embrittlement material, and discusses the influence of printing parameters on hydrogen embrittlement resistance based on the hydrogen embrittlement mechanism. The effective hydrogen trapping site is introduced by using the micropores generated by additive manufacturing to comprehensively enhance hydrogen embrittlement resistance, providing theoretical basis and technical support for further improving the hydrogen embrittlement resistance of additive manufactured metals. The paper also studies the dehydrogenation and performance restoration of hydrogen-containing materials that have already experienced hydrogen embrittlement using electropulsing technology, providing a new method for extending the service life of hydrogen-containing materials.

In terms of the study of the hydrogen embrittlement mechanism, there is still controversy over the role of dislocation cell structure generated by additive manufacturing. This paper takes Ni as the research object, changes the dislocation cell structure formed in additive manufactured Ni by heat treatment, and analyzes the relationship between dislocation cell structure and hydrogen embrittlement sensitivity in Ni through slow rate tensile experiments after hydrogen charging. The results show that the dislocation cell structure increase the hydrogen embrittlement sensitivity of Ni. In addition, the dislocation density near the fracture surface of hydrogen-charged Ni samples with and without heat treatment is found to be similar after tension. Therefore, it is concluded that hydrogen-induced transgranular fracture in Ni is triggered when the dislocation density evolves to a specific critical value.

In the study of hydrogen embrittlement resistance, the influence of additive manufacturing process parameters on the hydrogen embrittlement resistance of Ni was explored. Slow-rate tensile tests were carried out on hydrogen-charged Ni samples, and the relationship between scanning strategies and the hydrogen embrittlement sensitivity of Ni was analyzed. The results showed that samples with each layer rotated by 0° displayed better hydrogen embrittlement resistance than samples with other rotation angles. Further observation of the fracture morphology revealed that Ni samples obtained with different scanning strategies (0°, 67°, 90° rotation per layer) showed transgranular fracture and the cracks tended to propagate along the fine-grain areas. The results indicate that optimizing grain distribution by adjusting scanning strategies can change the transgranular fracture morphology of Ni and enhance resistance to transgranular fracture.

Although process optimization can improve the hydrogen embrittlement resistance of Ni to a certain extent, Ni still exhibits obvious hydrogen embrittlement after process optimization. To further improve the hydrogen embrittlement resistance of additive manufactured Ni, it is proposed to use the micropores (hydrogen trapping site) generated during additive manufacturing to enhance the hydrogen embrittlement resistance of Ni. Slow-rate tensile tests were performed to compare the hydrogen embrittlement resistance of Ni samples with and without micropores. The results showed that the presence of micropores could effectively alleviate the hydrogen embrittlement of Ni. Hydrogen content testing revealed that the hydrogen content in Ni with micropores was much lower than that in Ni without micropores, indicating that the improvement of hydrogen embrittlement resistance caused by micropores is related to the micropores acting as hydrogen trapping sites, hindering hydrogen from entering Ni. Meanwhile, the influence of different pore distributions on the hydrogen embrittlement resistance of Ni was analyzed, and the results showed that pore distribution has a significant effect on the mechanical properties of Ni, and appropriate pore distribution is needed to effectively enhance the hydrogen embrittlement resistance of Ni.

Aiming at hydrogen embrittlement problems in hydrogen-containing materials, the use of electropulsing technology to remove hydrogen from the interior of material was proposed.The influence of different electropulsing parameters on the mechanical properties and hydrogen embrittlement resistance of Ni was analyzed. The results show that proper electropulsing parameters can reduce the hydrogen content of hydrogen-containing Ni and maintain its mechanical properties. Compared with the traditional heat treatment method for dehydrogenation, it is found that electropulsing treatment has a faster dehydrogenation efficiency. Meanwhile, the effect of electropulsing treatment on crack healing was analyzed by applying it to additive manufactured Ni with cracks. The results showed that electropulsing technology could be used to restore cracks inside additive manufactured materials.

In summary, this article provides theoretical guidance and new ideas for the design of hydrogen-resistant additive manufactured materials, tries to provide solutions for the long-term safe service of materials in hydrogen environments, and promotes the application of selective laser melting and electropulsing technology in the manufacturing and service of hydrogen-resistant materials.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] WANG S, MARTIN M L, ROBERTSON I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries[J]. Acta Materialia, 2016, 107: 279-288.
[2] TSUCHIDA Y, WATANABE T, KATO T, et al. Effect of hydrogen absorption on strain-induced low-cycle fatigue of low carbon steel[J]. Procedia Engineering, 2010, 2(1): 555-561.
[3] NYGREN K E, WANG S, BERTSCH K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy[J]. Acta Materialia, 2018, 157: 218-227.
[4] 解德刚, 李蒙, 单智伟. 氢与金属的微观交互作用研究进展[J]. 中国材料进展, 2018, 37(03): 215-223.
[5] MCMAHON C J. Hydrogen-induced intergranular fracture of steels[J]. Engineering Fracture Mechanics, 2001, 68(6): 773-788.
[6] 杨长江, 梁成浩, 王华. 钛及其合金氢脆研究现状与应用[J]. 腐蚀科学与防护技术, 2006(02): 122-125.
[7] 陈瑞, 郑津洋, 徐平, 等. 金属材料常温高压氢脆研究进展[J]. 太阳能学报, 2008(04): 502-508.
[8] 李金许, 王伟, 周耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(04): 444-458.
[9] 黄广棋, 张桂凯, 罗朝以, 等. Fe-Al金属间化合物氢脆效应研究现状[J]. 材料导报, 2018, 32(11): 1878-1883.
[10] 张慧云. 钢中氢脆的研究现状[J]. 山西冶金, 2020, 43(05): 1-3.
[11] 燕辉, 刘鸿彦, 郗运富, 等. TA10换热管氢脆腐蚀的失效分析[J]. 石油和化工设备, 2019, 22(09): 94-98.
[12] CARNEIRO R A, RATNAPULI R C, DE FREITAS CUNHA LINS V. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking[J]. Materials Science and Engineering: A, 2003, 357(1): 104-110.
[13] 兰亮云, 孔祥伟, 邱春林, 等. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(07): 845-859.
[14] LIN J, CHEN F, LIU F, et al. Hydrogen permeation behavior and hydrogen-induced defects in 316L stainless steels manufactured by additive manufacturing[J]. Materials Chemistry and Physics, 2020, 250: 123038.
[15] SUN B, LU W, GAULT B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels[J]. Nature Materials, 2021, 20(12): 1629-1634.
[16] JOHNSON W H, THOMSON W. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Proceedings of the Royal Society of London, 1875, 23(156-163): 168-179.
[17] ZHANG W. Technical Problem Identification for the Failures of the Liberty Ships[J]. Challenges, 2016, 7(2): 20.
[18] 王正. 微结构调控中锰钢机械性能和氢脆性能研究[D]. 北京科技大学, 2021.
[19] PU Z, CHEN Y, DAI L H. Strong resistance to hydrogen embrittlement of high-entropy alloy[J]. Materials Science and Engineering: A, 2018, 736: 156-166.
[20] KOYAMA M, ROHWERDER M, TASAN C C, et al. Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation[J]. Materials Science and Technology, 2017, 33(13): 1481-1496.
