[1] WANG S, MARTIN M L, ROBERTSON I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries[J]. Acta Materialia, 2016, 107: 279-288.
[2] TSUCHIDA Y, WATANABE T, KATO T, et al. Effect of hydrogen absorption on strain-induced low-cycle fatigue of low carbon steel[J]. Procedia Engineering, 2010, 2(1): 555-561.
[3] NYGREN K E, WANG S, BERTSCH K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy[J]. Acta Materialia, 2018, 157: 218-227.
[4] 解德刚, 李蒙, 单智伟. 氢与金属的微观交互作用研究进展[J]. 中国材料进展, 2018, 37(03): 215-223.
[5] MCMAHON C J. Hydrogen-induced intergranular fracture of steels[J]. Engineering Fracture Mechanics, 2001, 68(6): 773-788.
[6] 杨长江, 梁成浩, 王华. 钛及其合金氢脆研究现状与应用[J]. 腐蚀科学与防护技术, 2006(02): 122-125.
[7] 陈瑞, 郑津洋, 徐平, 等. 金属材料常温高压氢脆研究进展[J]. 太阳能学报, 2008(04): 502-508.
[8] 李金许, 王伟, 周耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(04): 444-458.
[9] 黄广棋, 张桂凯, 罗朝以, 等. Fe-Al金属间化合物氢脆效应研究现状[J]. 材料导报, 2018, 32(11): 1878-1883.
[10] 张慧云. 钢中氢脆的研究现状[J]. 山西冶金, 2020, 43(05): 1-3.
[11] 燕辉, 刘鸿彦, 郗运富, 等. TA10换热管氢脆腐蚀的失效分析[J]. 石油和化工设备, 2019, 22(09): 94-98.
[12] CARNEIRO R A, RATNAPULI R C, DE FREITAS CUNHA LINS V. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking[J]. Materials Science and Engineering: A, 2003, 357(1): 104-110.
[13] 兰亮云, 孔祥伟, 邱春林, 等. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(07): 845-859.
[14] LIN J, CHEN F, LIU F, et al. Hydrogen permeation behavior and hydrogen-induced defects in 316L stainless steels manufactured by additive manufacturing[J]. Materials Chemistry and Physics, 2020, 250: 123038.
[15] SUN B, LU W, GAULT B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels[J]. Nature Materials, 2021, 20(12): 1629-1634.
[16] JOHNSON W H, THOMSON W. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Proceedings of the Royal Society of London, 1875, 23(156-163): 168-179.
[17] ZHANG W. Technical Problem Identification for the Failures of the Liberty Ships[J]. Challenges, 2016, 7(2): 20.
[18] 王正. 微结构调控中锰钢机械性能和氢脆性能研究[D]. 北京科技大学, 2021.
[19] PU Z, CHEN Y, DAI L H. Strong resistance to hydrogen embrittlement of high-entropy alloy[J]. Materials Science and Engineering: A, 2018, 736: 156-166.
[20] KOYAMA M, ROHWERDER M, TASAN C C, et al. Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation[J]. Materials Science and Technology, 2017, 33(13): 1481-1496.
[21] 陈林. 微结构设计下钢中氢陷阱抗氢脆能力的研究[D]. 北京科技大学, 2022.
[22] LIU Q, VENEZUELA J, ZHANG M, et al. Hydrogen trapping in some advanced high strength steels[J]. Corrosion Science, 2016, 111: 770-785.
[23] KROM A H M, BAKKER A. Hydrogen trapping models in steel[J]. Metallurgical and Materials Transactions B, 2000, 31(6): 1475-1482.
[24] SUN Y, FRANK CHENG Y. Hydrogen-induced degradation of high-strength steel pipeline welds: A critical review[J]. Engineering Failure Analysis, 2022, 133: 105985.
[25] ROBERTSON I M, SOFRONIS P, NAGAO A, et al. Hydrogen Embrittlement Understood[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1085-1103.
[26] DWIVEDI S K, VISHWAKARMA M. Hydrogen embrittlement in different materials: A review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616.
[27] REN X C, ZHOU Q J, SHAN G B, et al. A Nucleation Mechanism of Hydrogen Blister in Metals and Alloys[J]. Metallurgical and Materials Transactions A, 2008, 39(1): 87-97.
[28] MARTIN M L, SOFRONIS P. Hydrogen-induced cracking and blistering in steels: A review[J]. Journal of Natural Gas Science and Engineering, 2022, 101: 104547.
[29] TIEGEL M C, MARTIN M L, LEHMBERG A K, et al. Crack and blister initiation and growth in purified iron due to hydrogen loading[J]. Acta Materialia, 2016, 115: 24-34.
[30] XIE D G, WANG Z J, SUN J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials, 2015, 14(9): 899-903.
[31] DUTTON R, NUTTALL K, PULS M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials[J]. Metallurgical Transactions A, 1977, 8(10): 1553-1562.
[32] GERBERICH W W, L1VNE T, CHEN X F, et al. Crack growth from internal hydrogen—temperature and microstructural effects in 4340 steel[J]. Metallurgical Transactions A, 1988, 19(5): 1319-1334.
[33] SHIH D S, ROBERTSON I M, BIRNBAUM H K. Hydrogen embrittlement of α titanium: In situ tem studies[J]. Acta Metallurgica, 1988, 36(1): 111-124.
[34] LI X, MA X, ZHANG J, et al. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773.
[35] GAHR S, MAKENAS B J, BIRNBAUM H K. Fracture of niobium hydride[J]. Acta Metallurgica, 1980, 28(9): 1207-1213.
[36] LUFRANO J, SOFRONIS P, BIRNBAUM H K. Elastoplastically accommodated hydride formation and embrittlement[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(9): 1497-1520.
[37] ROWE R G. Subcritical Cracking of Zircaloy-2 in High Pressure Hydrogen Gas[J]. Scripta Materialia, 1998, 38(10): 1495-1503.
[38] OWEN C V, SCOTT T E. Relation between hydrogen embrittlement and the formation of hydride in the group V transition metals[J]. Metallurgical and Materials Transactions B, 1972, 3(7): 1715-1726.
[39] TROIANO A R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals: (1959 Edward De Mille Campbell Memorial Lecture)[J]. Metallography, Microstructure, and Analysis, 2016, 5(6): 557-569.
[40] JIANG D E, CARTER E A. First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals[J]. Acta Materialia, 2004, 52(16): 4801-4807.
[41] GERBERICH W W, ORIANI R A, LJI M J, et al. The necessity of both plasticity and brittleness in the fracture thresholds of iron[J]. Philosophical Magazine A, 1991, 63(2): 363-376.
