[1] SUNG H, FERLAY J, SIEGEL R, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. 2021, 71(3): 209-249.
[2] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[3] WANG A, WANG H Y, LIU Y, et al. The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis[J]. Eur J Surg Oncol, 2015, 41(4): 450-456.
[4] SHER T, DY G K, ADJEI A A. Small cell lung cancer[J]. Mayo Clin Proc, 2008, 83(3): 355-367.
[5] RUDIN C M, BRAMBILLA E, FAIVRE-FINN C, et al. Small-cell lung cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 3.
[6] GUO Q, LIU L, CHEN Z, et al. Current treatments for non-small cell lung cancer[J]. Front Oncol, 2022, 12: 945102.
[7] YUAN M, ZHAO Y, ARKENAU H T, et al. Signal pathways and precision therapy of small-cell lung cancer[J]. Signal Transduct Target Ther, 2022, 7(1): 187.
[8] CHAN B A, HUGHES B G. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future[J]. Transl Lung Cancer Res, 2015, 4(1): 36-54.
[9] YUAN M, HUANG L L, CHEN J H, et al. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer[J]. Signal Transduct Target Ther, 2019, 4: 61.
[10] ETTINGER D S, WOOD D E, AISNER D L, et al. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530.
[11] NISHIO M, KIM D W, WU Y L, et al. Crizotinib versus Chemotherapy in Asian Patients with ALK-Positive Advanced Non-small Cell Lung Cancer[J]. Cancer Res Treat, 2018, 50(3): 691-700.
[12] SOLOMON B J, MOK T, KIM D W, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer[J]. N Engl J Med, 2014, 371(23): 2167-2177.
[13] HERBST R S, BAAS P, KIM D W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016, 387(10027): 1540-1550.
[14] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[15] ZHENG R, ZHANG S, ZENG H, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the National Cancer Center, 2022, 2(1): 1-9.
[16] SAXENA M, CHRISTOFORI G. Rebuilding cancer metastasis in the mouse[J]. Mol Oncol, 2013, 7(2): 283-296.
[17] SCHEEL C, ONDER T, KARNOUB A, et al. Adaptation versus selection: the origins of metastatic behavior[J]. Cancer Res, 2007, 67(24): 11476-11479; discussion 11479-11480.
[18] DIGUMARTHY S R, MENDOZA D P, PADOLE A, et al. Diffuse Lung Metastases in EGFR-Mutant Non-Small Cell Lung Cancer[J]. Cancers (Basel), 2019, 11(9)
[19] CHEN Y, DENG J, LIU Y, et al. Analysis of metastases in non-small cell lung cancer patients with epidermal growth factor receptor mutation[J]. Ann Transl Med, 2021, 9(3): 206.
[20] ZHANG I, ZAORSKY N G, PALMER J D, et al. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer[J]. The Lancet Oncology, 2015, 16(13): e510-e521.
[21] MITTAL V. Epithelial Mesenchymal Transition in Tumor Metastasis[J]. Annu Rev Pathol, 2018, 13: 395-412.
[22] POLTAVETS V, KOCHETKOVA M, PITSON S M, et al. The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity[J]. Front Oncol, 2018, 8: 431.
[23] WOOD S L, PERNEMALM M, CROSBIE P A, et al. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets[J]. Cancer Treatment Reviews, 2014, 40(4): 558-566.
[24] ALTORKI N K, MARKOWITZ G J, GAO D, et al. The lung microenvironment: an important regulator of tumour growth and metastasis[J]. Nat Rev Cancer, 2019, 19(1): 9-31.
[25] ANICHINI A, PEROTTI V E, SGAMBELLURI F, et al. Immune Escape Mechanisms in Non Small Cell Lung Cancer[J]. Cancers (Basel), 2020, 12(12)
[26] KOTTEAS E A, BOULAS P, GKIOZOS I, et al. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis[J]. Anticancer Res, 2014, 34(9): 4665-4672.
[27] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[28] JIANG J, LU Y, ZHANG F, et al. The Emerging Roles of Long Noncoding RNAs as Hallmarks of Lung Cancer[J]. Front Oncol, 2021, 11: 761582.
[29] CHEVALLIER M, BORGEAUD M, ADDEO A, et al. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future[J]. World J Clin Oncol, 2021, 12(4): 217-237.
[30] PAEZ J G, JÄNNE P A, LEE J C, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy[J]. Science, 2004, 304(5676): 1497-1500.
[31] HERBST R S. Review of epidermal growth factor receptor biology[J]. Int J Radiat Oncol Biol Phys, 2004, 59(2 Suppl): 21-26.
[32] DOWNWARD J, PARKER P, WATERFIELD M D. Autophosphorylation sites on the epidermal growth factor receptor[J]. Nature, 1984, 311(5985): 483-485.