[21] 陈林. 微结构设计下钢中氢陷阱抗氢脆能力的研究[D]. 北京科技大学, 2022.
[22] LIU Q, VENEZUELA J, ZHANG M, et al. Hydrogen trapping in some advanced high strength steels[J]. Corrosion Science, 2016, 111: 770-785.
[23] KROM A H M, BAKKER A. Hydrogen trapping models in steel[J]. Metallurgical and Materials Transactions B, 2000, 31(6): 1475-1482.
[24] SUN Y, FRANK CHENG Y. Hydrogen-induced degradation of high-strength steel pipeline welds: A critical review[J]. Engineering Failure Analysis, 2022, 133: 105985.
[25] ROBERTSON I M, SOFRONIS P, NAGAO A, et al. Hydrogen Embrittlement Understood[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1085-1103.
[26] DWIVEDI S K, VISHWAKARMA M. Hydrogen embrittlement in different materials: A review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616.
[27] REN X C, ZHOU Q J, SHAN G B, et al. A Nucleation Mechanism of Hydrogen Blister in Metals and Alloys[J]. Metallurgical and Materials Transactions A, 2008, 39(1): 87-97.
[28] MARTIN M L, SOFRONIS P. Hydrogen-induced cracking and blistering in steels: A review[J]. Journal of Natural Gas Science and Engineering, 2022, 101: 104547.
[29] TIEGEL M C, MARTIN M L, LEHMBERG A K, et al. Crack and blister initiation and growth in purified iron due to hydrogen loading[J]. Acta Materialia, 2016, 115: 24-34.
[30] XIE D G, WANG Z J, SUN J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials, 2015, 14(9): 899-903.
[31] DUTTON R, NUTTALL K, PULS M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials[J]. Metallurgical Transactions A, 1977, 8(10): 1553-1562.
[32] GERBERICH W W, L1VNE T, CHEN X F, et al. Crack growth from internal hydrogen—temperature and microstructural effects in 4340 steel[J]. Metallurgical Transactions A, 1988, 19(5): 1319-1334.
[33] SHIH D S, ROBERTSON I M, BIRNBAUM H K. Hydrogen embrittlement of α titanium: In situ tem studies[J]. Acta Metallurgica, 1988, 36(1): 111-124.
[34] LI X, MA X, ZHANG J, et al. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773.
[35] GAHR S, MAKENAS B J, BIRNBAUM H K. Fracture of niobium hydride[J]. Acta Metallurgica, 1980, 28(9): 1207-1213.
[36] LUFRANO J, SOFRONIS P, BIRNBAUM H K. Elastoplastically accommodated hydride formation and embrittlement[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(9): 1497-1520.
[37] ROWE R G. Subcritical Cracking of Zircaloy-2 in High Pressure Hydrogen Gas[J]. Scripta Materialia, 1998, 38(10): 1495-1503.
[38] OWEN C V, SCOTT T E. Relation between hydrogen embrittlement and the formation of hydride in the group V transition metals[J]. Metallurgical and Materials Transactions B, 1972, 3(7): 1715-1726.
[39] TROIANO A R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals: (1959 Edward De Mille Campbell Memorial Lecture)[J]. Metallography, Microstructure, and Analysis, 2016, 5(6): 557-569.
[40] JIANG D E, CARTER E A. First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals[J]. Acta Materialia, 2004, 52(16): 4801-4807.
[41] GERBERICH W W, ORIANI R A, LJI M J, et al. The necessity of both plasticity and brittleness in the fracture thresholds of iron[J]. Philosophical Magazine A, 1991, 63(2): 363-376.
[42] KOMARAGIRI U, AGNEW S R, GANGLOFF R P, et al. The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(12): 3527-3540.
[43] ORIANI R A, JOSEPHIC P H. Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel[J]. Acta Metallurgica, 1977, 25(9): 979-988.
[44] ZHU X, LI W, ZHAO H, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel[J]. International Journal of Hydrogen Energy, 2014, 39(24): 13031-13040.
[45] LASSILA D H, BIRNBAUM H K. The effect of diffusive hydrogen segregation on fracture of polycrystalline nickel[J]. Acta Metallurgica, 1986, 34(7): 1237-1243.
[46] BEACHEM C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)[J]. Metallurgical and Materials Transactions B, 1972, 3(2): 441-455.
[47] FERREIRA P J, ROBERTSON I M, BIRNBAUM H K. Hydrogen effects on the interaction between dislocations[J]. Acta Materialia, 1998, 46(5): 1749-1757.
[48] MARTIN M L, CONNOLLY M J, DELRIO F W. Hydrogen embrittlement in ferritic steels[J]. Applied Physics Reviews, 2020: 25.
[49] COTTRELL A H, BILBY B A. Dislocation Theory of Yielding and Strain Ageing of Iron[J]. Proceedings of the Physical Society. Section A, 1949, 62(1): 49-62.
[50] BIRNBAUM H K, SOFRONIS P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering: A, 1994, 176(1): 191-202.
[51] SOFRONIS P, BIRNBAUM H K. Mechanics of the hydrogendashdislocationdashimpurity interactions—I. Increasing shear modulus[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(1): 49-90.
[52] CHATEAU J P, DELAFOSSE D, MAGNIN T. Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels.: part II: hydrogen effects on crack tip plasticity at a stress corrosion crack[J]. Acta Materialia, 2002, 50(6): 1523-1538.
[53] LIANG Y, AHN D C, SOFRONIS P, et al. Effect of hydrogen trapping on void growth and coalescence in metals and alloys[J]. Mechanics of Materials, 2008, 40(3): 115-132.
[54] NOVAK P, YUAN R, SOMERDAY B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(2): 206-226.
[55] NAGUMO M. Hydrogen related failure of steels – a new aspect[J]. Materials Science and Technology, 2004, 20(8): 940-950.
[56] KIRCHHEIM R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background[J]. Acta Materialia, 2007, 55(15): 5129-5138.
[57] KIRCHHEIM R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences[J]. Acta Materialia, 2007, 55(15): 5139-5148.
[58] DESAI S K, NEERAJ T, GORDON P A. Atomistic mechanism of hydrogen trapping in bcc Fe–Y solid solution: A first principles study[J]. Acta Materialia, 2010, 58(16): 5363-5369.
[59] SAKAKI K, KAWASE T, HIRATO M, et al. The effect of hydrogen on vacancy generation in iron by plastic deformation[J]. Scripta Materialia, 2006, 55(11): 1031-1034.
[60] NAGUMO M, TAKAI K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview[J]. Acta Materialia, 2019, 165: 722-733.
[61] NEERAJ T. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding[J]. Acta Materialia, 2012: 12.
[62] WASIM M, DJUKIC M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2145-2156.
[63] SONG J, CURTIN W A. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature Materials, 2013, 12(2): 145-151.
[64] WASIM M, DJUKIC M B, NGO T D. Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel[J]. Engineering Failure Analysis, 2021, 123: 105312.
[65] HUANG S, ZHANG Y, YANG C, et al. Fracture strain model for hydrogen embrittlement based on hydrogen enhanced localized plasticity mechanism[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25541-25554.
