中文版 | English
题名

南海北部冷泉区沉积物甘油醚脂分布特征及其应用潜力

其他题名
DISTRIBUTION CHARACTERISTICS AND APPLICATION POTENTIAL OF GLYCEROL ETHER LIPIDS IN THE SEDIMENTS FROM COLD SEEP AREAS IN THE NORTHERN SOUTH CHINA SEA
姓名
姓名拼音
HE Wei
学号
12032905
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
张传伦
导师单位
海洋科学与工程系
论文答辩日期
2023-05-19
论文提交日期
2023-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

冷泉是海底微生物活动异常强烈的生态系统,其间生存的甲烷厌氧氧化古菌(anaerobic methanotrophic archaea, ANMEs)可以消耗大量的甲烷气体。目前的研究表明冷泉微生物可以产生独特的脂类化合物,在海洋碳循环中发挥着重要的作用,但是其在冷泉环境中的脂质组特征和脂类代谢功能分布还少有研究。本论文结合16S rRNA基因测序和环境脂质组学分析等方法,研究了我国南海北部冷泉及其邻近区域沉积物中甘油醚脂的组成特征,以及冷泉主要古菌群落的脂类代谢潜力。

研究结果表明冷泉区的古菌产生了高丰度的带有1~3个五元环的二糖甘油二烷基甘油四醚(2Gly-GDGT-1~3和丰富的完整极性古菌醇(IPL-AR)。基于核心GDGTs计算的甲烷指数指标(MICL)和基于完整极性GDGTs计算的甲烷指数指标(MIIPL)均可以对甲烷的渗透情况进行表征,且MIIPL更加灵敏。MICLMIIPL指标与甲烷浓度之间存在显著的线性关系,可以用于对甲烷浓度的定量计算。基于古菌甘油醚脂多样性计算的香农-威纳iso指数与甲烷浓度之间亦存在显著的正相关线性关系,而较高的细菌支链甘油醚脂多样性则表示了环境的强还原状态。

高通量测序显示南海北部冷泉区的古菌类群以ANME-1为主,背景区则以LokiarchaeiaBathyarchaeiaThermoplasmata为主并含有少量的ANME-2/3ANME-1拥有更加完备的合成环化GDGTs的代谢通路,而ANME-2/3则拥有更多的磷脂合成基因,具有合成多种磷酸甘油醚脂的潜力。

支链甘油醚脂在样品中广泛分布,且其甲基数量在还原性的环境中显著增加。本论文建立了根据样品脂类组成对其所属区域进行判别的正交偏最小二乘判别分析模型,并指出ARIPL-AR)、杂交类异戊二烯/支链GDGTs、过甲基化支链GDGTs和不饱和GDGTs是区分冷泉区与背景区的重要脂类生物标志物。

本研究通过自建的甘油醚脂质谱数据库对中国南海北部冷泉区域的甘油醚脂进行了详细的报道,扩展了对南海冷泉区甘油醚脂的认知。我们结合多个指标对甲烷浓度及氧化还原状态进行了表征,展示了甘油醚脂在追踪甲烷渗透事件和重建古环境氧化还原状态中的巨大潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[CHANGE I P O C. Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022.
[2] 潘一, 杨双春. 天然气水合物研究进展 [J]. 当代化工, 2012, 41(04): 401-404.
[3] LAUVAUX T, GIRON C, MAZZOLINI M, et al. Global assessment of oil and gas methane ultra-emitters [J]. Science, 2022, 375(6580): 557-561.
[4] 苏新. 国外海洋气水合物研究的一些新进展 [J]. 地学前缘, 2000, (03): 257-265.
[5] 秦绪文, 陆程, 王平康, 等. 中国南海天然气水合物开采储层水合物相变与渗流机理:综述与展望 [J]. 中国地质, 2022, 49(03): 749-769.
[6] SUESS E. Marine Cold Seeps: Background and Recent Advances [M]. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. 2020: 747-767.