[42] KOMARAGIRI U, AGNEW S R, GANGLOFF R P, et al. The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(12): 3527-3540.
[43] ORIANI R A, JOSEPHIC P H. Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel[J]. Acta Metallurgica, 1977, 25(9): 979-988.
[44] ZHU X, LI W, ZHAO H, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel[J]. International Journal of Hydrogen Energy, 2014, 39(24): 13031-13040.
[45] LASSILA D H, BIRNBAUM H K. The effect of diffusive hydrogen segregation on fracture of polycrystalline nickel[J]. Acta Metallurgica, 1986, 34(7): 1237-1243.
[46] BEACHEM C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)[J]. Metallurgical and Materials Transactions B, 1972, 3(2): 441-455.
[47] FERREIRA P J, ROBERTSON I M, BIRNBAUM H K. Hydrogen effects on the interaction between dislocations[J]. Acta Materialia, 1998, 46(5): 1749-1757.
[48] MARTIN M L, CONNOLLY M J, DELRIO F W. Hydrogen embrittlement in ferritic steels[J]. Applied Physics Reviews, 2020: 25.
[49] COTTRELL A H, BILBY B A. Dislocation Theory of Yielding and Strain Ageing of Iron[J]. Proceedings of the Physical Society. Section A, 1949, 62(1): 49-62.
[50] BIRNBAUM H K, SOFRONIS P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering: A, 1994, 176(1): 191-202.
[51] SOFRONIS P, BIRNBAUM H K. Mechanics of the hydrogendashdislocationdashimpurity interactions—I. Increasing shear modulus[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(1): 49-90.
[52] CHATEAU J P, DELAFOSSE D, MAGNIN T. Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels.: part II: hydrogen effects on crack tip plasticity at a stress corrosion crack[J]. Acta Materialia, 2002, 50(6): 1523-1538.
[53] LIANG Y, AHN D C, SOFRONIS P, et al. Effect of hydrogen trapping on void growth and coalescence in metals and alloys[J]. Mechanics of Materials, 2008, 40(3): 115-132.
[54] NOVAK P, YUAN R, SOMERDAY B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(2): 206-226.
[55] NAGUMO M. Hydrogen related failure of steels – a new aspect[J]. Materials Science and Technology, 2004, 20(8): 940-950.
[56] KIRCHHEIM R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background[J]. Acta Materialia, 2007, 55(15): 5129-5138.
[57] KIRCHHEIM R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences[J]. Acta Materialia, 2007, 55(15): 5139-5148.
[58] DESAI S K, NEERAJ T, GORDON P A. Atomistic mechanism of hydrogen trapping in bcc Fe–Y solid solution: A first principles study[J]. Acta Materialia, 2010, 58(16): 5363-5369.
[59] SAKAKI K, KAWASE T, HIRATO M, et al. The effect of hydrogen on vacancy generation in iron by plastic deformation[J]. Scripta Materialia, 2006, 55(11): 1031-1034.
[60] NAGUMO M, TAKAI K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview[J]. Acta Materialia, 2019, 165: 722-733.
[61] NEERAJ T. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding[J]. Acta Materialia, 2012: 12.
[62] WASIM M, DJUKIC M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2145-2156.
[63] SONG J, CURTIN W A. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature Materials, 2013, 12(2): 145-151.
[64] WASIM M, DJUKIC M B, NGO T D. Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel[J]. Engineering Failure Analysis, 2021, 123: 105312.
[65] HUANG S, ZHANG Y, YANG C, et al. Fracture strain model for hydrogen embrittlement based on hydrogen enhanced localized plasticity mechanism[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25541-25554.
[66] DJUKIC M B, BAKIC G M, SIJACKI ZERAVCIC V, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion[J]. Engineering Fracture Mechanics, 2019, 216: 106528.
[67] JEMBLIE L, OLDEN V, AKSELSEN O M. A coupled diffusion and cohesive zone modelling approach for numerically assessing hydrogen embrittlement of steel structures[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11980-11995.
[68] NAGAO A, DADFARNIA M, SOMERDAY B P, et al. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels[J]. Journal of the Mechanics and Physics of Solids, 2018, 112: 403-430.
[69] WANG S, NAGAO A, SOFRONIS P, et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel[J]. Acta Materialia, 2018, 144: 164-176.
[70] CHEN Y S, HALEY D, GERSTL S S A, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel[J]. Science, 2017, 355(6330): 1196-1199.
[71] OWEN G, RANDLE V. On the role of iterative processing in grain boundary engineering[J]. Scripta Materialia, 2006, 55(10): 959-962.
[72] TAN L, ALLEN T R, BUSBY J T. Grain boundary engineering for structure materials of nuclear reactors[J]. Journal of Nuclear Materials, 2013, 441(1): 661-666.
[73] WATANABE T, TSUREKAWA S. Toughening of brittle materials by grain boundary engineering[J]. Materials Science and Engineering: A, 2004, 387-389: 447-455.
[74] OUDRISS A, LE GUERNIC S, WANG Z, et al. Meso-scale anisotropic hydrogen segregation near grain-boundaries in polycrystalline nickel characterized by EBSD/SIMS[J]. Materials Letters, 2016, 165: 217-222.
[75] GAO S, HU Z, DUCHAMP M, et al. Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting[J]. Acta Materialia, 2020, 200: 366-377.
[76] RANDLE V. Twinning-related grain boundary engineering[J]. Acta Materialia, 2004, 52(14): 4067-4081.
[77] WATANABE T. Grain boundary engineering: historical perspective and future prospects[J]. Journal of Materials Science, 2011, 46(12): 4095-4115.
[78] LEHOCKEY E M, PALUMBO G, AUST K T, et al. On the role of intercrystalline defects in polycrystal plasticity[J]. Scripta Materialia, 1998, 39(3): 341-346.
[79] GAO Y, RITCHIE R O, KUMAR M, et al. High-cycle fatigue of nickel-based superalloy ME3 at ambient and elevated temperatures: Role of grain-boundary engineering[J]. Metallurgical and Materials Transactions A, 2005, 36(12): 3325-3333.
[80] MA H, LA MATTINA F, SHORUBALKO I, et al. Engineering the grain boundary network of thin films via ion-irradiation: Towards improved electromigration resistance[J]. Acta Materialia, 2017, 123: 272-284.
[81] KWON Y J, JUNG S P, LEE B J, et al. Grain boundary engineering approach to improve hydrogen embrittlement resistance in FeMnC TWIP steel[J]. International Journal of Hydrogen Energy, 2018, 43(21): 10129-10140.
[82] BECHTLE S, KUMAR M, SOMERDAY B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Materialia, 2009, 57(14): 4148-4157.