[66] DJUKIC M B, BAKIC G M, SIJACKI ZERAVCIC V, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion[J]. Engineering Fracture Mechanics, 2019, 216: 106528.
[67] JEMBLIE L, OLDEN V, AKSELSEN O M. A coupled diffusion and cohesive zone modelling approach for numerically assessing hydrogen embrittlement of steel structures[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11980-11995.
[68] NAGAO A, DADFARNIA M, SOMERDAY B P, et al. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels[J]. Journal of the Mechanics and Physics of Solids, 2018, 112: 403-430.
[69] WANG S, NAGAO A, SOFRONIS P, et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel[J]. Acta Materialia, 2018, 144: 164-176.
[70] CHEN Y S, HALEY D, GERSTL S S A, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel[J]. Science, 2017, 355(6330): 1196-1199.
[71] OWEN G, RANDLE V. On the role of iterative processing in grain boundary engineering[J]. Scripta Materialia, 2006, 55(10): 959-962.
[72] TAN L, ALLEN T R, BUSBY J T. Grain boundary engineering for structure materials of nuclear reactors[J]. Journal of Nuclear Materials, 2013, 441(1): 661-666.
[73] WATANABE T, TSUREKAWA S. Toughening of brittle materials by grain boundary engineering[J]. Materials Science and Engineering: A, 2004, 387-389: 447-455.
[74] OUDRISS A, LE GUERNIC S, WANG Z, et al. Meso-scale anisotropic hydrogen segregation near grain-boundaries in polycrystalline nickel characterized by EBSD/SIMS[J]. Materials Letters, 2016, 165: 217-222.
[75] GAO S, HU Z, DUCHAMP M, et al. Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting[J]. Acta Materialia, 2020, 200: 366-377.
[76] RANDLE V. Twinning-related grain boundary engineering[J]. Acta Materialia, 2004, 52(14): 4067-4081.
[77] WATANABE T. Grain boundary engineering: historical perspective and future prospects[J]. Journal of Materials Science, 2011, 46(12): 4095-4115.
[78] LEHOCKEY E M, PALUMBO G, AUST K T, et al. On the role of intercrystalline defects in polycrystal plasticity[J]. Scripta Materialia, 1998, 39(3): 341-346.
[79] GAO Y, RITCHIE R O, KUMAR M, et al. High-cycle fatigue of nickel-based superalloy ME3 at ambient and elevated temperatures: Role of grain-boundary engineering[J]. Metallurgical and Materials Transactions A, 2005, 36(12): 3325-3333.
[80] MA H, LA MATTINA F, SHORUBALKO I, et al. Engineering the grain boundary network of thin films via ion-irradiation: Towards improved electromigration resistance[J]. Acta Materialia, 2017, 123: 272-284.
[81] KWON Y J, JUNG S P, LEE B J, et al. Grain boundary engineering approach to improve hydrogen embrittlement resistance in FeMnC TWIP steel[J]. International Journal of Hydrogen Energy, 2018, 43(21): 10129-10140.
[82] BECHTLE S, KUMAR M, SOMERDAY B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Materialia, 2009, 57(14): 4148-4157.
[83] JOTHI S, CROFT T N, BROWN S G R. Influence of grain boundary misorientation on hydrogen embrittlement in bi-crystal nickel[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20671-20688.
[84] KOYAMA M, YAMASAKI D, NAGASHIMA T, et al. In situ observations of silver-decoration evolution under hydrogen permeation: Effects of grain boundary misorientation on hydrogen flux in pure iron[J]. Scripta Materialia, 2017, 129: 48-51.
[85] MA Z, XIONG X, SU Y. Study on hydrogen segregation at individual grain boundaries in pure nickel by scanning Kelvin probe force microscopy[J]. Materials Letters, 2021, 303: 130528.
[86] KWON Y J, SEO H J, KIM J N, et al. Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates[J]. Corrosion Science, 2018, 142: 213-221.
[87] LASSILA D H, BIRNBAUM H K. The effect of diffusive hydrogen segregation on fracture of polycrystalline nickel[J]. Acta Metallurgica, 1986, 34(7): 1237-1243.
[88] LASSILA D H, BIRNBAUM H K. The effect of diffusive segregation on the fracture of hydrogen charged nickel[J]. Acta Metallurgica, 1988, 36(10): 2821-2825.
[89] LUO H, LU W, FANG X, et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy[J]. Materials Today, 2018, 21(10): 1003-1009.
[90] SUN Q, HAN J, LI J, et al. Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering[J]. Corrosion Communications, 2022, 6: 48-51.
[91] LADNA B, BIRNBAUM H K. SIMS study of hydrogen at the surface and grain boundaries of nickel bicrystals[J]. Acta Metallurgica, 1987, 35(10): 2537-2542.
[92] SHI R, MA Y, WANG Z, et al. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces[J]. Acta Materialia, 2020, 200: 686-698.
[93] GONG P, NUTTER J, RIVERA-DIAZ-DEL-CASTILLO P E J, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels[J]. Science Advances, 2020, 6(46): eabb6152.
[94] LUO H, SOHN S S, LU W, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion[J]. Nature Communications, 2020, 11(1): 3081.
[95] LI Q, MO J W, MA S H, et al. Defeating hydrogen-induced grain-boundary embrittlement via triggering unusual interfacial segregation in FeCrCoNi-type high-entropy alloys[J]. Acta Materialia, 2022, 241: 118410.
[96] BHADESHIA H K D H. Prevention of Hydrogen Embrittlement in Steels[J]. ISIJ International, 2016, 56(1): 24-36.
[97] ZHAO H, CHAKRABORTY P, PONGE D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys[J]. Nature, 2022, 602(7897): 437-441.
[98] WEI F G, TSUZAKI K. Quantitative analysis on hydrogen trapping of TiC particles in steel[J]. Metallurgical and Materials Transactions A, 2006, 37(2): 331-353.
[99] LAUREYS A, CLAEYS L, DE SERANNO T, et al. The role of titanium and vanadium based precipitates on hydrogen induced degradation of ferritic materials[J]. Materials Characterization, 2018, 144: 22-34.
[100] DEPOVER T, VERBEKEN K. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys[J]. Corrosion Science, 2016, 112: 308-326.
[101] MALARD B, REMY B, SCOTT C, et al. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering[J]. Materials Science and Engineering: A, 2012, 536: 110-116.
[102] LI L, SONG B, CAI Z, et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel[J]. Materials Science and Engineering: A, 2019, 742: 712-721.
[103] DOS SANTOS T A A, DE LIMA M M, DOS SANTOS D S, et al. Effect of nano Nb and V carbides on the hydrogen interaction in tempered martensitic steels[J]. International Journal of Hydrogen Energy, 2022, 47(2): 1358-1370.
[104] LIN L, LI B, ZHU G, et al. Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5[J]. Materials Science and Engineering: A, 2018, 721: 38-46.
[105] YOO J, JO M C, KIM D W, et al. Effects of Cu addition on resistance to hydrogen embrittlement in 1 GPa-grade duplex lightweight steels[J]. Acta Materialia, 2020, 196: 370-383.