[7] QIANG F, SHOUWEI Z, QINGPING L. Natural Gas Hydrate Exploration and Production Technology Research Status and Development Strategy [J]. Strategic Study of Chinese Academy of Engineering, 2015, 17(9): 123-132.
[8] BOETIUS A, WENZHöFER F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734.
[9] REEBURGH W S. Oceanic Methane Biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513.
[10] SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916.
[11] PAULL C K, HECKER B, COMMEAU R, et al. Biological Communities at the Florida Escarpment Resemble Hydrothermal Vent Taxa [J]. Science, 1984, 226(4677): 965-967.
[12] CHEN D F, HUANG Y Y, YUAN X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea [J]. Marine and Petroleum Geology, 2005, 22(5): 613-621.
[13] WANG X, GUAN H, QIU J, et al. Macro-ecology of cold seeps in the South China Sea [J]. Geosystems and Geoenvironment, 2022, 1(3): 100081.
[14] 孙瑜, 牛明杨, 刘俏, 等. 南海Formosa冷泉区沉积物微生物多样性与分布规律研究 [J]. 微生物学报, 2022, 62(06): 2001-2020.
[15] LI Z, PAN D, WEI G, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity [J]. The ISME Journal, 2021, 15(8): 2366-2378.
[16] 刘浩东. 南海北部陆坡冷泉和非冷泉沉积物古菌多样性研究 [D]; 中国地质大学(北京), 2013.
[17] KNITTEL K, BOETIUS A. Anaerobic Oxidation of Methane: Progress with an Unknown Process [J]. Annual Review of Microbiology, 2009, 63(1): 311-334.
[18] HINRICHS K-U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments [J]. Nature, 1999, 398(6730): 802-805.
[19] HINRICHS K-U, BOETIUS A. The Anaerobic Oxidation of Methane: New Insights in Microbial Ecology and Biogeochemistry [M]. Springer Berlin Heidelberg. 2002: 457-477.
[20] KNITTEL K, LOSEKANN T, BOETIUS A, et al. Diversity and distribution of methanotrophic archaea at cold seeps [J]. Applied and Environmental Microbiology, 2005, 71(1): 467-479.
[21] ZHANG C L, LI Y, WALL J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico [J]. Geology, 2002, 30(3): 239-242.
[22] ZHANG C L, PANCOST R D, SASSEN R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico [J]. Organic Geochemistry, 2003, 34(6): 827-836.
[23] HOEHLER T M, ALPERIN M J, ALBERT D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium [J]. Global Biogeochemical Cycles, 1994, 8(4): 451-463.
[24] RAGHOEBARSING A A, POL A, VAN DE PAS-SCHOONEN K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification [J]. Nature, 2006, 440(7086): 918-921.
[25] ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7288): 543-548.
[26] BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and Iron-Dependent Marine Methane Oxidation [J]. Science, 2009, 325(5937): 184-187.
[27] ARSHAD A, SPETH D R, DE GRAAF R M, et al. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea [J]. Frontiers in Microbiology, 2015, 6: 1423.
[28] ETTWIG K F, ZHU B, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. Proceedings of the National Academy of Sciences, 2016, 113(45): 12792-12796.
[29] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构 [J]. 热带海洋学报, 2007, (06): 73-82.
[30] RUFF S E, BIDDLE J F, TESKE A P, et al. Global dispersion and local diversification of the methane seep microbiome [J]. Proceedings of the National Academy of Sciences, 2015, 112(13): 4015-4020.
[31] ROSSEL P E, ELVERT M, RAMETTE A, et al. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: Evidence from intact polar membrane lipids [J]. Geochimica et Cosmochimica Acta, 2011, 75(1): 164-184.
[32] WOESE C R, KANDLER O, WHEELIS M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya [J]. Proceedings of the National Academy of Sciences, 1990, 87(12): 4576-4579.
[33] WHEELIS M L, KANDLER O, WOESE C R. On the nature of global classification [J]. Proceedings of the National Academy of Sciences, 1992, 89(7): 2930-2934.
