中文版 | English
题名

组蛋白变体H2AZ1在非小细胞肺癌中的作用及分子机制研究

其他题名
THE ROLE AND MOLECULAR MECHANISMS OF HISTONE VARIANT H2AZ1 IN NON-SMALL CELL LUNG CANCER
姓名
姓名拼音
ZHAO Huijie
学号
11930929
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
GUOAN CHEN
导师单位
人类细胞生物和遗传学系
论文答辩日期
2023-05-12
论文提交日期
2023-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

肺癌是导致癌症相关死亡最多的癌种。多数肺癌患者在早期经治疗总体预后较好,一旦发生进展及转移,则预后极差。由于肺癌进展的详细机制并不完全清楚,对于中晚期肺癌患者,目前几乎没有针对性药物或者手段能够挽救。因此,研究肺癌进展的具体机制对探索新的治疗方式、改善患者预后是至关重要的。

本研究分析了一系列的肺癌肿瘤样本基因芯片表达数据和TCGA肺癌RNA-seq数据, 发现H2AZ1 mRNA在临床肺癌组织中高表达(相对癌旁正常组织)。H2AZ1在低分化肺腺癌和淋巴结转移阳性的肿瘤组织中高表达且与病人预后差相关。然而,H2AZ1在肺癌中的具体作用机制并不清楚。因此,我们从体外功能实验、细胞周期、凋亡、自噬、肺癌关键信号通路调控、H2AZ1在不同肺癌细胞系染色质的分布特点和规律、H2AZ1在不同肺癌细胞系中对染色质可及性的影响等方面进行研究,利用RNA-seqCUT&TagATAC-seq等实验技术全面揭示 H2AZ1在肺癌的作用机制。

siRNA敲降 H2AZ1后,细胞增殖、克隆形成、迁移和侵袭能力下降,细胞周期阻滞。在分子机制方面,我们发现H2AZ1调控肺癌中多个关键癌症相关信号通路,H2AZ1通过HIF1A调控EGFRAXL的表达。H2AZ1HIF1A-EGFR/AXL轴的调控可能是通过RELA介导的。敲降MYCMETRELA可减少H2AZ1的表达。同时,研究发现,在肺癌细胞中,H2AZ1的敲降可以诱导肺癌细胞发生自噬,H2AZ1敲降对自噬的诱导可能是通过p-CAMKK2-p-AMPK-p-mTOR信号通路。最后,我们对RNA-seqCUT&TagATAC-seq的组学数据进行了分析。CUT&Tag显示H2AZ1与转录起始位点结合并影响多种癌症相关的信号通路,ATAC-seq显示H2AZ1在不同细胞系间对染色质可及性的影响更具有异质性。我们对RNA-seqCUT&TagATAC-seq的组学数据进行了整合分析发现H2AZ1在基因转录起始位点有三种染色质位置模型,对H2AZ1在肺癌染色质中分布规律有了进一步的认识。

综上所述,该课题从不同层面解析了H2AZ1在肺癌中的功能机制,通过研究得出以下结论:(1H2AZ1在肺癌中高表达,并与患者的不良生存率相关。(2H2AZ1沉默影响细胞增殖和侵袭,诱导细胞周期阻滞,并通过p-CAMKK2-p-AMPK-p-mTOR信号通路诱导肺癌细胞自噬。(3H2AZ1调控多个癌基因表达,并与多个关键的癌症相关信号通路相关。(4H2AZ1MYC/MET/RELA调节,并通过对HIF1A-EGFR/AXL信号通路的调控促进肺癌进展。(5H2AZ1在非小细胞肺癌细胞染色体中的定位及分布有三种模型,影响多个癌症相关通路。对H2AZ1或其下游蛋白进行干预具有临床治疗转化潜力。

其他摘要

Lung cancer is the leading cause of cancer-related deaths globally. When diagnosed and treated in the early stages, patients with lung cancer have a relatively good prognosis. Unfortunately, once the cancer has progressed, the prognosis becomes extremely poor. Despite significant advancements in cancer research, the detailed mechanisms of lung cancer progression are still not fully understood, which limits the availability of specific drugs or tools to save patients with advanced lung cancer. Hence, there is a critical need to explore the specific mechanisms of lung cancer progression to develop more effective treatments and improve patient outcomes.