[106] SHMULEVITSH M, IFERGANE S, ELIAZ N, et al. Diffusion and trapping of hydrogen due to elastic interaction with η-Ni3Ti precipitates in Custom 465® stainless steel[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31610-31620.
[107] DEPOVER T, VERBEKEN K. Evaluation of the role of Mo2C in hydrogen induced ductility loss in Q&T FeCMo alloys[J]. International Journal of Hydrogen Energy, 2016, 41(32): 14310-14329.
[108] PARK T M, KIM H J, UM H Y, et al. The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements[J]. Materials Characterization, 2020, 165: 110386.
[109] DADFARNIA M, SOFRONIS P, NEERAJ T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement?[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10141-10148.
[110] SHI P, LI R, LI Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373(6557): 912-918.
[111] RUSZKIEWICZ B J, GRIMM T, RAGAI I, et al. A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect[J]. Journal of Manufacturing Science and Engineering, 2017, 139(11).
[112] MA Y R, YANG H J, TIAN Y Z, et al. Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment[J]. Materials Science and Engineering: A, 2018, 713: 146-150.
[113] CONRAD H, SPRECHER A F, CAO W D, et al. Electroplasticity—the effect of electricity on the mechanical properties of metals[J]. JOM, 1990, 42(9): 28-33.
[114] XU Z, TANG G, TIAN S, et al. Research on the engineering application of multiple pulses treatment for recrystallization of fine copper wire[J]. Materials Science and Engineering: A, 2006, 424(1): 300-306.
[115] LIU X, LAN S, NI J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel[J]. Journal of Materials Processing Technology, 2015, 219: 112-123.
[116] NGUYEN-TRAN H D, OH H S, HONG S T, et al. A review of electrically-assisted manufacturing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(4): 365-376.
[117] GUAN L, TANG G, CHU P K. Recent advances and challenges in electroplastic manufacturing processing of metals[J]. Journal of Materials Research, 2010, 25(7): 1215-1224.
[118] HE J, ZHENG Z, XIANG Z, et al. On the fracture process of intermediate temperature embrittlement of pure copper in electrical-assisted tension[J]. Materials Science and Engineering: A, 2021, 826: 141979.
[119] TROITSKII O, LIKHTMAN V. The anisotropy of the action of electron and γ radiation on the deformation of zinc single crystals in the brittle state[C]//Soviet Physics Doklady: 8. 1963: 91.
[120] TROITSKII O A. Effect of the electron state of a metal on its mechanical properties and the phenomenon of electroplasticity[J]. Strength of Materials, 1977, 9(1): 35-45.
[121] GERSTEIN G, KÖRKEMEYER F, DALINGER A, et al. Anomalous twinning in AZ 31 magnesium alloy during electrically assisted forming[J]. Materials Letters, 2019, 255: 126516.
[122] XUE S, WANG C, CHEN P, et al. Investigation of Electrically-Assisted Rolling Process of Corrugated Surface Microstructure with T2 Copper Foil[J]. Materials, 2019, 12(24): 4144.
[123] TROITSKIY O A, STASHENKO V I. Electroplastic wire drawing: A promising method of production of lightweight wire and cable[J]. Journal of Machinery Manufacture and Reliability, 2015, 44(8): 758-765.
[124] DALONG L, YANTING L, ENLIN Y, et al. Theoretical and experimental study of the drawing force under a current pulse[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 1047-1051.
[125] HAMEED S, GONZÁLEZ ROJAS H A, SÁNCHEZ EGEA A J, et al. Electroplastic cutting influence on power consumption during drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5): 1835-1841.
[126] HAMEED S, GONZÁLEZ ROJAS H A, PERAT BENAVIDES J I, et al. Influence of the Regime of Electropulsing-Assisted Machining on the Plastic Deformation of the Layer Being Cut[J]. Materials, 2018, 11(6): 886.
[127] LI X, WANG G, GU Y, et al. Investigation on electrically-assisted diffusion bonding of Ti2AlNb alloy sheet by microstructural observation, mechanical tests and heat treatment[J]. Materials & Design, 2018, 157: 351-361.
[128] LUU V T, DINH T K A, DAS H, et al. Diffusion Enhancement during Electrically Assisted Brazing of Ferritic Stainless Steel Alloys[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(5): 613-621.
[129] MUNIR Z A, QUACH D V, OHYANAGI M. Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process[J]. Journal of the American Ceramic Society, 2011, 94(1): 1-19.
[130] DIMITROV N K, LIU Y, HORSTEMEYER M F. Electroplasticity: A review of mechanisms in electro-mechanical coupling of ductile metals[J]. Mechanics of Advanced Materials and Structures, 2020, 0(0): 1-12.
[131] TIWARI J, PRATHEESH P, BEMBALGE O B, et al. Microstructure dependent electroplastic effect in AA 6063 alloy and its nanocomposites[J]. Journal of Materials Research and Technology, 2021, 12: 2185-2204.
[132] LAHIRI A, SHANTHRAJ P, ROTERS F. Understanding the mechanisms of electroplasticity from a crystal plasticity perspective[J]. Modelling and Simulation in Materials Science and Engineering, 2019, 27(8): 085006.
[133] CONRAD H. Electroplasticity in metals and ceramics[J]. Materials Science and Engineering: A, 2000, 287(2): 276-287.
[134] ZHAO S, ZHANG R, CHONG Y, et al. Defect reconfiguration in a Ti–Al alloy via electroplasticity[J]. Nature Materials, 2020.
[135] PERKINS T A, KRONENBERGER T J, ROTH J T. Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1): 84-94.
[136] WANG X, XU J, SHAN D, et al. Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension[J]. International Journal of Plasticity, 2016, 85: 230-257.
[137] JIANG T, PENG L, YI P, et al. Analysis of the Electric and Thermal Effects on Mechanical Behavior of SS304 Subjected to Electrically Assisted Forming Process[J]. Journal of Manufacturing Science and Engineering, 2016, 138(6).
[138] ROSS C D, KRONENBERGER T J, ROTH J T. Effect of dc on the Formability of Ti–6Al–4V[J]. Journal of Engineering Materials and Technology, 2009, 131(3): 031004.
[139] KINSEY B, CULLEN G, JORDAN A, et al. Investigation of electroplastic effect at high deformation rates for 304SS and Ti–6Al–4V[J]. CIRP Annals, 2013, 62(1): 279-282.
[140] MAI J, PENG L, LIN Z, et al. Experimental study of electrical resistivity and flow stress of stainless steel 316L in electroplastic deformation[J]. Materials Science and Engineering: A, 2011, 528(10-11): 3539-3544.
[141] CONRAD H. Effects of electric current on solid state phase transformations in metals[J]. Materials Science and Engineering: A, 2000, 287(2): 227-237.
[142] WANG X, XU J, JIANG Z, et al. Size effects on flow stress behavior during electrically-assisted micro-tension in a magnesium alloy AZ31[J]. Materials Science and Engineering: A, 2016, 659: 215-224.
[143] MAGARGEE J, MORESTIN F, CAO J. Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation[J]. Journal of Engineering Materials and Technology, 2013, 135(4): 041003.
[144] HE J, ZENG Z, LI H, et al. The microstructure and mechanical properties of copper in electrically assisted tension[J]. Materials & Design, 2020, 196: 109171.