[33] ODA K, MATSUOKA Y, FUNAHASHI A, et al. A comprehensive pathway map of epidermal growth factor receptor signaling[J]. Mol Syst Biol, 2005, 1: 2005.0010.
[34] TIAN X, GU T, LEE M H, et al. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(1): 188645.
[35] ESKILSSON E, RØSLAND G V, SOLECKI G, et al. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma[J]. Neuro Oncol, 2018, 20(6): 743-752.
[36] SPANO J P, LAGORCE C, ATLAN D, et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival[J]. Annals of Oncology, 2005, 16(1): 102-108.
[37] LIANG W, WU X, FANG W, et al. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations[J]. PLoS One, 2014, 9(2): e85245.
[38] MAEMONDO M, INOUE A, KOBAYASHI K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR[J]. N Engl J Med, 2010, 362(25): 2380-2388.
[39] SHIGEMATSU H, LIN L, TAKAHASHI T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers[J]. J Natl Cancer Inst, 2005, 97(5): 339-346.
[40] CHOUDHARY K S, ROHATGI N, HALLDORSSON S, et al. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT[J]. PLoS Comput Biol, 2016, 12(6): e1004924.
[41] GRAHAM D K, DERYCKERE D, DAVIES K D, et al. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer[J]. Nat Rev Cancer, 2014, 14(12): 769-785.
[42] LIU E, HJELLE B, BISHOP J M. Transforming genes in chronic myelogenous leukemia[J]. Proc Natl Acad Sci U S A, 1988, 85(6): 1952-1956.
[43] SANG Y B, KIM J H, KIM C G, et al. The Development of AXL Inhibitors in Lung Cancer: Recent Progress and Challenges[J]. Front Oncol, 2022, 12: 811247.
[44] HOLLAND S J, PAN A, FRANCI C, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer[J]. Cancer Res, 2010, 70(4): 1544-1554.
[45] KANLIKILICER P, OZPOLAT B, ASLAN B, et al. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models[J]. Mol Ther Nucleic Acids, 2017, 9: 251-262.
[46] ZHU C, WEI Y, WEI X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications[J]. Mol Cancer, 2019, 18(1): 153.
[47] DAGAMAJALU S, REX D A B, PALOLLATHIL A, et al. A pathway map of AXL receptor-mediated signaling network[J]. J Cell Commun Signal, 2021, 15(1): 143-148.
[48] BRAND T M, IIDA M, STEIN A P, et al. AXL mediates resistance to cetuximab therapy[J]. Cancer Res, 2014, 74(18): 5152-5164.
[49] SEMENZA G L, RUE E A, IYER N V, et al. Assignment of the Hypoxia-Inducible Factor 1α Gene to a Region of Conserved Synteny on Mouse Chromosome 12 and Human Chromosome 14q[J]. Genomics, 1996, 34(3): 437-439.
[50] HOGENESCH J B, CHAN W K, JACKIW V H, et al. Characterization of a Subset of the Basic-Helix-Loop-Helix-PAS Superfamily That Interacts with Components of the Dioxin Signaling Pathway[J]. Journal of Biological Chemistry, 1997, 272(13): 8581-8593.
[51] PAPANDREOU I, CAIRNS R A, FONTANA L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption[J]. Cell Metabolism, 2006, 3(3): 187-197.
[52] IYER N V, KOTCH L E, AGANI F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha[J]. Genes Dev, 1998, 12(2): 149-162.
[53] MISKA J, LEE-CHANG C, RASHIDI A, et al. HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma[J]. Cell Rep, 2019, 27(1): 226-237.e224.
[54] CERYCHOVA R, PAVLINKOVA G. HIF-1, Metabolism, and Diabetes in the Embryonic and Adult Heart[J]. Front Endocrinol (Lausanne), 2018, 9: 460.
[55] GASPAR J M, VELLOSO L A. Hypoxia Inducible Factor as a Central Regulator of Metabolism - Implications for the Development of Obesity[J]. Front Neurosci, 2018, 12: 813.
[56] SCHWAB L P, PEACOCK D L, MAJUMDAR D, et al. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer[J]. Breast Cancer Res, 2012, 14(1): R6.
[57] JIN X, DAI L, MA Y, et al. Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer[J]. Cancer Cell Int, 2020, 20: 273.
[58] EBRIGHT R Y, ZACHARIAH M A, MICALIZZI D S, et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain[J]. Nat Commun, 2020, 11(1): 6311.
[59] HOEFFLIN R, HARLANDER S, SCHÄFER S, et al. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice[J]. Nat Commun, 2020, 11(1): 4111.