[34] DELONG E F. Archaea in coastal marine environments [J]. Proceedings of the National Academy of Sciences, 1992, 89(12): 5685-5689.
[35] FUHRMAN J A, MCCALLUM K, DAVIS A A. Novel major archaebacterial group from marine plankton [J]. Nature, 1992, 356(6365): 148-149.
[36] SCHOUTEN S, HOPMANS E C, PANCOST R D, et al. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles [J]. Proceedings of the National Academy of Sciences, 2000, 97(26): 14421-14426.
[37] BAKER B J, DE ANDA V, SEITZ K W, et al. Diversity, ecology and evolution of Archaea [J]. Nature Microbiology, 2020, 5(7): 887-900.
[38] TAHON G, GEESINK P, ETTEMA T J G. Expanding Archaeal Diversity and Phylogeny: Past, Present, and Future [J]. Annual Review of Microbiology, 2021, 75: 359-381.
[39] WANG H, LIU W, ZHANG C L, et al. Distribution of glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and surrounding soil [J]. Organic Geochemistry, 2012, 47: 78-87.
[40] WEI Y, WANG P, ZHAO M, et al. Lipid and DNA Evidence of Dominance of Planktonic Archaea Preserved in Sediments of the South China Sea: Insight for Application of the TEX86 Proxy in an Unstable Marine Sediment Environment [J]. Geomicrobiology Journal, 2014, 31(4): 360-369.
[41] SILIAKUS M F, VAN DER OOST J, KENGEN S W M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure [J]. Extremophiles, 2017, 21(4): 651-670.
[42] SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTé J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013, 54: 19-61.
[43] SUMMONS R E, WELANDER P V, GOLD D A. Lipid biomarkers: molecular tools for illuminating the history of microbial life [J]. Nature Reviews Microbiology, 2021, 20(3): 174-185.
[44] RATTANASRIAMPAIPONG R, ZHANG Y G, PEARSON A, et al. Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea [J]. Proceedings of the National Academy of Sciences, 2022, 119(31): e2123193119.
[45] SCHOUTEN S, HOPMANS E C, SCHEFUß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204(1): 265-274.
[46] GAMBACORTA A, GLIOZZI A, DE ROSA M. Archaeal lipids and their biotechnological applications [J]. World Journal of Microbiology and Biotechnology, 1995, 11(1): 115-131.
[47] WEIJERS J W H, SCHEFUß E, SCHOUTEN S, et al. Coupled Thermal and Hydrological Evolution of Tropical Africa over the Last Deglaciation [J]. Science, 2007, 315(5819): 1701-1704.
[48] SCHOUTEN S, VAN DER MEER M T J, HOPMANS E C, et al. Archaeal and Bacterial Glycerol Dialkyl Glycerol Tetraether Lipids in Hot Springs of Yellowstone National Park [J]. Applied and Environmental Microbiology, 2007, 73(19): 6181-6191.
[49] PEARSON A, PI Y, ZHAO W, et al. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs [J]. Applied and environmental microbiology, 2008, 74(11): 3523-3532.
[50] DAWSON K S, FREEMAN K H, MACALADY J L. Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions [J]. Organic Geochemistry, 2012, 48: 1-8.
[51] MANCUSO C A, ODHAM G, WESTERDAHL G, et al. C15, C20, and C25 isoprenoid homologues in glycerol diether phospholipids of methanogenic archaebacteria [J]. Journal of Lipid Research, 1985, 26(9): 1120-1125.
[52] KNAPPY C S, CHONG J P J, KEELY B J. Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography-tandem mass spectrometry [J]. J Am Soc Mass Spectrom, 2009, 20(1): 51-59.
[53] LIU X-L, LIPP J S, SIMPSON J H, et al. Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms [J]. Geochimica et Cosmochimica Acta, 2012, 89: 102-115.
[54] ZHU C, YOSHINAGA M Y, PETERS C A, et al. Identification and significance of unsaturated archaeal tetraether lipids in marine sediments [J]. Rapid Communications in Mass Spectrometry, 2014, 28(10): 1144-1152.