In this study, we analyzed gene chip expression data of lung cancer tumor samples and RNA-seq data from TCGA, and found that H2AZ1 mRNA was highly expressed in clinical lung cancer tissue compared to adjacent normal tissue. Furthermore, we observed high H2AZ1 expression in poorly differentiated lung adenocarcinoma and tumor tissue with positive lymph node metastasis, which was associated with poor patient prognosis. Despite this, the specific mechanism of H2AZ1 in lung cancer remains unclear. Therefore, we conducted research on H2AZ1's mechanism in lung cancer, including in vitro functional experiments, cell cycle, apoptosis, autophagy, regulation of key signaling pathways in lung cancer, distribution patterns and regularities of H2AZ1 in chromatin of different lung cancer cell lines, and the impact of H2AZ1 on chromatin accessibility in different lung cancer cell lines. We used experimental techniques such as RNA-seq, CUT&Tag, and ATAC-seq to comprehensively reveal H2AZ1's role in lung cancer.

After knocking down H2AZ1 with siRNA, cell proliferation, clone formation, migration and invasion ability decreased, and cell cycle was arrested. In terms of molecular mechanisms, we found that H2AZ1 regulates several key cancer-related signaling pathways in lung cancer. H2AZ1 regulates the expression of EGFR, and AXL via HIF1A. The regulation of HIF1A-EGFR/AXL axis by H2AZ1 may be mediated through RELA. Further, we found that knockdown of MYC, MET or RELA could reduce the H2AZ1 expression. Meanwhile, knockdown of H2AZ1 could induce autophagy in lung cancer cells, which may be through the p-CAMKK2-p-AMPK-p-mTOR signaling pathway. Finally, we analyzed the data of RNA-seq, CUT&Tag, and ATAC-seq. The results of CUT&Tag showed that H2AZ1 binds to Transcription Start Site and affects multiple cancer-related signaling pathways, and the results of ATAC-seq showed that the effect of H2AZ1 on chromatin accessibility was more heterogeneous among different cell lines. We have consolidated and analyzed the data from RNA-seq, CUT&Tag, and ATAC-seq and identified three models of H2AZ1 chromatin location around TSS in lung cancer cells, which provided further insight into the distribution pattern of H2AZ1 in lung cancer chromatin.

In summary, the functions and mechanisms of H2AZ1 in lung cancer were analyzed at different levels and the following conclusions were drawn from the study: (1) H2AZ1 is highly expressed in lung cancer and correlates with poor patient survival. (2) Silencing H2AZ1 impairs cell proliferation and invasion, induces cell cycle arrest, and triggers autophagy via the p-CAMKK2-p-AMPK-p-mTOR signaling pathway. (3) H2AZ1 regulates multiple oncogenes expression and several key cancer-related signaling pathways including HIF1A-EGFR/AXL signaling. (4) H2AZ1 may be regulated by MYC, MET, or RELA separately. (5) Three H2AZ1 chromatin deposition models exist around the Transcription Start Site, which impacts multiple cancer-related pathways. Intervention in H2AZ1 or its downstream signaling may have potential clinical translational therapy.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. 2021, 71(3): 209-249.
[2] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[3] WANG A, WANG H Y, LIU Y, et al. The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis[J]. Eur J Surg Oncol, 2015, 41(4): 450-456.
[4] SHER T, DY G K, ADJEI A A. Small cell lung cancer[J]. Mayo Clin Proc, 2008, 83(3): 355-367.
[5] RUDIN C M, BRAMBILLA E, FAIVRE-FINN C, et al. Small-cell lung cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 3.
[6] GUO Q, LIU L, CHEN Z, et al. Current treatments for non-small cell lung cancer[J]. Front Oncol, 2022, 12: 945102.
