中文版 | English
题名

新型水空两栖无人飞行器研究

其他题名
RESEARCH ON NOVEL AQUATIC-AERIAL UNMANNED AERIAL VEHICLE
姓名
姓名拼音
FENG Junjun
学号
12132003
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
韩松
导师单位
创新创业学院
论文答辩日期
2023-05-31
论文提交日期
2023-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

水空两栖无人飞行器兼具无人飞行器的高机动性和水下潜航器的高隐蔽性,在资源勘探、两栖作战等民用和国防安全领域都有广阔应用前景。现有的大部分水空两栖无人飞行器仍然存在结构布局和推进系统的水空兼容性问题。自然界中广泛存在的扑翼运动为水空两栖无人飞行器的研究提供了新的思路。本文开展新型水空两栖无人飞行器研究,提出一种融合扑翼特征的新型水空两栖无人飞行器构型,开展扑翼推进方案的设计和分析,并研制新型水空两栖无人飞行器样机,初步验证飞行器结构设计的可行性。本文的主要内容如下:

针对现有水空两栖无人飞行器的水空兼容性问题,本文提出一种融合扑翼特征的新型水空两栖无人飞行器总体布局方案,完成干净构型设计。该飞行器拥有空中固定翼飞行和水下扑翼潜航两种模式,通过滑落和大仰角爬升方式完成水空跨介质转换。对该构型空中固定翼模式下气动特性进行了仿真,初步验证了固定翼模式的可行性。

为实现扑翼运动,对扑翼推进方案进行设计。主要探究结构设计、驱动设计方面的问题。为解决推进装置布局限制,提出一种新型的基于平行四边形机构的线传动扑翼推进方案,采用远端驱动形式驱动鳍条式扑翼装置。机构能执行前后挥摆、上下扑动和弦向扭转三个自由度的运动,实现二自由度对称扑动轨迹和三自由度对角扑动轨迹。在此基础上计算了上下扑动总驱动力矩和前后挥摆驱动力矩。

根据总体布局和扑翼推进方案,开展飞行器样机研制。针对增材制造特性设计无人机整体结构,重点解决了跨介质结构、轻量化等方面的问题,机翼进排水时间为5s和2s,关键部件减重36%。通过有限元分析对空中飞行和大仰角爬升状态下机翼部件的结构强度进行校核,并计算样机重量、体积及水空转换最大起飞重量,样机满足重量和结构强度要求,初步验证结构设计可行性。

其他摘要

Aquatic-aerial unmanned aerial vehicle(aquaUAV) has the high mobility of unmanned aerial vehicle(UAV) and the high concealment of unmanned underwater vehicle(UUV). It has broad application prospects in civil and national defense security fields such as resource exploration and amphibious operations. Most of the existing amphibious unmanned aerial vehicles still have problems of structure layout and water-air compatibility of propulsion system. The widespread flapping wing motion in nature provides a new idea for the research of amphibious unmanned aerial vehicle. This paper carried out the research on a new type of water and air amphibious unmanned aerial vehicle, proposed a new type of water and air amphibious unmanned aerial vehicle configuration integrating flapping wing features, carried out the design and analysis of flapping wing propulsion scheme, and developed a new type of water and air amphibious unmanned aerial vehicle prototype, to preliminatively verify the feasibility of aircraft structural design. The main content of this paper is as follows:

Aiming at the water-air compatibility problem of existing aquaUAVs, this paper proposes a new overall layout scheme of aquaUAV that integrates the characteristics of flapping wings, and completes the clean configuration design. The aircraft has two modes containing fixed-wing flight in the air and underwater flapping-wing submersion, and completes the water-air cross-domain conversion by sliding down and climbing at a large elevation angle. The aerodynamic characteristics of this configuration in the fixed-wing mode were simulated, which preliminarily verified the feasibility of the fixed-wing mode.