[145] XIAO S H, GUO J D, WU S D, et al. Recrystallization in fatigued copper single crystals under electropulsing[J]. Scripta Materialia, 2002, 46(1): 1-6.
[146] XU Q, GUAN L, JIANG Y, et al. Improved plasticity of Mg–Al–Zn alloy by electropulsing tension[J]. Materials Letters, 2010, 64(9): 1085-1087.
[147] AO D, CHU X, YANG Y, et al. Effect of electropulsing treatment on microstructure and mechanical behavior of Ti-6Al-4V alloy sheet under argon gas protection[J]. Vacuum, 2018, 148: 230-238.
[148] ZHAO Y, MA B, GUO H, et al. Electropulsing strengthened 2GPa boron steel with good ductility[J]. Materials & Design, 2013, 43: 195-199.
[149] BAO W, CHU X, LIN S, et al. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming[J]. Materials & Design, 2015, 87: 632-639.
[150] GHIOTTI A, BRUSCHI S, SIMONETTO E, et al. Electroplastic effect on AA1050 aluminium alloy formability[J]. CIRP Annals, 2018, 67(1): 289-292.
[151] XIAO H, JIANG S, SHI C, et al. Study on the microstructure evolution and mechanical properties of an Al-Mg-Li alloy aged by electropulsing assisted ageing processing[J]. Materials Science and Engineering: A, 2019, 756: 442-454.
[152] KIM M J, LEE M G, HARIHARAN K, et al. Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension[J]. International Journal of Plasticity, 2017, 94: 148-170.
[153] SONG H, WANG Z, HE X, et al. Self-healing of damage inside metals triggered by electropulsing stimuli[J]. Scientific Reports, 2017, 7(1): 7097.
[154] WANG F, QIAN D, HUA L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment[J]. Scientific Reports, 2019, 9(1): 11315.
[155] YIZHOU Z, YOU Z, GUANHU H, et al. The healing of quenched crack in 1045 steel under electropulsing[J]. Journal of Materials Research, 2001, 16(1): 17-19.
[156] CAI Z, HUANG X. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current[J]. Materials Science and Engineering: A, 2011, 528(19): 6287-6292.
[157] ZHU Y, CHEN B, TANG H, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(1): 36-46.
[158] JIA H, SUN H, WANG H, et al. Scanning strategy in selective laser melting (SLM): a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9): 2413-2435.
[159] HAGHDADI N, LALEH M, MOYLE M, et al. Additive manufacturing of steels: a review of achievements and challenges[J]. Journal of Materials Science, 2021, 56(1): 64-107.
[160] NOELL P J, RODELAS J M, GHANBARI Z N, et al. Microstructural modification of additively manufactured metals by electropulsing[J]. Additive Manufacturing, 2020, 33: 101128.
[161] GAO J B, BEN D D, YANG H J, et al. Effects of electropulsing on the microstructure and microhardness of a selective laser melted Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 2021, 875: 160044.
[162] FAN S, HE B, LIU M. Effect of Pulse Current Density on Microstructure of Ti-6Al-4V Alloy by Laser Powder Bed Fusion[J]. Metals, 2022, 12(8): 1327.
[163] BEN D, YANG H, GAO J, et al. Rapid Microstructure Homogenization of a Laser Melting Deposition Additive Manufactured Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy by Electropulsing[J]. Materials, 2022, 15(20): 7103.
[164] WEN Y, LIU P, GUO H, et al. Effect of electroshocking treatment on the microstructure and mechanical properties of laser melting deposited near-β Ti-55531 thin-wall[J]. Journal of Alloys and Compounds, 2023, 936: 168187.
[165] LI G Y, CHEN D, WANG S, et al. Tailoring microstructure and martensitic transformation of selective laser melted Ti49.1Ni50.9 alloy through electropulsing treatment[J]. Materials Today Communications, 2022, 31: 103437.
[166] HARDIE D, CHARLES E A, LOPEZ A H. Hydrogen embrittlement of high strength pipeline steels[J]. Corrosion Science, 2006, 48(12): 4378-4385.
[167] KIM H J, LEE M G, YOON S C, et al. Diffusible hydrogen behavior and delayed fracture of cold rolled martensitic steel in consideration of automotive manufacturing process and vehicle service environment[J]. Journal of Materials Research and Technology, 2020, 9(6): 13483-13501.
[168] SILVERSTEIN R, ELIEZER D, TAL-GUTELMACHER E. Hydrogen trapping in alloys studied by thermal desorption spectrometry[J]. Journal of Alloys and Compounds, 2018, 747: 511-522.
[169] XIANG S, MA R, ZHANG X. Removing hydrogen in solid metal using electric current pulse[J]. Journal of Alloys and Compounds, 2020, 845: 156083.
[170] KUMAR A, PAUL S K. Restoration of ductility in hydrogen embrittled dual-phase (DP 780) steel by the electric pulse treatment[J]. Materials Science and Engineering: A, 2022, 847: 143256.
[171] YI K, MA R, XIANG S, et al. Eliminating reversible hydrogen embrittlement in high-strength martensitic steel by an electric current pulse[J]. International Journal of Hydrogen Energy, 2022, 47(38): 17045-17055.
[172] MA R, XIANG S, ZHANG X. Repairing irreversible hydrogen–induced damages using electric current pulse[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16909-16917.
[173] SONG H, WANG Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science and Engineering: A, 2008, 490(1): 1-6.
[174] ZHANG B, LI Y, BAI Q. Defect Formation Mechanisms in Selective Laser Melting: A Review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515-527.
[175] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components – Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
[176] 叶福兴, 王永辉, 娄智. 激光增材制造过程中激光与粉末的相互作用研究现状[J]. 中国表面工程, 2021, 34(02): 1-12.
[177] HESKETH J, MCCLELLAND N, ZHANG Y, et al. Influence of additive manufacturing by laser powder bed fusion on the susceptibility of Alloy 718 to hydrogen embrittlement[J]. Corrosion Engineering, Science and Technology, 2021, 0(0): 1-10.
[178] YAN C, HAO L, HUSSEIN A, et al. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 61-73.
[179] XIE D, LV F, YANG Y, et al. A Review on Distortion and Residual Stress in Additive Manufacturing[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(3): 100039.
[180] SEIFI M, SALEM A, BEUTH J, et al. Overview of Materials Qualification Needs for Metal Additive Manufacturing[J]. JOM, 2016, 68(3): 747-764.
[181] HUANG Y, FLEMING T G, CLARK S J, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing[J]. Nature Communications, 2022, 13(1): 1170.
[182] CHEN S, GAO H, ZHANG Y, et al. Review on residual stresses in metal additive manufacturing: formation mechanisms, parameter dependencies, prediction and control approaches[J]. Journal of Materials Research and Technology, 2022, 17: 2950-2974.
[183] DU PLESSIS A, YADROITSAVA I, YADROITSEV I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights[J]. Materials & Design, 2020, 187: 108385.
[184] LIU T, WANG Q, CAI X, et al. Effect of laser power on microstructures and properties of Al-4.82Mg-0.75Sc-0.49Mn-0.28Zr alloy fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2022, 18: 3612-3625.