[7] YUAN M, ZHAO Y, ARKENAU H T, et al. Signal pathways and precision therapy of small-cell lung cancer[J]. Signal Transduct Target Ther, 2022, 7(1): 187.
[8] CHAN B A, HUGHES B G. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future[J]. Transl Lung Cancer Res, 2015, 4(1): 36-54.
[9] YUAN M, HUANG L L, CHEN J H, et al. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer[J]. Signal Transduct Target Ther, 2019, 4: 61.
[10] ETTINGER D S, WOOD D E, AISNER D L, et al. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530.
[11] NISHIO M, KIM D W, WU Y L, et al. Crizotinib versus Chemotherapy in Asian Patients with ALK-Positive Advanced Non-small Cell Lung Cancer[J]. Cancer Res Treat, 2018, 50(3): 691-700.
[12] SOLOMON B J, MOK T, KIM D W, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer[J]. N Engl J Med, 2014, 371(23): 2167-2177.
[13] HERBST R S, BAAS P, KIM D W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016, 387(10027): 1540-1550.
[14] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[15] ZHENG R, ZHANG S, ZENG H, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the National Cancer Center, 2022, 2(1): 1-9.
[16] SAXENA M, CHRISTOFORI G. Rebuilding cancer metastasis in the mouse[J]. Mol Oncol, 2013, 7(2): 283-296.
[17] SCHEEL C, ONDER T, KARNOUB A, et al. Adaptation versus selection: the origins of metastatic behavior[J]. Cancer Res, 2007, 67(24): 11476-11479; discussion 11479-11480.
[18] DIGUMARTHY S R, MENDOZA D P, PADOLE A, et al. Diffuse Lung Metastases in EGFR-Mutant Non-Small Cell Lung Cancer[J]. Cancers (Basel), 2019, 11(9)
[19] CHEN Y, DENG J, LIU Y, et al. Analysis of metastases in non-small cell lung cancer patients with epidermal growth factor receptor mutation[J]. Ann Transl Med, 2021, 9(3): 206.
[20] ZHANG I, ZAORSKY N G, PALMER J D, et al. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer[J]. The Lancet Oncology, 2015, 16(13): e510-e521.
[21] MITTAL V. Epithelial Mesenchymal Transition in Tumor Metastasis[J]. Annu Rev Pathol, 2018, 13: 395-412.
[22] POLTAVETS V, KOCHETKOVA M, PITSON S M, et al. The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity[J]. Front Oncol, 2018, 8: 431.
[23] WOOD S L, PERNEMALM M, CROSBIE P A, et al. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets[J]. Cancer Treatment Reviews, 2014, 40(4): 558-566.
[24] ALTORKI N K, MARKOWITZ G J, GAO D, et al. The lung microenvironment: an important regulator of tumour growth and metastasis[J]. Nat Rev Cancer, 2019, 19(1): 9-31.
[25] ANICHINI A, PEROTTI V E, SGAMBELLURI F, et al. Immune Escape Mechanisms in Non Small Cell Lung Cancer[J]. Cancers (Basel), 2020, 12(12)
[26] KOTTEAS E A, BOULAS P, GKIOZOS I, et al. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis[J]. Anticancer Res, 2014, 34(9): 4665-4672.
[27] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[28] JIANG J, LU Y, ZHANG F, et al. The Emerging Roles of Long Noncoding RNAs as Hallmarks of Lung Cancer[J]. Front Oncol, 2021, 11: 761582.
[29] CHEVALLIER M, BORGEAUD M, ADDEO A, et al. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future[J]. World J Clin Oncol, 2021, 12(4): 217-237.
[30] PAEZ J G, JÄNNE P A, LEE J C, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy[J]. Science, 2004, 304(5676): 1497-1500.
[31] HERBST R S. Review of epidermal growth factor receptor biology[J]. Int J Radiat Oncol Biol Phys, 2004, 59(2 Suppl): 21-26.
[32] DOWNWARD J, PARKER P, WATERFIELD M D. Autophosphorylation sites on the epidermal growth factor receptor[J]. Nature, 1984, 311(5985): 483-485.