[83] JOTHI S, CROFT T N, BROWN S G R. Influence of grain boundary misorientation on hydrogen embrittlement in bi-crystal nickel[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20671-20688.
[84] KOYAMA M, YAMASAKI D, NAGASHIMA T, et al. In situ observations of silver-decoration evolution under hydrogen permeation: Effects of grain boundary misorientation on hydrogen flux in pure iron[J]. Scripta Materialia, 2017, 129: 48-51.
[85] MA Z, XIONG X, SU Y. Study on hydrogen segregation at individual grain boundaries in pure nickel by scanning Kelvin probe force microscopy[J]. Materials Letters, 2021, 303: 130528.
[86] KWON Y J, SEO H J, KIM J N, et al. Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates[J]. Corrosion Science, 2018, 142: 213-221.
[87] LASSILA D H, BIRNBAUM H K. The effect of diffusive hydrogen segregation on fracture of polycrystalline nickel[J]. Acta Metallurgica, 1986, 34(7): 1237-1243.
[88] LASSILA D H, BIRNBAUM H K. The effect of diffusive segregation on the fracture of hydrogen charged nickel[J]. Acta Metallurgica, 1988, 36(10): 2821-2825.
[89] LUO H, LU W, FANG X, et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy[J]. Materials Today, 2018, 21(10): 1003-1009.
[90] SUN Q, HAN J, LI J, et al. Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering[J]. Corrosion Communications, 2022, 6: 48-51.
[91] LADNA B, BIRNBAUM H K. SIMS study of hydrogen at the surface and grain boundaries of nickel bicrystals[J]. Acta Metallurgica, 1987, 35(10): 2537-2542.
[92] SHI R, MA Y, WANG Z, et al. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces[J]. Acta Materialia, 2020, 200: 686-698.
[93] GONG P, NUTTER J, RIVERA-DIAZ-DEL-CASTILLO P E J, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels[J]. Science Advances, 2020, 6(46): eabb6152.
[94] LUO H, SOHN S S, LU W, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion[J]. Nature Communications, 2020, 11(1): 3081.
[95] LI Q, MO J W, MA S H, et al. Defeating hydrogen-induced grain-boundary embrittlement via triggering unusual interfacial segregation in FeCrCoNi-type high-entropy alloys[J]. Acta Materialia, 2022, 241: 118410.
[96] BHADESHIA H K D H. Prevention of Hydrogen Embrittlement in Steels[J]. ISIJ International, 2016, 56(1): 24-36.
[97] ZHAO H, CHAKRABORTY P, PONGE D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys[J]. Nature, 2022, 602(7897): 437-441.
[98] WEI F G, TSUZAKI K. Quantitative analysis on hydrogen trapping of TiC particles in steel[J]. Metallurgical and Materials Transactions A, 2006, 37(2): 331-353.
[99] LAUREYS A, CLAEYS L, DE SERANNO T, et al. The role of titanium and vanadium based precipitates on hydrogen induced degradation of ferritic materials[J]. Materials Characterization, 2018, 144: 22-34.
[100] DEPOVER T, VERBEKEN K. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys[J]. Corrosion Science, 2016, 112: 308-326.
[101] MALARD B, REMY B, SCOTT C, et al. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering[J]. Materials Science and Engineering: A, 2012, 536: 110-116.
[102] LI L, SONG B, CAI Z, et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel[J]. Materials Science and Engineering: A, 2019, 742: 712-721.
[103] DOS SANTOS T A A, DE LIMA M M, DOS SANTOS D S, et al. Effect of nano Nb and V carbides on the hydrogen interaction in tempered martensitic steels[J]. International Journal of Hydrogen Energy, 2022, 47(2): 1358-1370.
[104] LIN L, LI B, ZHU G, et al. Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5[J]. Materials Science and Engineering: A, 2018, 721: 38-46.
[105] YOO J, JO M C, KIM D W, et al. Effects of Cu addition on resistance to hydrogen embrittlement in 1 GPa-grade duplex lightweight steels[J]. Acta Materialia, 2020, 196: 370-383.
[106] SHMULEVITSH M, IFERGANE S, ELIAZ N, et al. Diffusion and trapping of hydrogen due to elastic interaction with η-Ni3Ti precipitates in Custom 465® stainless steel[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31610-31620.
[107] DEPOVER T, VERBEKEN K. Evaluation of the role of Mo2C in hydrogen induced ductility loss in Q&T FeCMo alloys[J]. International Journal of Hydrogen Energy, 2016, 41(32): 14310-14329.
[108] PARK T M, KIM H J, UM H Y, et al. The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements[J]. Materials Characterization, 2020, 165: 110386.
[109] DADFARNIA M, SOFRONIS P, NEERAJ T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement?[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10141-10148.
[110] SHI P, LI R, LI Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373(6557): 912-918.
[111] RUSZKIEWICZ B J, GRIMM T, RAGAI I, et al. A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect[J]. Journal of Manufacturing Science and Engineering, 2017, 139(11).
[112] MA Y R, YANG H J, TIAN Y Z, et al. Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment[J]. Materials Science and Engineering: A, 2018, 713: 146-150.
[113] CONRAD H, SPRECHER A F, CAO W D, et al. Electroplasticity—the effect of electricity on the mechanical properties of metals[J]. JOM, 1990, 42(9): 28-33.
[114] XU Z, TANG G, TIAN S, et al. Research on the engineering application of multiple pulses treatment for recrystallization of fine copper wire[J]. Materials Science and Engineering: A, 2006, 424(1): 300-306.
[115] LIU X, LAN S, NI J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel[J]. Journal of Materials Processing Technology, 2015, 219: 112-123.
[116] NGUYEN-TRAN H D, OH H S, HONG S T, et al. A review of electrically-assisted manufacturing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(4): 365-376.
[117] GUAN L, TANG G, CHU P K. Recent advances and challenges in electroplastic manufacturing processing of metals[J]. Journal of Materials Research, 2010, 25(7): 1215-1224.
[118] HE J, ZHENG Z, XIANG Z, et al. On the fracture process of intermediate temperature embrittlement of pure copper in electrical-assisted tension[J]. Materials Science and Engineering: A, 2021, 826: 141979.
[119] TROITSKII O, LIKHTMAN V. The anisotropy of the action of electron and γ radiation on the deformation of zinc single crystals in the brittle state[C]//Soviet Physics Doklady: 8. 1963: 91.
[120] TROITSKII O A. Effect of the electron state of a metal on its mechanical properties and the phenomenon of electroplasticity[J]. Strength of Materials, 1977, 9(1): 35-45.