[55] KNAPPY C, BARILLà D, CHONG J, et al. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance [J]. Journal of Mass Spectrometry, 2015, 50(12): 1420-1432.
[56] LIU X-L, LIPP J S, SCHRöDER J M, et al. Isoprenoid glycerol dialkanol diethers: A series of novel archaeal lipids in marine sediments [J]. Organic Geochemistry, 2012, 43: 50-55.
[57] OGER P M, CARIO A. Adaptation of the membrane in Archaea [J]. Biophysical Chemistry, 2013, 183: 42-56.
[58] BABA T, MINAMIKAWA H, HATO M, et al. Hydration and Molecular Motions in Synthetic Phytanyl-Chained Glycolipid Vesicle Membranes [J]. Biophysical Journal, 2001, 81(6): 3377-3386.
[59] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442(7104): 806-809.
[60] POWERS L A, WERNE J P, JOHNSON T C, et al. Crenarchaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction? [J]. Geology, 2004, 32(7): 613-616.
[61] SCHOUTEN S, HOPMANS E C, BAAS M, et al. Intact membrane lipids of "Candidatus Nitrosopumilus maritimus," a cultivated representative of the cosmopolitan mesophilic group I Crenarchaeota [J]. Applied and environmental microbiology, 2008, 74(8): 2433-2440.
[62] XIE W, ZHANG C L, WANG J, et al. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables [J]. Environmental Microbiology, 2015, 17(5): 1600-1614.
[63] PEARSON A, HUANG Z, INGALLS A E, et al. Nonmarine crenarchaeol in Nevada hot springs [J]. Applied and Environmental Microbiology, 2004, 70(9): 5229-5237.
[64] PANCOST R D, HOPMANS E C, SINNINGHE DAMSTé J S. Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation [J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1611-1627.
[65] BLUMENBERG M, SEIFERT R, REITNER J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia [J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11111-11116.
[66] ZHANG Y G, ZHANG C L, LIU X-L, et al. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 525-534.
[67] KIM B, ZHANG Y G. Methane hydrate dissociation across the Oligocene–Miocene boundary [J]. Nature Geoscience, 2022: 203–209.
[68] DE KOK N A W, DRIESSEN A J M. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis [J]. Extremophiles, 2022, 26(3): 29.
[69] 陈雨霏, 陈华慧, 曾芝瑞. 古菌和细菌四醚膜脂GDGTs的生物合成机制及其生物地球化学意义 [J]. 微生物学报, 2022, 62(12): 4700-4712.
[70] LLOYD C T, IWIG D F, WANG B, et al. Discovery, structure and mechanism of a tetraether lipid synthase [J]. Nature, 2022, 609(7925): 197-203.
[71] ZENG Z, CHEN H, YANG H, et al. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids [J]. Nature Communications, 2022, 13(1): 1545.
[72] ZENG Z, LIU X-L, FARLEY K R, et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean [J]. Proceedings of the National Academy of Sciences, 2019, 116(45): 22505-22511.
[73] WEIJERS J W H, SCHOUTEN S, VAN DEN DONKER J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils [J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713.
[74] DAMSTé J S S, HOPMANS E C, PANCOST R D, et al. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments [J]. Chemical Communications, 2000, (17): 1683-1684.
[75] WEIJERS J W H, SCHOUTEN S, HOPMANS E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits [J]. Environmental Microbiology, 2006, 8(4): 648-657.
[76] DE JONGE C, HOPMANS E C, STADNITSKAIA A, et al. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS [J]. Organic Geochemistry, 2013, 54: 78-82.
[77] CHEN Y, ZHENG F, YANG H, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies [J]. Geochimica et Cosmochimica Acta, 2022, 337: 155-165.
[78] LIU X-L, SUMMONS R E, HINRICHS K-U. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns [J]. Rapid Commun Mass Spectrom, 2012, 26(19): 2295-2302.
[79] HOPMANS E C, WEIJERS J W H, SCHEFUß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224(1): 107-116.