[60] WICKS E E, SEMENZA G L. Hypoxia-inducible factors: cancer progression and clinical translation[J]. J Clin Invest, 2022, 132(11)
[61] EPSTEIN A C, GLEADLE J M, MCNEILL L A, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107(1): 43-54.
[62] MASOUD G N, LI W. HIF-1α pathway: role, regulation and intervention for cancer therapy[J]. Acta Pharm Sin B, 2015, 5(5): 378-389.
[63] HARRIS A L. Hypoxia--a key regulatory factor in tumour growth[J]. Nat Rev Cancer, 2002, 2(1): 38-47.
[64] VAUPEL P, MAYER A. Hypoxia in cancer: significance and impact on clinical outcome[J]. Cancer Metastasis Rev, 2007, 26(2): 225-239.
[65] WANG X, DU Z W, XU T M, et al. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies[J]. Front Oncol, 2021, 11: 785111.
[66] LEE S-H, GOLINSKA M, GRIFFITHS J R. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells[J]. Cells, 2021, 10(9): 2371.
[67] SHI Y H, FANG W G. Hypoxia-inducible factor-1 in tumour angiogenesis[J]. World J Gastroenterol, 2004, 10(8): 1082-1087.
[68] LV X, LI J, ZHANG C, et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism[J]. Genes Dis, 2017, 4(1): 19-24.
[69] MANUELLI V, PECORARI C, FILOMENI G, et al. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis[J]. Febs j, 2022, 289(18): 5413-5425.
[70] PETROVA V, ANNICCHIARICO-PETRUZZELLI M, MELINO G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1): 10.
[71] SEMENZA G L. HIF-1 and tumor progression: pathophysiology and therapeutics[J]. Trends Mol Med, 2002, 8(4 Suppl): S62-67.
[72] KOUKOURAKIS M I, GIATROMANOLAKI A, SIVRIDIS E, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer[J]. International Journal of Radiation Oncology*Biology*Physics, 2002, 53(5): 1192-1202.
[73] XIA Y, JIANG L, ZHONG T. The role of HIF-1α in chemo-/radioresistant tumors[J]. Onco Targets Ther, 2018, 11: 3003-3011.
[74] JIN Q, HUANG F, XU X, et al. High expression of hypoxia inducible factor 1α related with acquired resistant to EGFR tyrosine kinase inhibitors in NSCLC[J]. Scientific Reports, 2021, 11(1): 1199.
[75] WAN J, LING X, RAO Z, et al. Independent prognostic value of HIF‑1α expression in radiofrequency ablation of lung cancer[J]. Oncol Lett, 2020, 19(1): 849-857.
[76] LUO F, LU F-T, CAO J-X, et al. HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer[J]. Cancer Letters, 2022, 531: 39-56.
[77] KURTIPEK E, KOÇAK N, ESME H, et al. The role of HIF-1 pathway in non-small-cell lung cancer[J]. European Respiratory Journal, 2016, 48(suppl 60): PA2855.
[78] LIU T, ZHANG L, JOO D, et al. NF-κB signaling in inflammation[J]. Signal Transduct Target Ther, 2017, 2: 17023-.
[79] HAYDEN M S, GHOSH S. Shared principles in NF-kappaB signaling[J]. Cell, 2008, 132(3): 344-362.
[80] LIU Y, WANG J, ZHANG X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis[J]. Int J Biol Sci, 2022, 18(11): 4400-4413.
[81] CHEN L-F, GREENE W C. Shaping the nuclear action of NF-κB[J]. Nature Reviews Molecular Cell Biology, 2004, 5(5): 392-401.
[82] JONES K, RAMIREZ-PEREZ S, NIU S, et al. SOX4 and RELA Function as Transcriptional Partners to Regulate the Expression of TNF- Responsive Genes in Fibroblast-Like Synoviocytes[J]. Front Immunol, 2022, 13: 789349.
[83] ZHONG H, VOLL R E, GHOSH S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300[J]. Mol Cell, 1998, 1(5): 661-671.
[84] NAKAZATO A, MOCHIZUKI M, SHIBUYA-TAKAHASHI R, et al. RELA is required for CD271 expression and stem-like characteristics in hypopharyngeal cancer[J]. Sci Rep, 2022, 12(1): 17751.
[85] LU X, YARBROUGH W G. Negative regulation of RelA phosphorylation: emerging players and their roles in cancer[J]. Cytokine Growth Factor Rev, 2015, 26(1): 7-13.
[86] WEICHERT W, BOEHM M, GEKELER V, et al. High expression of RelA/p65 is associated with activation of nuclear factor-κB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis[J]. British Journal of Cancer, 2007, 97(4): 523-530.