[121] GERSTEIN G, KÖRKEMEYER F, DALINGER A, et al. Anomalous twinning in AZ 31 magnesium alloy during electrically assisted forming[J]. Materials Letters, 2019, 255: 126516.
[122] XUE S, WANG C, CHEN P, et al. Investigation of Electrically-Assisted Rolling Process of Corrugated Surface Microstructure with T2 Copper Foil[J]. Materials, 2019, 12(24): 4144.
[123] TROITSKIY O A, STASHENKO V I. Electroplastic wire drawing: A promising method of production of lightweight wire and cable[J]. Journal of Machinery Manufacture and Reliability, 2015, 44(8): 758-765.
[124] DALONG L, YANTING L, ENLIN Y, et al. Theoretical and experimental study of the drawing force under a current pulse[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 1047-1051.
[125] HAMEED S, GONZÁLEZ ROJAS H A, SÁNCHEZ EGEA A J, et al. Electroplastic cutting influence on power consumption during drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5): 1835-1841.
[126] HAMEED S, GONZÁLEZ ROJAS H A, PERAT BENAVIDES J I, et al. Influence of the Regime of Electropulsing-Assisted Machining on the Plastic Deformation of the Layer Being Cut[J]. Materials, 2018, 11(6): 886.
[127] LI X, WANG G, GU Y, et al. Investigation on electrically-assisted diffusion bonding of Ti2AlNb alloy sheet by microstructural observation, mechanical tests and heat treatment[J]. Materials & Design, 2018, 157: 351-361.
[128] LUU V T, DINH T K A, DAS H, et al. Diffusion Enhancement during Electrically Assisted Brazing of Ferritic Stainless Steel Alloys[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(5): 613-621.
[129] MUNIR Z A, QUACH D V, OHYANAGI M. Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process[J]. Journal of the American Ceramic Society, 2011, 94(1): 1-19.
[130] DIMITROV N K, LIU Y, HORSTEMEYER M F. Electroplasticity: A review of mechanisms in electro-mechanical coupling of ductile metals[J]. Mechanics of Advanced Materials and Structures, 2020, 0(0): 1-12.
[131] TIWARI J, PRATHEESH P, BEMBALGE O B, et al. Microstructure dependent electroplastic effect in AA 6063 alloy and its nanocomposites[J]. Journal of Materials Research and Technology, 2021, 12: 2185-2204.
[132] LAHIRI A, SHANTHRAJ P, ROTERS F. Understanding the mechanisms of electroplasticity from a crystal plasticity perspective[J]. Modelling and Simulation in Materials Science and Engineering, 2019, 27(8): 085006.
[133] CONRAD H. Electroplasticity in metals and ceramics[J]. Materials Science and Engineering: A, 2000, 287(2): 276-287.
[134] ZHAO S, ZHANG R, CHONG Y, et al. Defect reconfiguration in a Ti–Al alloy via electroplasticity[J]. Nature Materials, 2020.
[135] PERKINS T A, KRONENBERGER T J, ROTH J T. Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1): 84-94.
[136] WANG X, XU J, SHAN D, et al. Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension[J]. International Journal of Plasticity, 2016, 85: 230-257.
[137] JIANG T, PENG L, YI P, et al. Analysis of the Electric and Thermal Effects on Mechanical Behavior of SS304 Subjected to Electrically Assisted Forming Process[J]. Journal of Manufacturing Science and Engineering, 2016, 138(6).
[138] ROSS C D, KRONENBERGER T J, ROTH J T. Effect of dc on the Formability of Ti–6Al–4V[J]. Journal of Engineering Materials and Technology, 2009, 131(3): 031004.
[139] KINSEY B, CULLEN G, JORDAN A, et al. Investigation of electroplastic effect at high deformation rates for 304SS and Ti–6Al–4V[J]. CIRP Annals, 2013, 62(1): 279-282.
[140] MAI J, PENG L, LIN Z, et al. Experimental study of electrical resistivity and flow stress of stainless steel 316L in electroplastic deformation[J]. Materials Science and Engineering: A, 2011, 528(10-11): 3539-3544.
[141] CONRAD H. Effects of electric current on solid state phase transformations in metals[J]. Materials Science and Engineering: A, 2000, 287(2): 227-237.
[142] WANG X, XU J, JIANG Z, et al. Size effects on flow stress behavior during electrically-assisted micro-tension in a magnesium alloy AZ31[J]. Materials Science and Engineering: A, 2016, 659: 215-224.
[143] MAGARGEE J, MORESTIN F, CAO J. Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation[J]. Journal of Engineering Materials and Technology, 2013, 135(4): 041003.
[144] HE J, ZENG Z, LI H, et al. The microstructure and mechanical properties of copper in electrically assisted tension[J]. Materials & Design, 2020, 196: 109171.
[145] XIAO S H, GUO J D, WU S D, et al. Recrystallization in fatigued copper single crystals under electropulsing[J]. Scripta Materialia, 2002, 46(1): 1-6.
[146] XU Q, GUAN L, JIANG Y, et al. Improved plasticity of Mg–Al–Zn alloy by electropulsing tension[J]. Materials Letters, 2010, 64(9): 1085-1087.
[147] AO D, CHU X, YANG Y, et al. Effect of electropulsing treatment on microstructure and mechanical behavior of Ti-6Al-4V alloy sheet under argon gas protection[J]. Vacuum, 2018, 148: 230-238.
[148] ZHAO Y, MA B, GUO H, et al. Electropulsing strengthened 2GPa boron steel with good ductility[J]. Materials & Design, 2013, 43: 195-199.
[149] BAO W, CHU X, LIN S, et al. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming[J]. Materials & Design, 2015, 87: 632-639.
[150] GHIOTTI A, BRUSCHI S, SIMONETTO E, et al. Electroplastic effect on AA1050 aluminium alloy formability[J]. CIRP Annals, 2018, 67(1): 289-292.
[151] XIAO H, JIANG S, SHI C, et al. Study on the microstructure evolution and mechanical properties of an Al-Mg-Li alloy aged by electropulsing assisted ageing processing[J]. Materials Science and Engineering: A, 2019, 756: 442-454.
[152] KIM M J, LEE M G, HARIHARAN K, et al. Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension[J]. International Journal of Plasticity, 2017, 94: 148-170.
[153] SONG H, WANG Z, HE X, et al. Self-healing of damage inside metals triggered by electropulsing stimuli[J]. Scientific Reports, 2017, 7(1): 7097.
[154] WANG F, QIAN D, HUA L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment[J]. Scientific Reports, 2019, 9(1): 11315.