[80] ZHANG C, WANG J, WEI Y, et al. Production of Branched Tetraether Lipids in the Lower Pearl River and Estuary: Effects of Extraction Methods and Impact on bGDGT Proxies [J]. Frontiers in Microbiology, 2012, 2.
[81] KEVIN W B. Biogeochemical significance and biomarker potential of novel glycerolipids and respiratory quinones in the marine environment [Z]. Universität Bremen, FB5 Geowissenschaften. 2015.
[82] XIAO W, WANG Y, ZHOU S, et al. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs [J]. Biogeosciences, 2016, 13(20): 5883-5894.
[83] XIAO W, XU Y, LIN J, et al. Global scale production of brGDGTs by benthic marine bacteria: Implication for developing ocean bottom environmental proxies [J]. Global and Planetary Change, 2022, 211: 103783.
[84] GASKELL S J, EGLINTON G. Sterols of a contemporary lacustrine sediment [J]. Geochimica et Cosmochimica Acta, 1976, 40(10): 1221-1228.
[85] DAMSTé J S S, RIJPSTRA W I C, HOPMANS E C, et al. Distribution of Membrane Lipids of Planktonic Crenarchaeota in the Arabian Sea [J]. Applied and Environmental Microbiology, 2002, 68(6): 2997-3002.
[86] WHITE D C, DAVIS W M, NICKELS J S, et al. Determination of the sedimentary microbial biomass by extractible lipid phosphate [J]. Oecologia, 1979, 40(1): 51-62.
[87] STURT H F, SUMMONS R E, SMITH K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry - New biomarkers for biogeochemistry and microbial ecology [J]. Rapid Communications in Mass Spectrometry, 2004, 18(6): 617-628.
[88] ZHU C, LIPP J S, WöRMER L, et al. Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol [J]. Organic Geochemistry, 2013, 65: 53-62.
[89] MEADOR T B, BOWLES M, LAZAR C S, et al. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group [J]. Environmental Microbiology, 2015, 17(7): 2441-2458.
[90] ELLING F J, KöNNEKE M, NICOL G W, et al. Chemotaxonomic characterisation of the thaumarchaeal lipidome [J]. Environmental Microbiology, 2017, 19(7): 2681-2700.
[91] BALE N J, DING S, HOPMANS E C, et al. Lipidomics of Environmental Microbial Communities. I: Visualization of Component Distributions Using Untargeted Analysis of High-Resolution Mass Spectrometry Data [J]. Frontiers in Microbiology, 2021, 12: 659302.
[92] DING S, BALE N J, HOPMANS E C, et al. Lipidomics of Environmental Microbial Communities. II: Characterization Using Molecular Networking and Information Theory [J]. Frontiers in Microbiology, 2021, 12: 659315.
[93] MATSUZAWA Y, HIGASHI Y, TAKANO K, et al. Food Lipidomics for 155 Agricultural Plant Products [J]. Journal of Agricultural Food Chemistry, 2021, 69(32): 8981-8990.
[94] OKAHASHI N, UEDA M, YASUDA S, et al. Global profiling of gut microbiota-associated lipid metabolites in antibiotic-treated mice by LC-MS/MS-based analyses [J]. STAR Protocols, 2021, 2(2): 100492.
[95] PLUSKAL T, CASTILLO S, VILLAR-BRIONES A, et al. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data [J]. BMC Bioinformatics, 2010, 11(1): 395.
[96] TSUGAWA H, IKEDA K, TAKAHASHI M, et al. A lipidome atlas in MS-DIAL 4 [J]. Nature Biotechnology, 2020, 38(10): 1159-1163.
[97] HELMUS R, TER LAAK T L, VAN WEZEL A P, et al. patRoon: open source software platform for environmental mass spectrometry based non-target screening [J]. Journal of Cheminformatics, 2021, 13(1): 1.
[98] LAW K P, HE W, TAO J, et al. A Novel Approach to Characterize the Lipidome of Marine Archaeon Nitrosopumilus maritimus by Ion Mobility Mass Spectrometry [J]. Frontiers in Microbiology, 2021, 12.