In order to realize the flapping wing motion, the flapping wing propulsion scheme is designed. It mainly explores the problems of structural design and driving design. In order to solve the layout limitation of the propulsion device, a new type of tendon driven fin flapping wing propulsion scheme based on the parallelogram mechanism is proposed. The mechanism can perform three degrees of freedom motions including inline swinging,  flapping and chordwise twisting,and  realizes the two-degree-of-freedom symmetric flapping trajectory and the three-degree-of-freedom diagonal flapping trajectory. On this basis, the total driving torque of the up and down flapping and swinging driving torque are calculated.

According to the overall layout and the flapping wing propulsion scheme, the development of the prototype of the aircraft is carried out. The overall structure of the UAV is designed according to the characteristics of additive manufacturing, focusing on solving the problems of cross-domain structure and light weight. The time of water intake and drainage of the wings is 5s and 2s, and the weight of key components is reduced by 36%. Through the finite element analysis, the structural strength of the wing components under the state of flying in the air and climbing at a large elevation angle is checked, and the weight, volume and maximum take-off weight of the water-air conversion are calculated. The prototype meets the weight and structural strength requirements, and the feasibility of the structural design is preliminarily verified.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] YANG X, WANG T, LIANG J, et al. Survey on the novel hybrid aquatic–aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)[J]. Progress in Aerospace Sciences,2015, 74: 131-151.
[2] 张朝阳, 杨峰, 刘凯, 等. 变构型跨介质飞行器发展及关键技术分析[J]. 宇航总体技术, 2021.
[3] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(5): 152-157.
[4] 陈默. 仿生扑翼飞行器系统设计及运动学研究[D]. 吉林大学, 2021.
[5] 武宇飞, 龙腾, 毛能峰. 跨介质变体飞行器设计优化技术进展[J]. 战术导弹技术, 2020(4): 29-40.
[6] 王国彪, 陈殿生, 陈科位, 等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13): 27-44.
[7] 黎石胜. 水空两栖扑翼无人飞行器设计与动力学特性研究[D]. 南方科技大学, 2022.
[8] G P. Flying submarine[J]. Journal of fleet, 1995.
[9] VIGLIOTTI V. Demonstration of submarine control of an unmanned aerial vehicle[J]. Johns Hopkins APL technical digest, 1998, 19(4): 501-512.
[10] WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of aircraft, 2013, 50(2): 337-353.
[11] JANES I. US forces eye Switchblade lethal aerial ammunition[J]. Jane’s International Defence Review, 2011, 7: 16.
[12] CHERNEY R. Robotic flying fish[J]. Franklin W. Olin College of Engineering, Tech. Rep, 2010.
[13] GAO A, TECHET A H. Design considerations for a robotic flying fish[C]//OCEANS’11 MTS/IEEE KONA. IEEE, 2011: 1-8.
[14] WEISLER W, STEWART W, ANDERSON M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments[J]. IEEE Journal of Oceanic Engineering, 2017, 43(4): 969-982.
[15] STEWART W, WEISLER W, MACLEOD M, et al. Design and demonstration of a seabirdinspired fixed-wing hybrid UAV-UUV system[J]. Bioinspiration & biomimetics, 2018, 13(5): 056013.
[16] TAN Y H, SIDDALL R, KOVAC M. Efficient aerial–aquatic locomotion with a single propulsion system[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1304-1311.