[33] ODA K, MATSUOKA Y, FUNAHASHI A, et al. A comprehensive pathway map of epidermal growth factor receptor signaling[J]. Mol Syst Biol, 2005, 1: 2005.0010.
[34] TIAN X, GU T, LEE M H, et al. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(1): 188645.
[35] ESKILSSON E, RØSLAND G V, SOLECKI G, et al. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma[J]. Neuro Oncol, 2018, 20(6): 743-752.
[36] SPANO J P, LAGORCE C, ATLAN D, et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival[J]. Annals of Oncology, 2005, 16(1): 102-108.
[37] LIANG W, WU X, FANG W, et al. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations[J]. PLoS One, 2014, 9(2): e85245.
[38] MAEMONDO M, INOUE A, KOBAYASHI K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR[J]. N Engl J Med, 2010, 362(25): 2380-2388.
[39] SHIGEMATSU H, LIN L, TAKAHASHI T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers[J]. J Natl Cancer Inst, 2005, 97(5): 339-346.
[40] CHOUDHARY K S, ROHATGI N, HALLDORSSON S, et al. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT[J]. PLoS Comput Biol, 2016, 12(6): e1004924.
[41] GRAHAM D K, DERYCKERE D, DAVIES K D, et al. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer[J]. Nat Rev Cancer, 2014, 14(12): 769-785.
[42] LIU E, HJELLE B, BISHOP J M. Transforming genes in chronic myelogenous leukemia[J]. Proc Natl Acad Sci U S A, 1988, 85(6): 1952-1956.
[43] SANG Y B, KIM J H, KIM C G, et al. The Development of AXL Inhibitors in Lung Cancer: Recent Progress and Challenges[J]. Front Oncol, 2022, 12: 811247.
[44] HOLLAND S J, PAN A, FRANCI C, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer[J]. Cancer Res, 2010, 70(4): 1544-1554.
[45] KANLIKILICER P, OZPOLAT B, ASLAN B, et al. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models[J]. Mol Ther Nucleic Acids, 2017, 9: 251-262.
[46] ZHU C, WEI Y, WEI X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications[J]. Mol Cancer, 2019, 18(1): 153.
[47] DAGAMAJALU S, REX D A B, PALOLLATHIL A, et al. A pathway map of AXL receptor-mediated signaling network[J]. J Cell Commun Signal, 2021, 15(1): 143-148.
[48] BRAND T M, IIDA M, STEIN A P, et al. AXL mediates resistance to cetuximab therapy[J]. Cancer Res, 2014, 74(18): 5152-5164.
[49] SEMENZA G L, RUE E A, IYER N V, et al. Assignment of the Hypoxia-Inducible Factor 1α Gene to a Region of Conserved Synteny on Mouse Chromosome 12 and Human Chromosome 14q[J]. Genomics, 1996, 34(3): 437-439.
[50] HOGENESCH J B, CHAN W K, JACKIW V H, et al. Characterization of a Subset of the Basic-Helix-Loop-Helix-PAS Superfamily That Interacts with Components of the Dioxin Signaling Pathway[J]. Journal of Biological Chemistry, 1997, 272(13): 8581-8593.
[51] PAPANDREOU I, CAIRNS R A, FONTANA L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption[J]. Cell Metabolism, 2006, 3(3): 187-197.
[52] IYER N V, KOTCH L E, AGANI F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha[J]. Genes Dev, 1998, 12(2): 149-162.
[53] MISKA J, LEE-CHANG C, RASHIDI A, et al. HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma[J]. Cell Rep, 2019, 27(1): 226-237.e224.
[54] CERYCHOVA R, PAVLINKOVA G. HIF-1, Metabolism, and Diabetes in the Embryonic and Adult Heart[J]. Front Endocrinol (Lausanne), 2018, 9: 460.
[55] GASPAR J M, VELLOSO L A. Hypoxia Inducible Factor as a Central Regulator of Metabolism - Implications for the Development of Obesity[J]. Front Neurosci, 2018, 12: 813.