[99] SUD M, FAHY E, COTTER D, et al. LMSD: LIPID MAPS structure database [J]. Nucleic Acids Research, 2006, 35(suppl_1): D527-D532.
[100] NIEMANN H, LöSEKANN T, DE BEER D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink [J]. Nature, 2006, 443(7113): 854-858.
[101] BENITO MERINO D, ZEHNLE H, TESKE A, et al. Deep-branching ANME-1c archaea grow at the upper temperature limit of anaerobic oxidation of methane [J]. Frontiers in Microbiology, 2022, 13: 988871.
[102] LASO-PéREZ R, WU F, CRéMIèRE A, et al. Evolutionary diversification of methanotrophic ANME-1 archaea and their expansive virome [J]. Nature Microbiology, 2023, 8(2): 231-245.
[103] LEU A O, MCILROY S J, YE J, et al. Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family Methanoperedenaceae [J]. mBio, 2020, 11(3): e01325-01320.
[104] MARTINEZ-CRUZ K, SEPULVEDA-JAUREGUI A, CASPER P, et al. Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments [J]. Water Research, 2018, 144: 332-340.
[105] WEBER H S, HABICHT K S, THAMDRUP B. Anaerobic Methanotrophic Archaea of the ANME-2d Cluster Are Active in a Low-sulfate, Iron-rich Freshwater Sediment [J]. Frontiers in Microbiology, 2017, 8.
[106] RUFF S E, ARNDS J, KNITTEL K, et al. Microbial Communities of Deep-Sea Methane Seeps at Hikurangi Continental Margin (New Zealand) [J]. PLoS One, 2013, 8(9): e72627.
[107] YOUZHI X, NENGYOU W, ZHILEI S, et al. Methane seepage intensity distinguish microbial communities in sediments at the Mid-Okinawa Trough [J]. Science of The Total Environment, 2022: 158213.
[108] ZHAI X, SHI X, CHENG H, et al. Horizontal and vertical heterogeneity of sediment microbial community in Site F cold seep, the South China Sea [J]. Frontiers in Marine Science, 2022, 9.
[109] DONG X, ZHANG C, PENG Y, et al. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments [J]. Nature Communications, 2022, 13(1): 4885.
[110] PANCOST R D, SINNINGHE DAMSTÉ J S, DE LINT S, et al. Biomarker Evidence for Widespread Anaerobic Methane Oxidation in Mediterranean Sediments by a Consortium of Methanogenic Archaea and Bacteria [J]. Applied and Environmental Microbiology, 2000, 66(3): 1126-1132.
[111] NIEMANN H, ELVERT M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate [J]. Organic Geochemistry, 2008, 39(12): 1668-1677.
[112] KURTH J M, SMIT N T, BERGER S, et al. Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea [J]. FEMS Microbiology Ecology, 2019, 95(7).
[113] STADNITSKAIA A, BOULOUBASSI I, ELVERT M, et al. Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats [J]. Organic Geochemistry, 2008, 39(8): 1007-1014.
[114] ROSSEL P E, LIPP J S, FREDRICKS H F, et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria [J]. Organic Geochemistry, 2008, 39(8): 992-999.
[115] YU X, HAN X, LI H, et al. Biomarkers and carbon isotope composition of anaerobic oxidation of methane in sediments and carbonates of northeastern part of Dongsha, South China Sea (in Chinese) [J]. Acta Oceanologica Sinica, 2008, 30: 77-84.
[116] 葛璐, 蒋少涌, 杨涛, 等. 南海北部神狐海域冷泉碳酸盐烟囱的甘油醚类生物标志化合物及其碳同位素组成 [J]. 科学通报, 2011, 56(14): 1124-1131.
[117] GUAN H, XU L, LIU L, et al. Lipid biomarker patterns reflect seepage activity and variable geochemical processes in sediments from the Haima cold seeps, South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586: 110742.