[185] LIU Z, YIN G, ZHU X, et al. Microstructure, texture and tensile properties as a function of laser power of Ti48Al2Cr2Nb5Ta alloy prepared by laser additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 73: 624-632.
[186] LU H Z, MA H W, YANG Y, et al. Tailoring phase transformation behavior, microstructure, and superelasticity of NiTi shape memory alloys by specific change of laser power in selective laser melting[J]. Materials Science and Engineering: A, 2023, 864: 144576.
[187] WANG L, ZHANG Y, CHIA H Y, et al. Mechanism of keyhole pore formation in metal additive manufacturing[J]. npj Computational Materials, 2022, 8(1): 1-11.
[188] BRÉHIER M, WEISZ-PATRAULT D, TOURNIER C. Revisiting the influence of the scanning speed on surface topography and microstructure of IN718 thin walls in directed energy deposition additive manufacturing[J]. Procedia CIRP, 2022, 108: 470-476.
[189] WANG T, ZHU L, WANG H, et al. Tribological property and thermal shock resistance of NiCoCrAlY coated YSZ composite coatings prepared by different laser additive manufacturing scanning speeds[J]. Materials Today Communications, 2022, 31: 103184.
[190] CHEN Y, ZHOU Q. Directed energy deposition additive manufacturing of CoCrFeMnNi high-entropy alloy towards densification, grain structure control and improved tensile properties[J]. Materials Science and Engineering: A, 2022, 860: 144272.
[191] FAYAZFAR H, SALARIAN M, ROGALSKY A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties[J]. Materials & Design, 2018, 144: 98-128.
[192] WEAVER J S, HEIGEL J C, LANE B M. Laser spot size and scaling laws for laser beam additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 73: 26-39.
[193] CHEN H, CHENG T, LI Z, et al. Is high-speed powder spreading really unfavourable for the part quality of laser powder bed fusion additive manufacturing?[J]. Acta Materialia, 2022, 231: 117901.
[194] ZHOU Y H, LI W P, ZHANG L, et al. Selective laser melting of Ti–22Al–25Nb intermetallic: Significant effects of hatch distance on microstructural features and mechanical properties[J]. Journal of Materials Processing Technology, 2020, 276: 116398.
[195] SUFIIAROV V Sh, POPOVICH A A, BORISOV E V, et al. The Effect of Layer Thickness at Selective Laser Melting[J]. Procedia Engineering, 2017, 174: 126-134.
[196] MA M, WANG Z, GAO M, et al. Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel[J]. Journal of Materials Processing Technology, 2015, 215: 142-150.
[197] YANG K V, ROMETSCH P, JARVIS T, et al. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting[J]. Materials Science and Engineering: A, 2018, 712: 166-174.
[198] ENGELHARDT A, KAHL M, RICHTER J, et al. Investigation of processing windows in additive manufacturing of AlSi10Mg for faster production utilizing data-driven modeling[J]. Additive Manufacturing, 2022, 55: 102858.
[199] YAKOUT M, CADAMURO A, ELBESTAWI M A, et al. The selection of process parameters in additive manufacturing for aerospace alloys[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5): 2081-2098.
[200] SONG Y, SUN Q, GUO K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Materials Science and Engineering: A, 2020, 793: 139879.
[201] BABACAN N, PILZ S, PAULY S, et al. Tailoring the superelastic properties of an additively manufactured Cu–Al–Mn shape memory alloy via adjusting the scanning strategy[J]. Materials Science and Engineering: A, 2023, 862: 144412.
[202] ALI H, GHADBEIGI H, MUMTAZ K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V[J]. Materials Science and Engineering: A, 2018, 712: 175-187.
[203] ZHOU L, SUN J, BI X, et al. Effect of scanning strategies on the microstructure and mechanical properties of Ti–15Mo alloy fabricated by selective laser melting[J]. Vacuum, 2022, 205: 111454.
[204] LIU J, LI G, SUN Q, et al. Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2022, 299: 117366.
[205] KONG D, ZHAO D, ZHU G, et al. Heat treatment effects on the hydrogen embrittlement of Ti6Al4V fabricated by laser beam powder bed fusion[J]. Additive Manufacturing, 2022, 50: 102580.
[206] KUDIIAROV V N, SYRTANOV M S, BORDULEV Yu S, et al. The hydrogen sorption and desorption behavior in spherical powder of pure titanium used for additive manufacturing[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15283-15289.
[207] LI S, LIU M, REN Y, et al. Hydrogen embrittlement behaviors of additive manufactured maraging steel investigated by in situ high-energy X-ray diffraction[J]. Materials Science and Engineering: A, 2019, 766: 138341.
[208] YOO J, KIM S, JO M C, et al. Investigation of hydrogen embrittlement properties of Ni-based alloy 718 fabricated via laser powder bed fusion[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18892-18910.
[209] FU Z, WU P, ZHANG Y, et al. Effects of hydrogen and load frequency on the fatigue crack propagation behavior of selective laser melted Inconel 718 alloy[J]. International Journal of Fatigue, 2022, 160: 106848.
[210] KEVINSANNY, OKAZAKI S, TAKAKUWA O, et al. Defect tolerance and hydrogen susceptibility of the fatigue limit of an additively manufactured Ni-based superalloy 718[J]. International Journal of Fatigue, 2020, 139: 105740.
[211] BAEK S W, SONG E J, KIM J H, et al. Hydrogen embrittlement of 3-D printing manufactured austenitic stainless steel part for hydrogen service[J]. Scripta Materialia, 2017, 130: 87-90.
[212] BERTSCH K M, NAGAO A, RANKOUHI B, et al. Hydrogen embrittlement of additively manufactured austenitic stainless steel 316 L[J]. Corrosion Science, 2021, 192: 109790.
[213] MILLER J T, MARTIN H J, CUDJOE E. Comparison of the effects of a sulfuric acid environment on traditionally manufactured and additive manufactured stainless steel 316L alloy[J]. Additive Manufacturing, 2018, 23: 272-286.
[214] HONG Y, ZHOU C, WAGNER S, et al. Strain-induced twins and martensite: Effects on hydrogen embrittlement of selective laser melted (SLM) 316 L stainless steel[J]. Corrosion Science, 2022, 208: 110669.
[215] KACENKA Z, ROUDNICKA M, EKRT O, et al. High susceptibility of 3D-printed Ti-6Al-4V alloy to hydrogen trapping and embrittlement[J]. Materials Letters, 2021, 301: 130334.
[216] METALNIKOV P, ELIEZER D, BEN-HAMU G, et al. Hydrogen embrittlement of electron beam melted Ti–6Al–4V[J]. Journal of Materials Research and Technology, 2020, 9(6): 16126-16134.
[217] METALNIKOV P, ELIEZER D, BEN-HAMU G. Hydrogen trapping in additive manufactured Ti–6Al–4V alloy[J]. Materials Science and Engineering: A, 2021, 811: 141050.
[218] SILVERSTEIN R, ELIEZER D. Hydrogen trapping in 3D-printed (additive manufactured) Ti-6Al-4V[J]. Materials Characterization, 2018, 144: 297-304.
[219] ALNAJJAR M, CHRISTIEN F, BOSCH C, et al. A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17–4 PH stainless steel[J]. Materials Science and Engineering: A, 2020, 785: 139363.