[56] SCHWAB L P, PEACOCK D L, MAJUMDAR D, et al. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer[J]. Breast Cancer Res, 2012, 14(1): R6.
[57] JIN X, DAI L, MA Y, et al. Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer[J]. Cancer Cell Int, 2020, 20: 273.
[58] EBRIGHT R Y, ZACHARIAH M A, MICALIZZI D S, et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain[J]. Nat Commun, 2020, 11(1): 6311.
[59] HOEFFLIN R, HARLANDER S, SCHÄFER S, et al. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice[J]. Nat Commun, 2020, 11(1): 4111.
[60] WICKS E E, SEMENZA G L. Hypoxia-inducible factors: cancer progression and clinical translation[J]. J Clin Invest, 2022, 132(11)
[61] EPSTEIN A C, GLEADLE J M, MCNEILL L A, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107(1): 43-54.
[62] MASOUD G N, LI W. HIF-1α pathway: role, regulation and intervention for cancer therapy[J]. Acta Pharm Sin B, 2015, 5(5): 378-389.
[63] HARRIS A L. Hypoxia--a key regulatory factor in tumour growth[J]. Nat Rev Cancer, 2002, 2(1): 38-47.
[64] VAUPEL P, MAYER A. Hypoxia in cancer: significance and impact on clinical outcome[J]. Cancer Metastasis Rev, 2007, 26(2): 225-239.
[65] WANG X, DU Z W, XU T M, et al. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies[J]. Front Oncol, 2021, 11: 785111.
[66] LEE S-H, GOLINSKA M, GRIFFITHS J R. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells[J]. Cells, 2021, 10(9): 2371.
[67] SHI Y H, FANG W G. Hypoxia-inducible factor-1 in tumour angiogenesis[J]. World J Gastroenterol, 2004, 10(8): 1082-1087.
[68] LV X, LI J, ZHANG C, et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism[J]. Genes Dis, 2017, 4(1): 19-24.
[69] MANUELLI V, PECORARI C, FILOMENI G, et al. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis[J]. Febs j, 2022, 289(18): 5413-5425.
[70] PETROVA V, ANNICCHIARICO-PETRUZZELLI M, MELINO G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1): 10.
[71] SEMENZA G L. HIF-1 and tumor progression: pathophysiology and therapeutics[J]. Trends Mol Med, 2002, 8(4 Suppl): S62-67.
[72] KOUKOURAKIS M I, GIATROMANOLAKI A, SIVRIDIS E, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer[J]. International Journal of Radiation Oncology*Biology*Physics, 2002, 53(5): 1192-1202.
[73] XIA Y, JIANG L, ZHONG T. The role of HIF-1α in chemo-/radioresistant tumors[J]. Onco Targets Ther, 2018, 11: 3003-3011.
[74] JIN Q, HUANG F, XU X, et al. High expression of hypoxia inducible factor 1α related with acquired resistant to EGFR tyrosine kinase inhibitors in NSCLC[J]. Scientific Reports, 2021, 11(1): 1199.
[75] WAN J, LING X, RAO Z, et al. Independent prognostic value of HIF‑1α expression in radiofrequency ablation of lung cancer[J]. Oncol Lett, 2020, 19(1): 849-857.
[76] LUO F, LU F-T, CAO J-X, et al. HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer[J]. Cancer Letters, 2022, 531: 39-56.
[77] KURTIPEK E, KOÇAK N, ESME H, et al. The role of HIF-1 pathway in non-small-cell lung cancer[J]. European Respiratory Journal, 2016, 48(suppl 60): PA2855.
[78] LIU T, ZHANG L, JOO D, et al. NF-κB signaling in inflammation[J]. Signal Transduct Target Ther, 2017, 2: 17023-.
[79] HAYDEN M S, GHOSH S. Shared principles in NF-kappaB signaling[J]. Cell, 2008, 132(3): 344-362.