[118] GUAN H, BIRGEL D, PECKMANN J, et al. Lipid biomarker patterns of authigenic carbonates reveal fluid composition and seepage intensity at Haima cold seeps, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 163-172.
[119] ZHANG T, XIAO X, CHEN S, et al. Active Anaerobic Archaeal Methanotrophs in Recently Emerged Cold Seeps of Northern South China Sea [J]. Frontiers in Microbiology, 2020, 11: 612135.
[120] MORI H, MARUYAMA F, KATO H, et al. Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes [J]. DNA Research, 2013, 21(2): 217-227.
[121] RASKIN L, STROMLEY J M, RITTMANN B E, et al. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens [J]. Applied and environmental microbiology, 1994, 60(4): 1232-1240.
[122] STAHL D A. Development and application of nucleic acid probes [J]. 1991.
[123] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics (Oxford, England), 2014, 30(15): 2114-2120.
[124] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection [J]. Bioinformatics (Oxford, England), 2011, 27(16): 2194-2200.
[125] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996-998.
[126] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools [J]. Nucleic Acids Research, 2012, 41(D1): D590-D596.
[127] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification [J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(1): 911-917.
[128] CHAMBERS M C, MACLEAN B, BURKE R, et al. A cross-platform toolkit for mass spectrometry and proteomics [J]. Nature Biotechnology, 2012, 30(10): 918-920.
[129] DEUTSCH E. mzML: A single, unifying data format for mass spectrometer output [J]. PROTEOMICS, 2008, 8(14): 2776-2777.
[130] CONSORTIUM M. MassBank/MassBank-data: Release version 2022.12 [Z]//CONSORTIUM M. Zenodo. 2022.10.5281/zenodo.7436494
[131] WANG M, CARVER J J, PHELAN V V, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking [J]. Nature Biotechnology, 2016, 34(8): 828-837.
[132] PARKS D H, IMELFORT M, SKENNERTON C T, et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes [J]. Genome Research, 2015, 25(7): 1043-1055.
[133] OLM M R, BROWN C T, BROOKS B, et al. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication [J]. The ISME Journal, 2017, 11(12): 2864-2868.
[134] MARTINEZ-GUTIERREZ C A, AYLWARD F O. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea [J]. Molecular Biology and Evolution, 2021, 38(12): 5514-5527.
[135] SUNAGAWA S, MENDE D R, ZELLER G, et al. Metagenomic species profiling using universal phylogenetic marker genes [J]. Nature Methods, 2013, 10(12): 1196-1199.
[136] FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching [J]. Nucleic Acids Research, 2011, 39(Web Server issue): W29-37.
[137] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
[138] CAPELLA-GUTIéRREZ S, SILLA-MARTíNEZ J M, GABALDóN T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J]. Bioinformatics (Oxford, England), 2009, 25(15): 1972-1973.
[139] XU S, LI L, LUO X, et al. Ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data [J]. iMeta, 2022, 1(4): e56.
[140] ARAMAKI T, BLANC-MATHIEU R, ENDO H, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold [J]. Bioinformatics (Oxford, England), 2019, 36(7): 2251-2252.
[141] KANEHISA M, FURUMICHI M, SATO Y, et al. KEGG for taxonomy-based analysis of pathways and genomes [J]. Nucleic Acids Research, 2022, 51(D1): D587-D592.
[142] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool [J]. Journal of Molecular Biology, 1990, 215(3): 403-410.
[143] PANG Z, ZHOU G, EWALD J, et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data [J]. Nature Protocols, 2022, 17(8): 1735-1761.
[144] BASTIAN M, HEYMANN S, JACOMY M. Gephi: An Open Source Software for Exploring and Manipulating Networks [J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1): 361-362.
[145] LIU Y X, CHEN L, MA T, et al. EasyAmplicon: An easy‐to‐use, open‐source, reproducible, and community‐based pipeline for amplicon data analysis in microbiome research [J]. iMeta, 2023, 2(1): e83.