[220] NAVI N U, TENENBAUM J, SABATANI E, et al. Hydrogen effects on electrochemically charged additive manufactured by electron beam melting (EBM) and wrought Ti–6Al–4V alloys[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25523-25540.
[221] LEE D H, SUN B, LEE S, et al. Comparative study of hydrogen embrittlement resistance between additively and conventionally manufactured 304L austenitic stainless steels[J]. Materials Science and Engineering: A, 2021, 803: 140499.
[222] FU Z, YANG B, GAN K, et al. Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures[J]. Corrosion Science, 2021, 190: 109695.
[223] GALLMEYER T G, MOORTHY S, KAPPES B B, et al. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718[J]. Additive Manufacturing, 2020, 31: 100977.
[224] LIN Y T, AN X, ZHU Z, et al. Effect of cell wall on hydrogen response in CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 925: 166735.
[225] FROEND M, VENTZKE V, DORN F, et al. Microstructure by design: An approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition[J]. Materials Science and Engineering: A, 2020, 772: 138635.
[226] KONG D, DONG C, NI X, et al. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment[J]. Corrosion Science, 2020, 166: 108425.
[227] LIN J, CHEN F, LIU F, et al. Hydrogen permeation behavior and hydrogen-induced defects in 316L stainless steels manufactured by additive manufacturing[J]. Materials Chemistry and Physics, 2020, 250: 123038.
[228] LEE D H, ZHAO Y, LEE S Y, et al. Hydrogen-assisted failure in Inconel 718 fabricated by laser powder bed fusion: The role of solidification substructure in the embrittlement[J]. Scripta Materialia, 2022, 207: 114308.
[229] KWON Y J, CASATI R, CODURI M, et al. Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting[J]. Materials, 2019, 12(15): 2360.
[230] ALVARO A, THUE JENSEN I, KHERADMAND N, et al. Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing[J]. International Journal of Hydrogen Energy, 2015, 40(47): 16892-16900.
[231] TEHRANCHI A, ZHOU X, CURTIN W A. A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction[J]. Acta Materialia, 2020, 185: 98-109.
[232] BERTSCH K M, WANG S, NAGAO A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni[J]. Materials Science and Engineering: A, 2019, 760: 58-67.
[233] ANGELO J E, MOODY N R, BASKES M I. Trapping of hydrogen to lattice defects in nickel[J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(3): 289.
[234] BASKES M I, VITEK V. Trapping of hydrogen and helium at grain boundaries in nickel: An atomistic study[J]. Metallurgical Transactions A, 1985, 16(9): 1625-1631.
[235] YU H, OLSEN J S, OLDEN V, et al. Cohesive zone simulation of grain size and misorientation effects on hydrogen embrittlement in nickel[J]. Engineering Failure Analysis, 2017, 81: 79-93.
[236] WEN M, FUKUYAMA S, YOKOGAWA K. Hydrogen-affected cross-slip process in fcc nickel[J]. Physical Review B, 2004, 69(17): 174108.
[237] BARNOUSH A, VEHOFF H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation[J]. Acta Materialia, 2010, 58(16): 5274-5285.
[238] LAWRENCE S K, YAGODZINSKYY Y, HÄNNINEN H, et al. Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys[J]. Acta Materialia, 2017, 128: 218-226.
[239] ROBERTSON I M. The effect of hydrogen on dislocation dynamics[J]. Engineering Fracture Mechanics, 2001, 68(6): 671-692.
[240] HARRIS Z D, LAWRENCE S K, MEDLIN D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel[J]. Acta Materialia, 2018, 158: 180-192.
[241] MARTIN M L, SOMERDAY B P, RITCHIE R O, et al. Hydrogen-induced intergranular failure in nickel revisited[J]. Acta Materialia, 2012, 60(6): 2739-2745.
[242] SUN Q, HE J, NAGAO A, et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni[J]. Acta Materialia, 2023, 246: 118660.
[243] HE M, XIANG Z, YI J, et al. A comparison of dislocation cellular patterns generated in Inconel 718 alloy and pure Ni fabricated by laser powder bed fusion[J]. Vacuum, 2022, 199: 110974.
[244] WANG S, MARTIN M L, ROBERTSON I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries[J]. Acta Materialia, 2016, 107: 279-288.
[245] TSUCHIDA Y, WATANABE T, KATO T, et al. Effect of hydrogen absorption on strain-induced low-cycle fatigue of low carbon steel[J]. Procedia Engineering, 2010, 2(1): 555-561.
[246] NYGREN K E, WANG S, BERTSCH K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy[J]. Acta Materialia, 2018, 157: 218-227.
[247] TEHRANCHI A, CURTIN W A. The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals[J]. Engineering Fracture Mechanics, 2019, 216: 106502.
[248] XU Z, ZHANG H, DU X, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J]. Corrosion Science, 2020, 177: 108954.
[249] MILLER J T, MARTIN H J, CUDJOE E. Comparison of the effects of a sulfuric acid environment on traditionally manufactured and additive manufactured stainless steel 316L alloy[J]. Additive Manufacturing, 2018, 23: 272-286.
[250] HESKETH J, MCCLELLAND N, ZHANG Y, et al. Influence of additive manufacturing by laser powder bed fusion on the susceptibility of Alloy 718 to hydrogen embrittlement[J]. Corrosion Engineering, Science and Technology, 2021, 0(0): 1-10.
[251] DJUKIC M B, SIJACKI ZERAVCIC V, BAKIC G M, et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model[J]. Engineering Failure Analysis, 2015, 58: 485-498.
[252] PANTLEON W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[J]. Scripta Materialia, 2008, 58(11): 994-997.
[253] BENJAMIN BRITTON T, WILKINSON A J. Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band[J]. Acta Materialia, 2012, 60(16): 5773-5782.
[254] ARSENLIS A, PARKS D M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density[J]. Acta Materialia, 1999, 47(5): 1597-1611.
[255] BERTSCH K M, WANG S, NAGAO A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni[J]. Materials Science and Engineering: A, 2019, 760: 58-67.
[256] DADFARNIA M, NAGAO A, WANG S, et al. Recent advances on hydrogen embrittlement of structural materials[J]. International Journal of Fracture, 2015, 196(1-2): 223-243.
[257] WADA K, YAMABE J, MATSUNAGA H. Visualization of trapped hydrogen along grain boundaries and its quantitative contribution to hydrogen-induced intergranular fracture in pure nickel[J]. Materialia, 2019, 8: 100478.
[258] BIRNBAUM H K, SOFRONIS P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering: A, 1994, 176(1): 191-202.
[259] ROBERTSON I M, SOFRONIS P, NAGAO A, et al. Hydrogen Embrittlement Understood[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1085-1103.
[260] OGAWA Y, NOGUCHI K, TAKAKUWA O. Criteria for hydrogen-assisted crack initiation in Ni-based superalloy 718[J]. Acta Materialia, 2022, 229: 117789.
[261] OUDRISS A, CREUS J, BOUHATTATE J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel[J]. Acta Materialia, 2012, 60(19): 6814-6828.