[87] LAMOUILLE S, XU J, DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
[88] HAY E D. An overview of epithelio-mesenchymal transformation[J]. Acta Anat (Basel), 1995, 154(1): 8-20.
[89] THIERY J P, ACLOQUE H, HUANG R Y, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890.
[90] ARNOUX V, NASSOUR M, L'HELGOUALC'H A, et al. Erk5 controls Slug expression and keratinocyte activation during wound healing[J]. Mol Biol Cell, 2008, 19(11): 4738-4749.
[91] BRABLETZ S, SCHUHWERK H, BRABLETZ T, et al. Dynamic EMT: a multi-tool for tumor progression[J]. Embo j, 2021, 40(18): e108647.
[92] JOLLY M K, WARE K E, GILJA S, et al. EMT and MET: necessary or permissive for metastasis?[J]. Mol Oncol, 2017, 11(7): 755-769.
[93] BAKIR B, CHIARELLA A M, PITARRESI J R, et al. EMT, MET, Plasticity, and Tumor Metastasis[J]. Trends Cell Biol, 2020, 30(10): 764-776.
[94] WHEELOCK M J, JOHNSON K R. Cadherins as modulators of cellular phenotype[J]. Annu Rev Cell Dev Biol, 2003, 19: 207-235.
[95] KALLURI R, WEINBERG R A. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428.
[96] KREBS A M, MITSCHKE J, LASIERRA LOSADA M, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer[J]. Nat Cell Biol, 2017, 19(5): 518-529.
[97] THIERAUF J, VEIT J A, HESS J. Epithelial-to-Mesenchymal Transition in the Pathogenesis and Therapy of Head and Neck Cancer[J]. Cancers, 2017, 9(7): 76.
[98] ICHIMURA Y, KIRISAKO T, TAKAO T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature, 2000, 408(6811): 488-492.
[99] CUERVO A M. Autophagy: in sickness and in health[J]. Trends Cell Biol, 2004, 14(2): 70-77.
[100]TSUKADA M, OHSUMI Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS Lett, 1993, 333(1-2): 169-174.
[101]MIZUSHIMA N, SUGITA H, YOSHIMORI T, et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy[J]. J Biol Chem, 1998, 273(51): 33889-33892.
[102]KABEYA Y, MIZUSHIMA N, UENO T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. Embo j, 2000, 19(21): 5720-5728.
[103]YU L, CHEN Y, TOOZE S A. Autophagy pathway: Cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207-215.
[104]ZACHARI M, GANLEY I G. The mammalian ULK1 complex and autophagy initiation[J]. Essays Biochem, 2017, 61(6): 585-596.
[105]DOWER C M, WILLS C A, FRISCH S M, et al. Mechanisms and context underlying the role of autophagy in cancer metastasis[J]. Autophagy, 2018, 14(7): 1110-1128.
[106]HUANG R, XU Y, WAN W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J]. Mol Cell, 2015, 57(3): 456-466.
[107]LEE Y K, LEE J A. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy[J]. BMB Rep, 2016, 49(8): 424-430.
[108]PYO J O, NAH J, JUNG Y K. Molecules and their functions in autophagy[J]. Exp Mol Med, 2012, 44(2): 73-80.
[109]SHEN Q, SHI Y, LIU J, et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation[J]. Autophagy, 2021, 17(5): 1157-1169.
[110]KLIONSKY D J, ABDEL-AZIZ A K, ABDELFATAH S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1)[J]. Autophagy, 2021, 17(1): 1-382.
[111]LIANG X H, JACKSON S, SEAMAN M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402(6762): 672-676.
[112]QU X, YU J, BHAGAT G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene[J]. J Clin Invest, 2003, 112(12): 1809-1820.
[113]LI X, HE S, MA B. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1): 12.
[114]BARNARD R A, REGAN D P, HANSEN R J, et al. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease[J]. J Pharmacol Exp Ther, 2016, 358(2): 282-293.
[115]GUO J Y, XIA B, WHITE E. Autophagy-mediated tumor promotion[J]. Cell, 2013, 155(6): 1216-1219.
[116]WHITE E. Deconvoluting the context-dependent role for autophagy in cancer[J]. Nat Rev Cancer, 2012, 12(6): 401-410.
[117]WU W K, COFFELT S B, CHO C H, et al. The autophagic paradox in cancer therapy[J]. Oncogene, 2012, 31(8): 939-953.
[118]LEVY J M M, TOWERS C G, THORBURN A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542.
[119]AMARAVADI R K, KIMMELMAN A C, DEBNATH J. Targeting Autophagy in Cancer: Recent Advances and Future Directions[J]. Cancer Discov, 2019, 9(9): 1167-1181.
[120]ZADA S, HWANG J S, AHMED M, et al. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188565.