[80] LIU Y, WANG J, ZHANG X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis[J]. Int J Biol Sci, 2022, 18(11): 4400-4413.
[81] CHEN L-F, GREENE W C. Shaping the nuclear action of NF-κB[J]. Nature Reviews Molecular Cell Biology, 2004, 5(5): 392-401.
[82] JONES K, RAMIREZ-PEREZ S, NIU S, et al. SOX4 and RELA Function as Transcriptional Partners to Regulate the Expression of TNF- Responsive Genes in Fibroblast-Like Synoviocytes[J]. Front Immunol, 2022, 13: 789349.
[83] ZHONG H, VOLL R E, GHOSH S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300[J]. Mol Cell, 1998, 1(5): 661-671.
[84] NAKAZATO A, MOCHIZUKI M, SHIBUYA-TAKAHASHI R, et al. RELA is required for CD271 expression and stem-like characteristics in hypopharyngeal cancer[J]. Sci Rep, 2022, 12(1): 17751.
[85] LU X, YARBROUGH W G. Negative regulation of RelA phosphorylation: emerging players and their roles in cancer[J]. Cytokine Growth Factor Rev, 2015, 26(1): 7-13.
[86] WEICHERT W, BOEHM M, GEKELER V, et al. High expression of RelA/p65 is associated with activation of nuclear factor-κB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis[J]. British Journal of Cancer, 2007, 97(4): 523-530.
[87] LAMOUILLE S, XU J, DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
[88] HAY E D. An overview of epithelio-mesenchymal transformation[J]. Acta Anat (Basel), 1995, 154(1): 8-20.
[89] THIERY J P, ACLOQUE H, HUANG R Y, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890.
[90] ARNOUX V, NASSOUR M, L'HELGOUALC'H A, et al. Erk5 controls Slug expression and keratinocyte activation during wound healing[J]. Mol Biol Cell, 2008, 19(11): 4738-4749.
[91] BRABLETZ S, SCHUHWERK H, BRABLETZ T, et al. Dynamic EMT: a multi-tool for tumor progression[J]. Embo j, 2021, 40(18): e108647.
[92] JOLLY M K, WARE K E, GILJA S, et al. EMT and MET: necessary or permissive for metastasis?[J]. Mol Oncol, 2017, 11(7): 755-769.
[93] BAKIR B, CHIARELLA A M, PITARRESI J R, et al. EMT, MET, Plasticity, and Tumor Metastasis[J]. Trends Cell Biol, 2020, 30(10): 764-776.
[94] WHEELOCK M J, JOHNSON K R. Cadherins as modulators of cellular phenotype[J]. Annu Rev Cell Dev Biol, 2003, 19: 207-235.
[95] KALLURI R, WEINBERG R A. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428.
[96] KREBS A M, MITSCHKE J, LASIERRA LOSADA M, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer[J]. Nat Cell Biol, 2017, 19(5): 518-529.
[97] THIERAUF J, VEIT J A, HESS J. Epithelial-to-Mesenchymal Transition in the Pathogenesis and Therapy of Head and Neck Cancer[J]. Cancers, 2017, 9(7): 76.
[98] ICHIMURA Y, KIRISAKO T, TAKAO T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature, 2000, 408(6811): 488-492.
[99] CUERVO A M. Autophagy: in sickness and in health[J]. Trends Cell Biol, 2004, 14(2): 70-77.
[100]TSUKADA M, OHSUMI Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS Lett, 1993, 333(1-2): 169-174.
[101]MIZUSHIMA N, SUGITA H, YOSHIMORI T, et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy[J]. J Biol Chem, 1998, 273(51): 33889-33892.
[102]KABEYA Y, MIZUSHIMA N, UENO T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. Embo j, 2000, 19(21): 5720-5728.
[103]YU L, CHEN Y, TOOZE S A. Autophagy pathway: Cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207-215.
[104]ZACHARI M, GANLEY I G. The mammalian ULK1 complex and autophagy initiation[J]. Essays Biochem, 2017, 61(6): 585-596.