[146] WICHAM H. ggplot2: Elegant Graphics for Data Analysis [Z]//WICHAM H. Springer: New York, NY, USA. 2016
[147] WANG L-G, LAM T T-Y, XU S, et al. Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data [J]. Molecular Biology and Evolution, 2020, 37(2): 599-603.
[148] ELVERT M, HOPMANS E C, TREUDE T, et al. Spatial variations of methanotrophic consortia at cold methane seeps: implications from a high-resolution molecular and isotopic approach [J]. Geobiology, 2005, 3(3): 195-209.
[149] WEI Y-L, WANG J, LIU J, et al. Spatial variations in archaeal lipids of surface water and core-top sediments in the South china sea and their implications for paleoclimate studies [J]. Applied and Environmental Microbiology, 2011, 77(21): 7479-7489.
[150] MAN Y, FAN J, HUANG M, et al. An unusual occurrence of hydroxylated isoprenoid GDGTs in forest soils [J]. Organic Geochemistry, 2022: 104540.
[151] ELLING F J, KöNNEKE M, LIPP J S, et al. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment [J]. Geochimica et Cosmochimica Acta, 2014, 141: 579-597.
[152] BLEWETT J, NAAFS B D A, GALLEGO-SALA A V, et al. Effects of temperature and pH on archaeal membrane lipid distributions in freshwater wetlands [J]. Organic Geochemistry, 2020, 148: 104080.
[153] MITROVIĆ D, HOPMANS E C, BALE N J, et al. Isoprenoidal GDGTs and GDDs associated with anoxic lacustrine environments [J]. Organic Geochemistry, 2023, 178: 104582.
[154] BLAGA C I, REICHART G-J, HEIRI O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect [J]. Journal of Paleolimnology, 2009, 41(3): 523-540.
[155] ZENG Z, LIU X-L, WEI J H, et al. Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius [J]. Proceedings of the National Academy of Sciences, 2018, 115(51): 12932-12937.
[156] 郭子豪, 李灿苹, 陈凤英, 等. 天然气水合物分解的甲烷对海洋生物的影响 [J]. 现代地质, 2022: 1-17.
[157] HALAMKA T A, RABERG J H, MCFARLIN J M, et al. Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis [J]. Geobiology, 2023, 21(1): 102-118.
[158] XIE S, LIU X-L, SCHUBOTZ F, et al. Distribution of glycerol ether lipids in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean [J]. Organic Geochemistry, 2014, 71: 60-71.
[159] Lü X, LIU X, XU C, et al. The origins and implications of glycerol ether lipids in China coastal wetland sediments [J]. Scientific Reports, 2019, 9(1): 18529.
[160] LIU X-L, ZHU C, WAKEHAM S G, et al. In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns [J]. Marine Chemistry, 2014, 166: 1-8.
[161] LIU X-L, BIRGEL D, ELLING F J, et al. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers [J]. Geochimica et Cosmochimica Acta, 2016, 183: 138-152.
[162] BLONDEL V D, GUILLAUME J-L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008.
[163] 苏新, 陈芳, 魏士平, 等. 南海北部冷泉区沉积物中微生物丰度与甲烷浓度变化关系的初步研究 [J]. 现代地质, 2007, (01): 101-104.
[164] SEMLER A C, FORTNEY J L, FULWEILER R W, et al. Cold Seeps on the Passive Northern U.S. Atlantic Margin Host Globally Representative Members of the Seep Microbiome with Locally Dominant Strains of Archaea [J]. Applied and Environmental Microbiology, 2022, 88(11): e00468-00422.
[165] NIU M, DENG L, SU L, et al. Methane supply drives prokaryotic community assembly and network at cold seeps of the South China Sea [J]. Molecular Ecology, 2022, 32(3): 660-679.

所在学位评定分委会
生物学
国内图书分类号
Q938
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545048
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
何炜. 南海北部冷泉区沉积物甘油醚脂分布特征及其应用潜力[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032905-何炜-海洋科学与工程系(4437KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[何炜]的文章
百度学术
百度学术中相似的文章
[何炜]的文章
必应学术
必应学术中相似的文章
[何炜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。