[121]MORGAN M J, FITZWALTER B E, OWENS C R, et al. Metastatic cells are preferentially vulnerable to lysosomal inhibition[J]. Proc Natl Acad Sci U S A, 2018, 115(36): E8479-e8488.
[122]XIE X, KOH J Y, PRICE S, et al. Atg7 Overcomes Senescence and Promotes Growth of BrafV600E-Driven Melanoma[J]. Cancer Discov, 2015, 5(4): 410-423.
[123]MILLÁN-ZAMBRANO G, BURTON A, BANNISTER A J, et al. Histone post-translational modifications - cause and consequence of genome function[J]. Nat Rev Genet, 2022, 23(9): 563-580.
[124]HAMMOND C M, STRØMME C B, HUANG H, et al. Histone chaperone networks shaping chromatin function[J]. Nat Rev Mol Cell Biol, 2017, 18(3): 141-158.
[125]SABARI B R, ZHANG D, ALLIS C D, et al. Metabolic regulation of gene expression through histone acylations[J]. Nat Rev Mol Cell Biol, 2017, 18(2): 90-101.
[126]LAI S, JIA J, CAO X, et al. Molecular and Cellular Functions of the Linker Histone H1.2[J]. Front Cell Dev Biol, 2021, 9: 773195.
[127]MARTIRE S, BANASZYNSKI L A. The roles of histone variants in fine-tuning chromatin organization and function[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 522-541.
[128]DAS C, TYLER J K, CHURCHILL M E. The histone shuffle: histone chaperones in an energetic dance[J]. Trends Biochem Sci, 2010, 35(9): 476-489.
[129]SPORN J C, KUSTATSCHER G, HOTHORN T, et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence[J]. Oncogene, 2009, 28(38): 3423-3428.
[130]GHIRALDINI F G, FILIPESCU D, BERNSTEIN E. Solid tumours hijack the histone variant network[J]. Nat Rev Cancer, 2021, 21(4): 257-275.
[131]AMATORI S, TAVOLARO S, GAMBARDELLA S, et al. The dark side of histones: genomic organization and role of oncohistones in cancer[J]. Clin Epigenetics, 2021, 13(1): 71.
[132]VARDABASSO C, GASPAR-MAIA A, HASSON D, et al. Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma[J]. Mol Cell, 2015, 59(1): 75-88.
[133]BENNETT R L, BELE A, SMALL E C, et al. A Mutation in Histone H2B Represents a New Class of Oncogenic Driver[J]. Cancer Discov, 2019, 9(10): 1438-1451.
[134]BÖNISCH C, HAKE S B. Histone H2A variants in nucleosomes and chromatin: more or less stable?[J]. Nucleic Acids Res, 2012, 40(21): 10719-10741.
[135]KALASHNIKOVA A A, PORTER-GOFF M E, MUTHURAJAN U M, et al. The role of the nucleosome acidic patch in modulating higher order chromatin structure[J]. J R Soc Interface, 2013, 10(82): 20121022.
[136]ARIMURA Y, KIMURA H, ODA T, et al. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin[J]. Sci Rep, 2013, 3: 3510.
[137]ZHOU J, FAN J Y, RANGASAMY D, et al. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression[J]. Nat Struct Mol Biol, 2007, 14(11): 1070-1076.
[138]SALES-GIL R, KOMMER D C, DE CASTRO I J, et al. Non-redundant functions of H2A.Z.1 and H2A.Z.2 in chromosome segregation and cell cycle progression[J]. EMBO Rep, 2021, 22(11): e52061.
[139]BARGAJE R, ALAM M P, PATOWARY A, et al. Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain[J]. Nucleic Acids Res, 2012, 40(18): 8965-8978.
[140]LONG H, ZHANG L, LV M, et al. H2A.Z facilitates licensing and activation of early replication origins[J]. Nature, 2020, 577(7791): 576-581.
[141]NEVES L T, DOUGLASS S, SPREAFICO R, et al. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae[J]. Genes Dev, 2017, 31(7): 702-717.
[142]WRATTING D, THISTLETHWAITE A, HARRIS M, et al. A conserved function for the H2A.Z C terminus[J]. J Biol Chem, 2012, 287(23): 19148-19157.
[143]GIAIMO B D, FERRANTE F, HERCHENRÖTHER A, et al. The histone variant H2A.Z in gene regulation[J]. Epigenetics Chromatin, 2019, 12(1): 37.
[144]CORUJO D, BUSCHBECK M. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer[J]. Cancers (Basel), 2018, 10(3)
[145]SUTO R K, CLARKSON M J, TREMETHICK D J, et al. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z[J]. Nat Struct Biol, 2000, 7(12): 1121-1124.