[155] YIZHOU Z, YOU Z, GUANHU H, et al. The healing of quenched crack in 1045 steel under electropulsing[J]. Journal of Materials Research, 2001, 16(1): 17-19.
[156] CAI Z, HUANG X. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current[J]. Materials Science and Engineering: A, 2011, 528(19): 6287-6292.
[157] ZHU Y, CHEN B, TANG H, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(1): 36-46.
[158] JIA H, SUN H, WANG H, et al. Scanning strategy in selective laser melting (SLM): a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9): 2413-2435.
[159] HAGHDADI N, LALEH M, MOYLE M, et al. Additive manufacturing of steels: a review of achievements and challenges[J]. Journal of Materials Science, 2021, 56(1): 64-107.
[160] NOELL P J, RODELAS J M, GHANBARI Z N, et al. Microstructural modification of additively manufactured metals by electropulsing[J]. Additive Manufacturing, 2020, 33: 101128.
[161] GAO J B, BEN D D, YANG H J, et al. Effects of electropulsing on the microstructure and microhardness of a selective laser melted Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 2021, 875: 160044.
[162] FAN S, HE B, LIU M. Effect of Pulse Current Density on Microstructure of Ti-6Al-4V Alloy by Laser Powder Bed Fusion[J]. Metals, 2022, 12(8): 1327.
[163] BEN D, YANG H, GAO J, et al. Rapid Microstructure Homogenization of a Laser Melting Deposition Additive Manufactured Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy by Electropulsing[J]. Materials, 2022, 15(20): 7103.
[164] WEN Y, LIU P, GUO H, et al. Effect of electroshocking treatment on the microstructure and mechanical properties of laser melting deposited near-β Ti-55531 thin-wall[J]. Journal of Alloys and Compounds, 2023, 936: 168187.
[165] LI G Y, CHEN D, WANG S, et al. Tailoring microstructure and martensitic transformation of selective laser melted Ti49.1Ni50.9 alloy through electropulsing treatment[J]. Materials Today Communications, 2022, 31: 103437.
[166] HARDIE D, CHARLES E A, LOPEZ A H. Hydrogen embrittlement of high strength pipeline steels[J]. Corrosion Science, 2006, 48(12): 4378-4385.
[167] KIM H J, LEE M G, YOON S C, et al. Diffusible hydrogen behavior and delayed fracture of cold rolled martensitic steel in consideration of automotive manufacturing process and vehicle service environment[J]. Journal of Materials Research and Technology, 2020, 9(6): 13483-13501.
[168] SILVERSTEIN R, ELIEZER D, TAL-GUTELMACHER E. Hydrogen trapping in alloys studied by thermal desorption spectrometry[J]. Journal of Alloys and Compounds, 2018, 747: 511-522.
[169] XIANG S, MA R, ZHANG X. Removing hydrogen in solid metal using electric current pulse[J]. Journal of Alloys and Compounds, 2020, 845: 156083.
[170] KUMAR A, PAUL S K. Restoration of ductility in hydrogen embrittled dual-phase (DP 780) steel by the electric pulse treatment[J]. Materials Science and Engineering: A, 2022, 847: 143256.
[171] YI K, MA R, XIANG S, et al. Eliminating reversible hydrogen embrittlement in high-strength martensitic steel by an electric current pulse[J]. International Journal of Hydrogen Energy, 2022, 47(38): 17045-17055.
[172] MA R, XIANG S, ZHANG X. Repairing irreversible hydrogen–induced damages using electric current pulse[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16909-16917.
[173] SONG H, WANG Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science and Engineering: A, 2008, 490(1): 1-6.
[174] ZHANG B, LI Y, BAI Q. Defect Formation Mechanisms in Selective Laser Melting: A Review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515-527.
[175] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components – Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
[176] 叶福兴, 王永辉, 娄智. 激光增材制造过程中激光与粉末的相互作用研究现状[J]. 中国表面工程, 2021, 34(02): 1-12.
[177] HESKETH J, MCCLELLAND N, ZHANG Y, et al. Influence of additive manufacturing by laser powder bed fusion on the susceptibility of Alloy 718 to hydrogen embrittlement[J]. Corrosion Engineering, Science and Technology, 2021, 0(0): 1-10.
[178] YAN C, HAO L, HUSSEIN A, et al. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 61-73.
[179] XIE D, LV F, YANG Y, et al. A Review on Distortion and Residual Stress in Additive Manufacturing[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(3): 100039.
[180] SEIFI M, SALEM A, BEUTH J, et al. Overview of Materials Qualification Needs for Metal Additive Manufacturing[J]. JOM, 2016, 68(3): 747-764.
[181] HUANG Y, FLEMING T G, CLARK S J, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing[J]. Nature Communications, 2022, 13(1): 1170.
[182] CHEN S, GAO H, ZHANG Y, et al. Review on residual stresses in metal additive manufacturing: formation mechanisms, parameter dependencies, prediction and control approaches[J]. Journal of Materials Research and Technology, 2022, 17: 2950-2974.
[183] DU PLESSIS A, YADROITSAVA I, YADROITSEV I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights[J]. Materials & Design, 2020, 187: 108385.
[184] LIU T, WANG Q, CAI X, et al. Effect of laser power on microstructures and properties of Al-4.82Mg-0.75Sc-0.49Mn-0.28Zr alloy fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2022, 18: 3612-3625.
[185] LIU Z, YIN G, ZHU X, et al. Microstructure, texture and tensile properties as a function of laser power of Ti48Al2Cr2Nb5Ta alloy prepared by laser additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 73: 624-632.
[186] LU H Z, MA H W, YANG Y, et al. Tailoring phase transformation behavior, microstructure, and superelasticity of NiTi shape memory alloys by specific change of laser power in selective laser melting[J]. Materials Science and Engineering: A, 2023, 864: 144576.
[187] WANG L, ZHANG Y, CHIA H Y, et al. Mechanism of keyhole pore formation in metal additive manufacturing[J]. npj Computational Materials, 2022, 8(1): 1-11.
[188] BRÉHIER M, WEISZ-PATRAULT D, TOURNIER C. Revisiting the influence of the scanning speed on surface topography and microstructure of IN718 thin walls in directed energy deposition additive manufacturing[J]. Procedia CIRP, 2022, 108: 470-476.
[189] WANG T, ZHU L, WANG H, et al. Tribological property and thermal shock resistance of NiCoCrAlY coated YSZ composite coatings prepared by different laser additive manufacturing scanning speeds[J]. Materials Today Communications, 2022, 31: 103184.
[190] CHEN Y, ZHOU Q. Directed energy deposition additive manufacturing of CoCrFeMnNi high-entropy alloy towards densification, grain structure control and improved tensile properties[J]. Materials Science and Engineering: A, 2022, 860: 144272.