[17] MOORE J, FEIN A, SETZLER W. Design and analysis of a fixed-wing unmanned aerial-aquatic vehicle[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1236-1243.
[18] ROCKENBAUER F M, JEGER S, BELTRAN L, et al. Dipper: A Dynamically Transitioning Aerial-Aquatic Unmanned Vehicle.[C]//Robotics: Science and Systems. 2021: 12-16.
[19] HARMS M, KAUFMANN N, ROCKENBAUER F M, et al. Differential Sweep Attitude Control for Swept Wing UAVs[C]//2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2020: 166-175.
[20] YAO G, LIANG J, WANG T, et al. Submersible unmanned flying boat: Design and experiment[C]//2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). IEEE, 2014: 1308-1313.
[21] YANG X, WANG T, LIANG J, et al. Submersible unmanned aerial vehicle concept design study[C]//2013 Aviation Technology, Integration, and Operations Conference. 2013: 4422.
[22] 朱莎. 水空两用无人机动力系统设计与研究[D]. 硕士学位论文]. 南昌: 南昌航空大学, 2012.
[23] 刘伟. 潜水飞机总体设计与气动外形结构设计分析[D]. 南昌航空大学, 2012.
[24] 贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析[D]. 吉林大学, 2021.
[25] LOCK R J, PEIRIS B P M, BATES S, et al. Quantification of the benefits of a compliant foil for underwater flapping wing propulsion[C]//2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2011: 898-903.
[26] LOCK R J, VAIDYANATHAN R, BURGESS S C. Impact of marine locomotion constraints on a bio-inspired aerial-aquatic wing: experimental performance verification[J]. Journal of Mechanisms and Robotics, 2014, 6(1): 011001.
[27] LOCK R J, VAIDYANATHAN R, BURGESS S C, et al. Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles through empirical and numerical modelling of the common guillemot, Uria aalge[J]. Bioinspiration & biomimetics, 2010, 5(4): 046001.
[28] IZRAELEVITZ J S, TRIANTAFYLLOU M S. Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils[J]. Journal of Fluid Mechanics, 2014, 742: 5-34.
[29] IZRAELEVITZ J S, TRIANTAFYLLOU M S. A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 5830-5837.
[30] CHEN Y, HELBLING E F, GRAVISH N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 331-338.
[31] CHEN Y, WANG H, HELBLING E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science robotics, 2017, 2(11): eaao5619.
[32] GEDER J D, RAMAMURTI R, EDWARDS D, et al. Swimming performance of a hybrid unmanned air-underwater vehicle[C]//OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016: 1-5.
[33] 黄鸣阳, 肖天航, 昂海松. 多段柔性变体扑翼飞行器设计[J]. 航空动力学报, 2016(8): 1838-1844.
[34] 李博扬, 宋笔锋, 王利光. 仿生三维扑动实验测试系统[J]. 航空计算技术, 2013, 43(2): 123-127.
[35] 刘龙. 变体全柔性翼扑动推进水下航行器设计与研究[D]. 南京航空航天大学, 2017.
[36] MENG Y, WU Z, DONG H, et al. Toward a novel robotic manta with unique pectoral fins[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(3): 1663-1673.
[37] GEDER J D, RAMAMURTI R, EDWARDS D, et al. Development of a robotic fin for hydrodynamic propulsion and aerodynamic control[C]//2014 Oceans-St. John’s. IEEE, 2014: 1-7.
[38] ZHOU C, LOW K H. Better endurance and load capacity: an improved design of manta ray robot (RoMan-II)[J]. Journal of Bionic Engineering, 2010, 7: S137-S144.
[39] 黄成. 仿生柔性扑翼设计及推进性能研究[D]. 天津大学, 2019.
[40] HE J, CAO Y, HUANG Q, et al. A new type of bionic manta ray robot[C]//Global Oceans 2020: Singapore–US Gulf Coast. IEEE, 2020: 1-6.
[41] FESTO. Festo Air_ray: Bird flight as a model[EB/OL]. 2023