[146]GIAIMO B D, FERRANTE F, VALLEJO D M, et al. Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response[J]. Nucleic Acids Res, 2018, 46(16): 8197-8215.
[147]COLE L, KURSCHEID S, NEKRASOV M, et al. Multiple roles of H2A.Z in regulating promoter chromatin architecture in human cells[J]. Nat Commun, 2021, 12(1): 2524.
[148]GUILLEMETTE B, BATAILLE A R, GÉVRY N, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning[J]. PLoS Biol, 2005, 3(12): e384.
[149]MAVRICH T N, JIANG C, IOSHIKHES I P, et al. Nucleosome organization in the Drosophila genome[J]. Nature, 2008, 453(7193): 358-362.
[150]RAISNER R M, HARTLEY P D, MENEGHINI M D, et al. Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin[J]. Cell, 2005, 123(2): 233-248.
[151]TALBERT P B, HENIKOFF S. Histone variants--ancient wrap artists of the epigenome[J]. Nat Rev Mol Cell Biol, 2010, 11(4): 264-275.
[152]HUA S, KALLEN C B, DHAR R, et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression[J]. Mol Syst Biol, 2008, 4: 188.
[153]VALDES-MORA F, SONG J Z, STATHAM A L, et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer[J]. Genome Res, 2012, 22(2): 307-321.
[154]KIM K, PUNJ V, CHOI J, et al. Gene dysregulation by histone variant H2A.Z in bladder cancer[J]. Epigenetics Chromatin, 2013, 6(1): 34.
[155]YUAN Y, CAO W, ZHOU H, et al. H2A.Z acetylation by lincZNF337-AS1 via KAT5 implicated in the transcriptional misregulation in cancer signaling pathway in hepatocellular carcinoma[J]. Cell Death Dis, 2021, 12(6): 609.
[156]YANG B, TONG R, LIU H, et al. H2A.Z regulates tumorigenesis, metastasis and sensitivity to cisplatin in intrahepatic cholangiocarcinoma[J]. Int J Oncol, 2018, 52(4): 1235-1245.
[157]RISPAL J, BARON L, BEAULIEU J F, et al. The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis[J]. Nat Commun, 2019, 10(1): 1827.
[158]AVILA-LOPEZ P A, GUERRERO G, NUNEZ-MARTINEZ H N, et al. H2A.Z overexpression suppresses senescence and chemosensitivity in pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 40(11): 2065-2080.
[159]BRUNELLE M, NORDELL MARKOVITS A, RODRIGUE S, et al. The histone variant H2A.Z is an important regulator of enhancer activity[J]. Nucleic Acids Res, 2015, 43(20): 9742-9756.
[160]HSU C C, SHI J, YUAN C, et al. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer[J]. Genes Dev, 2018, 32(1): 58-69.
[161]ZHENG Y, HAN X, WANG T. Role of H2A.Z.1 in epithelial-mesenchymal transition and radiation resistance of lung adenocarcinoma in vitro[J]. Biochem Biophys Res Commun, 2022, 611: 118-125.
[162]HOU J, AERTS J, DEN HAMER B, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction[J]. PLoS One, 2010, 5(4): e10312.
[163]DIRECTOR'S CHALLENGE CONSORTIUM FOR THE MOLECULAR CLASSIFICATION OF LUNG A, SHEDDEN K, TAYLOR J M, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study[J]. Nat Med, 2008, 14(8): 822-827.
[164]XIE S, WU Z, QI Y, et al. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges[J]. Biomedicine & Pharmacotherapy, 2021, 138: 111450.
[165]ZHU T, BAO X, CHEN M, et al. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis[J]. Front Oncol, 2020, 10: 585284.
[166]SEO J S, JU Y S, LEE W C, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma[J]. Genome Res, 2012, 22(11): 2109-2119.
[167]CANCER GENOME ATLAS RESEARCH N. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511(7511): 543-550.
[168]OKAYAMA H, KOHNO T, ISHII Y, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas[J]. Cancer Res, 2012, 72(1): 100-111.
[169]TANG Z, LI C, KANG B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
[170]KIKUCHI T, DAIGO Y, ISHIKAWA N, et al. Expression profiles of metastatic brain tumor from lung adenocarcinomas on cDNA microarray[J]. Int J Oncol, 2006, 28(4): 799-805.
[171]SU W, FENG S, CHEN X, et al. Silencing of Long Noncoding RNA MIR22HG Triggers Cell Survival/Death Signaling via Oncogenes YBX1, MET, and p21 in Lung Cancer[J]. Cancer Res, 2018, 78(12): 3207-3219.
[172]GILLETTE M A, SATPATHY S, CAO S, et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma[J]. Cell, 2020, 182(1): 200-225.e235.