[262] LUO H, LI Z, RAABE D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy[J]. Scientific Reports, 2017, 7(1): 9892.
[263] NYGREN K E, BERTSCH K M, WANG S, et al. Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy[J]. Current Opinion in Solid State and Materials Science, 2018, 22(1): 1-7.
[264] UNNIKRISHNAN R, IDURY K S N S, ISMAIL T P, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments[J]. Materials Characterization, 2014, 93: 10-23.
[265] XING X, GOU J, LI F, et al. Hydrogen effect on the intergranular failure in polycrystal ɑ-iron with different crystal sizes[J]. International Journal of Hydrogen Energy, 2021, 46(73): 36528-36538.
[266] ZHANG C, ZHI H, ANTONOV S, et al. Effect of pre-strain on hydrogen embrittlement of high manganese steel[J]. Materials Science and Engineering: A, 2022, 834: 142596.
[267] XU Q, ZHANG J. Novel Methods for Prevention of Hydrogen Embrittlement in Iron[J]. Scientific Reports, 2017, 7(1): 16927.
[268] TSURU T, SHIMIZU K, YAMAGUCHI M, et al. Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys[J]. Scientific Reports, 2020, 10: 1998.
[269] CHEN T, KOYAMA M, HAMADA S, et al. Fundamental criterion Ktrans for failure analysis of hydrogen-assisted cracks in notched specimens of pure Ni[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102556.
[270] MUKHERJEE T, DEBROY T. Mitigation of lack of fusion defects in powder bed fusion additive manufacturing[J]. Journal of Manufacturing Processes, 2018, 36: 442-449.
[271] WECK A, WILKINSON D S. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes[J]. Acta Materialia, 2008, 56(8): 1774-1784.
[272] LEHTO P. Adaptive domain misorientation approach for the EBSD measurement of deformation induced dislocation sub-structures[J]. Ultramicroscopy, 2021, 222: 113203.
[273] GITHINJI D N, NORTHOVER S M, BOUCHARD P J, et al. An EBSD Study of the Deformation of Service-Aged 316 Austenitic Steel[J]. Metallurgical and Materials Transactions A, 2013, 44(9): 4150-4167.
[274] HU H E, YANG L, ZHEN L, et al. Relationship between boundary misorientation angle and true strain during high temperature deformation of 7050 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 795-798.
[275] LAUREYS A, VAN DEN EECKHOUT E, PETROV R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging[J]. Acta Materialia, 2017, 127: 192-202.
[276] BOCKRIS J, SUBRAMANYAN P. Hydrogen embrittlement and hydrogen traps[J]. Journal of the Electrochemical Society, 1971, 118(7): 1114.
[277] MENG L X, YANG H J, BEN D D, et al. Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone[J]. Materials Science and Engineering: A, 2022, 830: 142294.
[278] SHI J, MA S, WEI S, et al. Connecting structural defects to tensile failure in a 3D-printed fully-amorphous bulk metallic glass[J]. Materials Science and Engineering: A, 2021, 813: 141106.
[279] SARAC B, SCHROERS J. Designing tensile ductility in metallic glasses[J]. Nature Communications, 2013, 4(1): 2158.
[280] ZHANG P, ZHANG C, LIU L. Toughening 3D-printed Zr-based bulk metallic glass via synergistic defects engineering[J]. Materials Research Letters, 2022, 10(6): 377-384.
[281] LIU L, YU Q, WANG Z, et al. Making ultrastrong steel tough by grain-boundary delamination[J]. Science, 2020: eaba9413.
[282] MEINERS T, PENG Z, GAULT B, et al. Sulfur – induced embrittlement in high-purity, polycrystalline copper[J]. Acta Materialia, 2018, 156: 64-75.
[283] ZENG Z, HE J, XIANG Z, et al. Embrittlement of 316L stainless steel in electropulsing treatment[J]. Journal of Materials Research and Technology, 2020, 9(5): 10669-10678.
[284] YAO J, MEGUID S A, CAHOON J R. Hydrogen diffusion and its relevance to intergranular cracking in nickel[J]. Metallurgical Transactions A, 1993, 24(1): 105-112.
[285] OUDRISS A, CREUS J, BOUHATTATE J, et al. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel[J]. Scripta Materialia, 2012, 66(1): 37-40.
[286] LIU X, ZHANG X. An ultrafast performance regeneration of aged stainless steel by pulsed electric current[J]. Scripta Materialia, 2018, 153: 86-89.
[287] BAKONYI I. Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu[J]. The European Physical Journal Plus, 2021, 136(4): 410.
[288] QIN S, BA X, ZHANG X. Accelerated cluster dissolution using electropulsing for ultrafast performance regeneration[J]. Scripta Materialia, 2020, 178: 24-28.
[289] SHENG Y, HUA Y, WANG X, et al. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties[J]. Materials, 2018, 11(2): 185.
[290] KONOVALOV S V, ATROSHKINA A A, IVANOV Yu F, et al. Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment[J]. Materials Science and Engineering: A, 2010, 527(12): 3040-3043.
[291] ZHOU Y, GUO J, GAO M, et al. Crack healing in a steel by using electropulsing technique[J]. Materials Letters, 2004, 58(11): 1732-1736.
[292] YU T, DENG D, WANG G, et al. Crack healing in SUS304 stainless steel by electropulsing treatment[J]. Journal of Cleaner Production, 2016, 113: 989-994.
[293] XU X, ZHAO Y, MA B, et al. Electropulsing induced evolution of grain-boundary precipitates without loss of strength in the 7075 Al alloy[J]. Materials Characterization, 2015, 105: 90-94.
[294] BISHARA H, LEE S, BRINK T, et al. Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure[J]. ACS Nano, 2021, 15(10): 16607-16615.
[295] FELDMAN B, PARK S, HAVERTY M, et al. Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering[J]. physica status solidi (b), 2010, 247(7): 1791-1796.
[296] BAKONYI I, ISNAINI V A, KOLONITS T, et al. The specific grain-boundary electrical resistivity of Ni[J]. Philosophical Magazine, 2019, 99(9): 1139-1162.
[297] FAN R, MAGARGEE J, HU P, et al. Influence of grain size and grain boundaries on the thermal and mechanical behavior of 70/30 brass under electrically-assisted deformation[J]. Materials Science and Engineering: A, 2013, 574: 218-225.
[298] DARNBROUGH J E, ROEBUCK B, FLEWITT P E J. The influence of temperature and grain boundary volume on the resistivity of nanocrystalline nickel[J]. Journal of Applied Physics, 2015, 118(18): 184302.
[299] JORDAN L, SWANGER W H. The properties of pure nickel[J]. Bureau of Standards Journal of Research, 1930, 5(6): 1291.
[300] LEE S M, LEE J Y. The trapping and transport phenomena of hydrogen in nickel[J]. Metallurgical Transactions A, 1986, 17(2): 181-187.

所在学位评定分委会
力学
国内图书分类号
TG174
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545042
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
何旌. 选区激光熔化镍的氢脆机理与抗氢脆性能优化研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930737-何旌-机械与能源工程系(13919KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[何旌]的文章
百度学术
百度学术中相似的文章
[何旌]的文章
必应学术
必应学术中相似的文章
[何旌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。