[2023-03-18]. https://www.festo.com.cn/cn/zh/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2006-to-2009/air-ray-id_33851/.
[42] SAPMAZ A R, DILIBAL S, OZBARAN C, et al. Development of Bioinspired Robotic Pectoral Fin Structure Using Radial Scissor Mechanism[C]//2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). IEEE, 2021: 1-4.
[43] STEWART W, WEISLER W, ANDERSON M, et al. Dynamic modeling of passively draining structures for aerial–aquatic unmanned vehicles[J]. IEEE Journal of Oceanic Engineering, 2019, 45(3): 840-850.
[44] SKAWIŃSKI I, GOETZENDORF-GRABOWSKI T. FDM 3D printing method utility assessment in small RC aircraft design[J]. Aircraft Engineering and Aerospace Technology, 2019.
[45] SỲKORA J. Additive manufacturing of unmanned aerial vehicle[M]. DAAAM International Vienna, 2020.
[46] PASCARIU I S, ZAHARIA S M. Design and testing of an unmanned aerial vehicle manufactured by fused deposition modeling[J]. Journal of Aerospace Engineering, 2020, 33(4): 06020002.
[47] 唐家鹏. ANSYS FLUENT 16.0 超级学习手册[M]. 人民邮电出版社, 2016.
[48] 技术联盟CAD/CAM/CAE. ANSYS 2020 有限元分析从入门到精通[M]. 清华大学出版社, 2020.
[49] 邓艳波. 风力机翼型气动性能及流固耦合分析[D]. 湘潭大学, 2015.
[50] SHI G, XIAO Q. Numerical investigation of a bio-inspired underwater robot with skeletonreinforced undulating fins[J]. European Journal of Mechanics-B/Fluids, 2021, 87: 75-91.
[51] RAMAMURTI R, GEDER J D, EDWARDS D, et al. Computational Studies for the Development of a Hybrid UAV/UUV[C]//33rd AIAA Applied Aerodynamics Conference. 2015: 2414.
[52] 李文宝. 仿生水空两栖扑翼飞行器研究[D]. 南方科技大学, 2021.
[53] SADRAEY M H. Aircraft design: A systems engineering approach[M]. John Wiley & Sons, 2012.
[54] 盛湛博. 水空两栖无人飞行器水下扑翼推进技术研究[D]. 哈尔滨工业大学, 2020.
[55] 任赜宇. 关于线驱动(Tendon Driven) 在机器人应用中的利弊分析[EB/OL]. 2019
[2019-01-10]. https://zhuanlan.zhihu.com/p/54070538.
[56] SONG H, KIM Y S, YOON J, et al. Development of low-inertia high-stiffness manipulator LIMS2 for high-speed manipulation of foldable objects[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 4145-4151.
[57] BURBANK W A. Four-cable wrist with solid surface cable channels[M]. Google Patents, 2014.
[58] 邱剑, 吕世豪, 玛丽娅, 等. 电子辐照PDMS 力学性能影响实验研究[J]. 应用力学学报, 2022, 39(06): 1007-1013.
[59] 王宝忠. 飞机设计手册第10 册:结构设计[M]. 北京: 航空工业出版社, 2000.
[60] NAJMON J C, RAEISI S, TOVAR A. Review of additive manufacturing technologies and applications in the aerospace industry[J]. Additive manufacturing for the aerospace industry, 2019: 7-31.
[61] GOH G D, AGARWALA S, GOH G, et al. Additive manufacturing in unmanned aerial vehicles(UAVs): Challenges and potential[J]. Aerospace Science and Technology, 2017, 63: 140-151.
[62] 赵中锋. 小型长航时无人机结构初步设计及强度分析[D]. 哈尔滨工业大学, 2019.
[63] 陈众迎. T300/AG80 复合材料层合板力学性能的测试与分析[D]. 北京: 北京工业大学, 2010.
[64] 祝小平. 无人机设计手册[M]. 北京: 国防工业出版社, 2007.
[65] KLIPPSTEIN H, DIAZ DE CERIO SANCHEZ A, HASSANIN H, et al. Fused deposition modeling for unmanned aerial vehicles (UAVs): a review[J]. Advanced Engineering Materials, 2018, 20(2): 1700552.

所在学位评定分委会
材料与化工
国内图书分类号
V279+.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545043
专题创新创业学院
推荐引用方式
GB/T 7714
冯俊钧. 新型水空两栖无人飞行器研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132003-冯俊钧-创新创业学院.(29591KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[冯俊钧]的文章
百度学术
百度学术中相似的文章
[冯俊钧]的文章
必应学术
必应学术中相似的文章
[冯俊钧]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。