[173]NORONHA A, BELUGALI NATARAJ N, SANG LEE J, et al. AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer[J]. Cancer Discov, 2022
[174]MAMO M, YE I C, DIGIACOMO J W, et al. Hypoxia Alters the Response to Anti-EGFR Therapy by Regulating EGFR Expression and Downstream Signaling in a DNA Methylation-Specific and HIF-Dependent Manner[J]. Cancer Res, 2020, 80(22): 4998-5010.
[175]RANKIN E B, FUH K C, CASTELLINI L, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET[J]. Proc Natl Acad Sci U S A, 2014, 111(37): 13373-13378.
[176]MAGRI L, GACIAS M, WU M, et al. c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal histones during oligodendrocyte differentiation[J]. Neuroscience, 2014, 276: 72-86.
[177]RISPAL J, BARON L, BEAULIEU J-F, et al. The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis[J]. Nature Communications, 2019, 10(1): 1827.
[178]RAJABI H, ALAM M, TAKAHASHI H, et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition[J]. Oncogene, 2014, 33(13): 1680-1689.
[179]MUZ B, DE LA PUENTE P, AZAB F, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy[J]. Hypoxia (Auckl), 2015, 3: 83-92.
[180]DA CUNHA SANTOS G, SHEPHERD F A, TSAO M S. EGFR mutations and lung cancer[J]. Annu Rev Pathol, 2011, 6: 49-69.
[181]LEVIN P A, BREKKEN R A, BYERS L A, et al. Axl Receptor Axis: A New Therapeutic Target in Lung Cancer[J]. J Thorac Oncol, 2016, 11(8): 1357-1362.
[182]ZHANG Z, LEE J C, LIN L, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer[J]. Nat Genet, 2012, 44(8): 852-860.
[183]TANIGUCHI H, YAMADA T, WANG R, et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells[J]. Nat Commun, 2019, 10(1): 259.
[184]PERKINS N D. The diverse and complex roles of NF-κB subunits in cancer[J]. Nat Rev Cancer, 2012, 12(2): 121-132.
[185]YANG H D, KIM P J, EUN J W, et al. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer[J]. Oncotarget, 2016, 7(10): 11412-11423.
[186]DOMASCHENZ R, KURSCHEID S, NEKRASOV M, et al. The Histone Variant H2A.Z Is a Master Regulator of the Epithelial-Mesenchymal Transition[J]. Cell Rep, 2017, 21(4): 943-952.
[187]XIA H, GREEN D R, ZOU W. Autophagy in tumour immunity and therapy[J]. Nat Rev Cancer, 2021, 21(5): 281-297.
[188]HAWLEY S A, PAN D A, MUSTARD K J, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase[J]. Cell Metab, 2005, 2(1): 9-19.
[189]WOODS A, DICKERSON K, HEATH R, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells[J]. Cell Metab, 2005, 2(1): 21-33.
[190]SHACKELFORD D B, SHAW R J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression[J]. Nat Rev Cancer, 2009, 9(8): 563-575.
[191]DRILON A, CAPPUZZO F, OU S I, et al. Targeting MET in Lung Cancer: Will Expectations Finally Be MET?[J]. J Thorac Oncol, 2017, 12(1): 15-26.
[192]NASB M, KIRBERGER M, CHEN N. Molecular Processes and Regulation of Autophagy[M]//CHEN N. Exercise, Autophagy and Chronic Diseases. Singapore; Springer Singapore. 2021: 1-27.
[193]JING K, LIM K. Why is autophagy important in human diseases?[J]. Experimental & Molecular Medicine, 2012, 44(2): 69-72.
[194]MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741.
[195]TANIDA I, UENO T, KOMINAMI E. LC3 and Autophagy[J]. Methods Mol Biol, 2008, 445: 77-88.
[196]COOPER G M. The Cell: A Molecular Approach. 2nd edition[M]. Sinauer Associates 2000, 2000.
[197]LIU W J, YE L, HUANG W F, et al. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation[J]. Cell Mol Biol Lett, 2016, 21: 29.
[198]HENNIG P, FENINI G, DI FILIPPO M, et al. The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer[J]. Biomedicines, 2021, 9(7)
[199]WANG X, TERPSTRA E J. Ubiquitin receptors and protein quality control[J]. J Mol Cell Cardiol, 2013, 55: 73-84.
[200]LIN X, LI S, ZHAO Y, et al. Interaction domains of p62: a bridge between p62 and selective autophagy[J]. DNA Cell Biol, 2013, 32(5): 220-227.
[201]PANKIV S, CLAUSEN T H, LAMARK T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33): 24131-24145.
[202]KE R, XU Q, LI C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism[J]. Cell Biol Int, 2018, 42(4): 384-392.