[191] FAYAZFAR H, SALARIAN M, ROGALSKY A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties[J]. Materials & Design, 2018, 144: 98-128.
[192] WEAVER J S, HEIGEL J C, LANE B M. Laser spot size and scaling laws for laser beam additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 73: 26-39.
[193] CHEN H, CHENG T, LI Z, et al. Is high-speed powder spreading really unfavourable for the part quality of laser powder bed fusion additive manufacturing?[J]. Acta Materialia, 2022, 231: 117901.
[194] ZHOU Y H, LI W P, ZHANG L, et al. Selective laser melting of Ti–22Al–25Nb intermetallic: Significant effects of hatch distance on microstructural features and mechanical properties[J]. Journal of Materials Processing Technology, 2020, 276: 116398.
[195] SUFIIAROV V Sh, POPOVICH A A, BORISOV E V, et al. The Effect of Layer Thickness at Selective Laser Melting[J]. Procedia Engineering, 2017, 174: 126-134.
[196] MA M, WANG Z, GAO M, et al. Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel[J]. Journal of Materials Processing Technology, 2015, 215: 142-150.
[197] YANG K V, ROMETSCH P, JARVIS T, et al. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting[J]. Materials Science and Engineering: A, 2018, 712: 166-174.
[198] ENGELHARDT A, KAHL M, RICHTER J, et al. Investigation of processing windows in additive manufacturing of AlSi10Mg for faster production utilizing data-driven modeling[J]. Additive Manufacturing, 2022, 55: 102858.
[199] YAKOUT M, CADAMURO A, ELBESTAWI M A, et al. The selection of process parameters in additive manufacturing for aerospace alloys[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5): 2081-2098.
[200] SONG Y, SUN Q, GUO K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Materials Science and Engineering: A, 2020, 793: 139879.
[201] BABACAN N, PILZ S, PAULY S, et al. Tailoring the superelastic properties of an additively manufactured Cu–Al–Mn shape memory alloy via adjusting the scanning strategy[J]. Materials Science and Engineering: A, 2023, 862: 144412.
[202] ALI H, GHADBEIGI H, MUMTAZ K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V[J]. Materials Science and Engineering: A, 2018, 712: 175-187.
[203] ZHOU L, SUN J, BI X, et al. Effect of scanning strategies on the microstructure and mechanical properties of Ti–15Mo alloy fabricated by selective laser melting[J]. Vacuum, 2022, 205: 111454.
[204] LIU J, LI G, SUN Q, et al. Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2022, 299: 117366.
[205] KONG D, ZHAO D, ZHU G, et al. Heat treatment effects on the hydrogen embrittlement of Ti6Al4V fabricated by laser beam powder bed fusion[J]. Additive Manufacturing, 2022, 50: 102580.
[206] KUDIIAROV V N, SYRTANOV M S, BORDULEV Yu S, et al. The hydrogen sorption and desorption behavior in spherical powder of pure titanium used for additive manufacturing[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15283-15289.
[207] LI S, LIU M, REN Y, et al. Hydrogen embrittlement behaviors of additive manufactured maraging steel investigated by in situ high-energy X-ray diffraction[J]. Materials Science and Engineering: A, 2019, 766: 138341.
[208] YOO J, KIM S, JO M C, et al. Investigation of hydrogen embrittlement properties of Ni-based alloy 718 fabricated via laser powder bed fusion[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18892-18910.
[209] FU Z, WU P, ZHANG Y, et al. Effects of hydrogen and load frequency on the fatigue crack propagation behavior of selective laser melted Inconel 718 alloy[J]. International Journal of Fatigue, 2022, 160: 106848.
[210] KEVINSANNY, OKAZAKI S, TAKAKUWA O, et al. Defect tolerance and hydrogen susceptibility of the fatigue limit of an additively manufactured Ni-based superalloy 718[J]. International Journal of Fatigue, 2020, 139: 105740.
[211] BAEK S W, SONG E J, KIM J H, et al. Hydrogen embrittlement of 3-D printing manufactured austenitic stainless steel part for hydrogen service[J]. Scripta Materialia, 2017, 130: 87-90.
[212] BERTSCH K M, NAGAO A, RANKOUHI B, et al. Hydrogen embrittlement of additively manufactured austenitic stainless steel 316 L[J]. Corrosion Science, 2021, 192: 109790.
[213] MILLER J T, MARTIN H J, CUDJOE E. Comparison of the effects of a sulfuric acid environment on traditionally manufactured and additive manufactured stainless steel 316L alloy[J]. Additive Manufacturing, 2018, 23: 272-286.
[214] HONG Y, ZHOU C, WAGNER S, et al. Strain-induced twins and martensite: Effects on hydrogen embrittlement of selective laser melted (SLM) 316 L stainless steel[J]. Corrosion Science, 2022, 208: 110669.
[215] KACENKA Z, ROUDNICKA M, EKRT O, et al. High susceptibility of 3D-printed Ti-6Al-4V alloy to hydrogen trapping and embrittlement[J]. Materials Letters, 2021, 301: 130334.
[216] METALNIKOV P, ELIEZER D, BEN-HAMU G, et al. Hydrogen embrittlement of electron beam melted Ti–6Al–4V[J]. Journal of Materials Research and Technology, 2020, 9(6): 16126-16134.
[217] METALNIKOV P, ELIEZER D, BEN-HAMU G. Hydrogen trapping in additive manufactured Ti–6Al–4V alloy[J]. Materials Science and Engineering: A, 2021, 811: 141050.
[218] SILVERSTEIN R, ELIEZER D. Hydrogen trapping in 3D-printed (additive manufactured) Ti-6Al-4V[J]. Materials Characterization, 2018, 144: 297-304.
[219] ALNAJJAR M, CHRISTIEN F, BOSCH C, et al. A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17–4 PH stainless steel[J]. Materials Science and Engineering: A, 2020, 785: 139363.
[220] NAVI N U, TENENBAUM J, SABATANI E, et al. Hydrogen effects on electrochemically charged additive manufactured by electron beam melting (EBM) and wrought Ti–6Al–4V alloys[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25523-25540.
[221] LEE D H, SUN B, LEE S, et al. Comparative study of hydrogen embrittlement resistance between additively and conventionally manufactured 304L austenitic stainless steels[J]. Materials Science and Engineering: A, 2021, 803: 140499.
[222] FU Z, YANG B, GAN K, et al. Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures[J]. Corrosion Science, 2021, 190: 109695.
[223] GALLMEYER T G, MOORTHY S, KAPPES B B, et al. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718[J]. Additive Manufacturing, 2020, 31: 100977.