[203]BOLSTER D R, CROZIER S J, KIMBALL S R, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling[J]. J Biol Chem, 2002, 277(27): 23977-23980.
[204]GE Y, ZHOU M, CHEN C, et al. Role of AMPK mediated pathways in autophagy and aging[J]. Biochimie, 2022, 195: 100-113.
[205]SALMINEN A, HYTTINEN J M, KAARNIRANTA K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan[J]. J Mol Med (Berl), 2011, 89(7): 667-676.
[206]MARINO A, HAUSENLOY D J, ANDREADOU I, et al. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury[J]. Free Radical Biology and Medicine, 2021, 166: 238-254.
[207]JEON S M. Regulation and function of AMPK in physiology and diseases[J]. Exp Mol Med, 2016, 48(7): e245.
[208]LI Y, CHEN Y. AMPK and Autophagy[J]. Adv Exp Med Biol, 2019, 1206: 85-108.
[209]JIA J, BISSA B, BRECHT L, et al. AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System[J]. Mol Cell, 2020, 77(5): 951-969.e959.
[210]XIAO B, SANDERS M J, UNDERWOOD E, et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011, 472(7342): 230-233.
[211]HARDIE D G, ROSS F A, HAWLEY S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 251-262.
[212]HAWLEY S A, DAVISON M, WOODS A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase[J]. J Biol Chem, 1996, 271(44): 27879-27887.
[213]EGAN D F, SHACKELFORD D B, MIHAYLOVA M M, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011, 331(6016): 456-461.
[214]KIM J, KUNDU M, VIOLLET B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141.
[215]CARLING D, SANDERS M J, WOODS A. The regulation of AMP-activated protein kinase by upstream kinases[J]. Int J Obes (Lond), 2008, 32 Suppl 4: S55-59.
[216]FUJIWARA Y, KAWAGUCHI Y, FUJIMOTO T, et al. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms[J]. J Biol Chem, 2016, 291(26): 13802-13808.
[217]WU M, ZHANG P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance[J]. Cancer Lett, 2020, 469: 207-216.
[218]BELLOT G, GARCIA-MEDINA R, GOUNON P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains[J]. Mol Cell Biol, 2009, 29(10): 2570-2581.
[219]MAZURE N M, POUYSSÉGUR J. Hypoxia-induced autophagy: cell death or cell survival?[J]. Curr Opin Cell Biol, 2010, 22(2): 177-180.
[220]SOWTER H M, RATCLIFFE P J, WATSON P, et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors[J]. Cancer Res, 2001, 61(18): 6669-6673.
[221]LU N, LI X, TAN R, et al. HIF-1α/Beclin1-Mediated Autophagy Is Involved in Neuroprotection Induced by Hypoxic Preconditioning[J]. J Mol Neurosci, 2018, 66(2): 238-250.
[222]KIM J W, TCHERNYSHYOV I, SEMENZA G L, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3(3): 177-185.
[223]YANG X, LIAO H Y, ZHANG H H. Roles of MET in human cancer[J]. Clin Chim Acta, 2022, 525: 69-83.
[224]KIM Y C, GUAN K L. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015, 125(1): 25-32.
[225]LIU Y, LIU J H, CHAI K, et al. Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells[J]. J Pharm Pharmacol, 2013, 65(11): 1622-1642.
[226]ZHAO H, WANG Y, WU X, et al. FAM83A antisense RNA 1 (FAM83A-AS1) silencing impairs cell proliferation and induces autophagy via MET-AMPKɑ signaling in lung adenocarcinoma[J]. Bioengineered, 2022, 13(5): 13312-13327.
[227]GOWANS G J, HARDIE D G. AMPK: a cellular energy sensor primarily regulated by AMP[J]. Biochem Soc Trans, 2014, 42(1): 71-75.
[228]BARSKI A, CUDDAPAH S, CUI K, et al. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4): 823-837.
[229]HU G, CUI K, NORTHRUP D, et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation[J]. Cell Stem Cell, 2013, 12(2): 180-192.
[230]COLINO-SANGUINO Y, CLARK S J, VALDES-MORA F. The H2A.Z-nuclesome code in mammals: emerging functions[J]. Trends Genet, 2022, 38(3): 273-289.
[231]LIU X, ZHANG J, ZHOU J, et al. Hierarchical Accumulation of Histone Variant H2A.Z Regulates Transcriptional States and Histone Modifications in Early Mammalian Embryos[J]. Adv Sci (Weinh), 2022: e2200057.
[232]MURPHY K E, MENG F W, MAKOWSKI C E, et al. Genome-wide chromatin accessibility is restricted by ANP32E[J]. Nat Commun, 2020, 11(1): 5063.
[233]KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930.
修改评论