[224] LIN Y T, AN X, ZHU Z, et al. Effect of cell wall on hydrogen response in CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 925: 166735.
[225] FROEND M, VENTZKE V, DORN F, et al. Microstructure by design: An approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition[J]. Materials Science and Engineering: A, 2020, 772: 138635.
[226] KONG D, DONG C, NI X, et al. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment[J]. Corrosion Science, 2020, 166: 108425.
[227] LIN J, CHEN F, LIU F, et al. Hydrogen permeation behavior and hydrogen-induced defects in 316L stainless steels manufactured by additive manufacturing[J]. Materials Chemistry and Physics, 2020, 250: 123038.
[228] LEE D H, ZHAO Y, LEE S Y, et al. Hydrogen-assisted failure in Inconel 718 fabricated by laser powder bed fusion: The role of solidification substructure in the embrittlement[J]. Scripta Materialia, 2022, 207: 114308.
[229] KWON Y J, CASATI R, CODURI M, et al. Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting[J]. Materials, 2019, 12(15): 2360.
[230] ALVARO A, THUE JENSEN I, KHERADMAND N, et al. Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing[J]. International Journal of Hydrogen Energy, 2015, 40(47): 16892-16900.
[231] TEHRANCHI A, ZHOU X, CURTIN W A. A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction[J]. Acta Materialia, 2020, 185: 98-109.
[232] BERTSCH K M, WANG S, NAGAO A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni[J]. Materials Science and Engineering: A, 2019, 760: 58-67.
[233] ANGELO J E, MOODY N R, BASKES M I. Trapping of hydrogen to lattice defects in nickel[J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(3): 289.
[234] BASKES M I, VITEK V. Trapping of hydrogen and helium at grain boundaries in nickel: An atomistic study[J]. Metallurgical Transactions A, 1985, 16(9): 1625-1631.
[235] YU H, OLSEN J S, OLDEN V, et al. Cohesive zone simulation of grain size and misorientation effects on hydrogen embrittlement in nickel[J]. Engineering Failure Analysis, 2017, 81: 79-93.
[236] WEN M, FUKUYAMA S, YOKOGAWA K. Hydrogen-affected cross-slip process in fcc nickel[J]. Physical Review B, 2004, 69(17): 174108.
[237] BARNOUSH A, VEHOFF H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation[J]. Acta Materialia, 2010, 58(16): 5274-5285.
[238] LAWRENCE S K, YAGODZINSKYY Y, HÄNNINEN H, et al. Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys[J]. Acta Materialia, 2017, 128: 218-226.
[239] ROBERTSON I M. The effect of hydrogen on dislocation dynamics[J]. Engineering Fracture Mechanics, 2001, 68(6): 671-692.
[240] HARRIS Z D, LAWRENCE S K, MEDLIN D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel[J]. Acta Materialia, 2018, 158: 180-192.
[241] MARTIN M L, SOMERDAY B P, RITCHIE R O, et al. Hydrogen-induced intergranular failure in nickel revisited[J]. Acta Materialia, 2012, 60(6): 2739-2745.
[242] SUN Q, HE J, NAGAO A, et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni[J]. Acta Materialia, 2023, 246: 118660.
[243] HE M, XIANG Z, YI J, et al. A comparison of dislocation cellular patterns generated in Inconel 718 alloy and pure Ni fabricated by laser powder bed fusion[J]. Vacuum, 2022, 199: 110974.
[244] WANG S, MARTIN M L, ROBERTSON I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries[J]. Acta Materialia, 2016, 107: 279-288.
[245] TSUCHIDA Y, WATANABE T, KATO T, et al. Effect of hydrogen absorption on strain-induced low-cycle fatigue of low carbon steel[J]. Procedia Engineering, 2010, 2(1): 555-561.
[246] NYGREN K E, WANG S, BERTSCH K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy[J]. Acta Materialia, 2018, 157: 218-227.
[247] TEHRANCHI A, CURTIN W A. The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals[J]. Engineering Fracture Mechanics, 2019, 216: 106502.
[248] XU Z, ZHANG H, DU X, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J]. Corrosion Science, 2020, 177: 108954.
[249] MILLER J T, MARTIN H J, CUDJOE E. Comparison of the effects of a sulfuric acid environment on traditionally manufactured and additive manufactured stainless steel 316L alloy[J]. Additive Manufacturing, 2018, 23: 272-286.
[250] HESKETH J, MCCLELLAND N, ZHANG Y, et al. Influence of additive manufacturing by laser powder bed fusion on the susceptibility of Alloy 718 to hydrogen embrittlement[J]. Corrosion Engineering, Science and Technology, 2021, 0(0): 1-10.
[251] DJUKIC M B, SIJACKI ZERAVCIC V, BAKIC G M, et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model[J]. Engineering Failure Analysis, 2015, 58: 485-498.
[252] PANTLEON W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[J]. Scripta Materialia, 2008, 58(11): 994-997.
[253] BENJAMIN BRITTON T, WILKINSON A J. Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band[J]. Acta Materialia, 2012, 60(16): 5773-5782.
[254] ARSENLIS A, PARKS D M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density[J]. Acta Materialia, 1999, 47(5): 1597-1611.
[255] BERTSCH K M, WANG S, NAGAO A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni[J]. Materials Science and Engineering: A, 2019, 760: 58-67.
[256] DADFARNIA M, NAGAO A, WANG S, et al. Recent advances on hydrogen embrittlement of structural materials[J]. International Journal of Fracture, 2015, 196(1-2): 223-243.
[257] WADA K, YAMABE J, MATSUNAGA H. Visualization of trapped hydrogen along grain boundaries and its quantitative contribution to hydrogen-induced intergranular fracture in pure nickel[J]. Materialia, 2019, 8: 100478.
[258] BIRNBAUM H K, SOFRONIS P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering: A, 1994, 176(1): 191-202.
[259] ROBERTSON I M, SOFRONIS P, NAGAO A, et al. Hydrogen Embrittlement Understood[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1085-1103.
[260] OGAWA Y, NOGUCHI K, TAKAKUWA O. Criteria for hydrogen-assisted crack initiation in Ni-based superalloy 718[J]. Acta Materialia, 2022, 229: 117789.
[261] OUDRISS A, CREUS J, BOUHATTATE J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel[J]. Acta Materialia, 2012, 60(19): 6814-6828.
[262] LUO H, LI Z, RAABE D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy[J]. Scientific Reports, 2017, 7(1): 9892.
[263] NYGREN K E, BERTSCH K M, WANG S, et al. Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy[J]. Current Opinion in Solid State and Materials Science, 2018, 22(1): 1-7.
[264] UNNIKRISHNAN R, IDURY K S N S, ISMAIL T P, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments[J]. Materials Characterization, 2014, 93: 10-23.
[265] XING X, GOU J, LI F, et al. Hydrogen effect on the intergranular failure in polycrystal ɑ-iron with different crystal sizes[J]. International Journal of Hydrogen Energy, 2021, 46(73): 36528-36538.
[266] ZHANG C, ZHI H, ANTONOV S, et al. Effect of pre-strain on hydrogen embrittlement of high manganese steel[J]. Materials Science and Engineering: A, 2022, 834: 142596.
[267] XU Q, ZHANG J. Novel Methods for Prevention of Hydrogen Embrittlement in Iron[J]. Scientific Reports, 2017, 7(1): 16927.
[268] TSURU T, SHIMIZU K, YAMAGUCHI M, et al. Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys[J]. Scientific Reports, 2020, 10: 1998.
[269] CHEN T, KOYAMA M, HAMADA S, et al. Fundamental criterion Ktrans for failure analysis of hydrogen-assisted cracks in notched specimens of pure Ni[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102556.
[270] MUKHERJEE T, DEBROY T. Mitigation of lack of fusion defects in powder bed fusion additive manufacturing[J]. Journal of Manufacturing Processes, 2018, 36: 442-449.
[271] WECK A, WILKINSON D S. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes[J]. Acta Materialia, 2008, 56(8): 1774-1784.
[272] LEHTO P. Adaptive domain misorientation approach for the EBSD measurement of deformation induced dislocation sub-structures[J]. Ultramicroscopy, 2021, 222: 113203.
[273] GITHINJI D N, NORTHOVER S M, BOUCHARD P J, et al. An EBSD Study of the Deformation of Service-Aged 316 Austenitic Steel[J]. Metallurgical and Materials Transactions A, 2013, 44(9): 4150-4167.
[274] HU H E, YANG L, ZHEN L, et al. Relationship between boundary misorientation angle and true strain during high temperature deformation of 7050 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 795-798.
[275] LAUREYS A, VAN DEN EECKHOUT E, PETROV R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging[J]. Acta Materialia, 2017, 127: 192-202.
[276] BOCKRIS J, SUBRAMANYAN P. Hydrogen embrittlement and hydrogen traps[J]. Journal of the Electrochemical Society, 1971, 118(7): 1114.
[277] MENG L X, YANG H J, BEN D D, et al. Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone[J]. Materials Science and Engineering: A, 2022, 830: 142294.
[278] SHI J, MA S, WEI S, et al. Connecting structural defects to tensile failure in a 3D-printed fully-amorphous bulk metallic glass[J]. Materials Science and Engineering: A, 2021, 813: 141106.
[279] SARAC B, SCHROERS J. Designing tensile ductility in metallic glasses[J]. Nature Communications, 2013, 4(1): 2158.
[280] ZHANG P, ZHANG C, LIU L. Toughening 3D-printed Zr-based bulk metallic glass via synergistic defects engineering[J]. Materials Research Letters, 2022, 10(6): 377-384.
[281] LIU L, YU Q, WANG Z, et al. Making ultrastrong steel tough by grain-boundary delamination[J]. Science, 2020: eaba9413.
[282] MEINERS T, PENG Z, GAULT B, et al. Sulfur – induced embrittlement in high-purity, polycrystalline copper[J]. Acta Materialia, 2018, 156: 64-75.
[283] ZENG Z, HE J, XIANG Z, et al. Embrittlement of 316L stainless steel in electropulsing treatment[J]. Journal of Materials Research and Technology, 2020, 9(5): 10669-10678.
[284] YAO J, MEGUID S A, CAHOON J R. Hydrogen diffusion and its relevance to intergranular cracking in nickel[J]. Metallurgical Transactions A, 1993, 24(1): 105-112.
[285] OUDRISS A, CREUS J, BOUHATTATE J, et al. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel[J]. Scripta Materialia, 2012, 66(1): 37-40.
[286] LIU X, ZHANG X. An ultrafast performance regeneration of aged stainless steel by pulsed electric current[J]. Scripta Materialia, 2018, 153: 86-89.
[287] BAKONYI I. Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu[J]. The European Physical Journal Plus, 2021, 136(4): 410.
[288] QIN S, BA X, ZHANG X. Accelerated cluster dissolution using electropulsing for ultrafast performance regeneration[J]. Scripta Materialia, 2020, 178: 24-28.
[289] SHENG Y, HUA Y, WANG X, et al. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties[J]. Materials, 2018, 11(2): 185.
[290] KONOVALOV S V, ATROSHKINA A A, IVANOV Yu F, et al. Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment[J]. Materials Science and Engineering: A, 2010, 527(12): 3040-3043.
[291] ZHOU Y, GUO J, GAO M, et al. Crack healing in a steel by using electropulsing technique[J]. Materials Letters, 2004, 58(11): 1732-1736.
[292] YU T, DENG D, WANG G, et al. Crack healing in SUS304 stainless steel by electropulsing treatment[J]. Journal of Cleaner Production, 2016, 113: 989-994.
[293] XU X, ZHAO Y, MA B, et al. Electropulsing induced evolution of grain-boundary precipitates without loss of strength in the 7075 Al alloy[J]. Materials Characterization, 2015, 105: 90-94.
[294] BISHARA H, LEE S, BRINK T, et al. Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure[J]. ACS Nano, 2021, 15(10): 16607-16615.
[295] FELDMAN B, PARK S, HAVERTY M, et al. Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering[J]. physica status solidi (b), 2010, 247(7): 1791-1796.
[296] BAKONYI I, ISNAINI V A, KOLONITS T, et al. The specific grain-boundary electrical resistivity of Ni[J]. Philosophical Magazine, 2019, 99(9): 1139-1162.
[297] FAN R, MAGARGEE J, HU P, et al. Influence of grain size and grain boundaries on the thermal and mechanical behavior of 70/30 brass under electrically-assisted deformation[J]. Materials Science and Engineering: A, 2013, 574: 218-225.
[298] DARNBROUGH J E, ROEBUCK B, FLEWITT P E J. The influence of temperature and grain boundary volume on the resistivity of nanocrystalline nickel[J]. Journal of Applied Physics, 2015, 118(18): 184302.
[299] JORDAN L, SWANGER W H. The properties of pure nickel[J]. Bureau of Standards Journal of Research, 1930, 5(6): 1291.
[300] LEE S M, LEE J Y. The trapping and transport phenomena of hydrogen in nickel[J]. Metallurgical Transactions A, 1986, 17(2): 181-187.
修改评论