[105]DOWER C M, WILLS C A, FRISCH S M, et al. Mechanisms and context underlying the role of autophagy in cancer metastasis[J]. Autophagy, 2018, 14(7): 1110-1128.
[106]HUANG R, XU Y, WAN W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J]. Mol Cell, 2015, 57(3): 456-466.
[107]LEE Y K, LEE J A. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy[J]. BMB Rep, 2016, 49(8): 424-430.
[108]PYO J O, NAH J, JUNG Y K. Molecules and their functions in autophagy[J]. Exp Mol Med, 2012, 44(2): 73-80.
[109]SHEN Q, SHI Y, LIU J, et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation[J]. Autophagy, 2021, 17(5): 1157-1169.
[110]KLIONSKY D J, ABDEL-AZIZ A K, ABDELFATAH S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1)[J]. Autophagy, 2021, 17(1): 1-382.
[111]LIANG X H, JACKSON S, SEAMAN M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402(6762): 672-676.
[112]QU X, YU J, BHAGAT G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene[J]. J Clin Invest, 2003, 112(12): 1809-1820.
[113]LI X, HE S, MA B. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1): 12.
[114]BARNARD R A, REGAN D P, HANSEN R J, et al. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease[J]. J Pharmacol Exp Ther, 2016, 358(2): 282-293.
[115]GUO J Y, XIA B, WHITE E. Autophagy-mediated tumor promotion[J]. Cell, 2013, 155(6): 1216-1219.
[116]WHITE E. Deconvoluting the context-dependent role for autophagy in cancer[J]. Nat Rev Cancer, 2012, 12(6): 401-410.
[117]WU W K, COFFELT S B, CHO C H, et al. The autophagic paradox in cancer therapy[J]. Oncogene, 2012, 31(8): 939-953.
[118]LEVY J M M, TOWERS C G, THORBURN A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542.
[119]AMARAVADI R K, KIMMELMAN A C, DEBNATH J. Targeting Autophagy in Cancer: Recent Advances and Future Directions[J]. Cancer Discov, 2019, 9(9): 1167-1181.
[120]ZADA S, HWANG J S, AHMED M, et al. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188565.
[121]MORGAN M J, FITZWALTER B E, OWENS C R, et al. Metastatic cells are preferentially vulnerable to lysosomal inhibition[J]. Proc Natl Acad Sci U S A, 2018, 115(36): E8479-e8488.
[122]XIE X, KOH J Y, PRICE S, et al. Atg7 Overcomes Senescence and Promotes Growth of BrafV600E-Driven Melanoma[J]. Cancer Discov, 2015, 5(4): 410-423.
[123]MILLÁN-ZAMBRANO G, BURTON A, BANNISTER A J, et al. Histone post-translational modifications - cause and consequence of genome function[J]. Nat Rev Genet, 2022, 23(9): 563-580.
[124]HAMMOND C M, STRØMME C B, HUANG H, et al. Histone chaperone networks shaping chromatin function[J]. Nat Rev Mol Cell Biol, 2017, 18(3): 141-158.
[125]SABARI B R, ZHANG D, ALLIS C D, et al. Metabolic regulation of gene expression through histone acylations[J]. Nat Rev Mol Cell Biol, 2017, 18(2): 90-101.
[126]LAI S, JIA J, CAO X, et al. Molecular and Cellular Functions of the Linker Histone H1.2[J]. Front Cell Dev Biol, 2021, 9: 773195.
[127]MARTIRE S, BANASZYNSKI L A. The roles of histone variants in fine-tuning chromatin organization and function[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 522-541.
[128]DAS C, TYLER J K, CHURCHILL M E. The histone shuffle: histone chaperones in an energetic dance[J]. Trends Biochem Sci, 2010, 35(9): 476-489.
[129]SPORN J C, KUSTATSCHER G, HOTHORN T, et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence[J]. Oncogene, 2009, 28(38): 3423-3428.
[130]GHIRALDINI F G, FILIPESCU D, BERNSTEIN E. Solid tumours hijack the histone variant network[J]. Nat Rev Cancer, 2021, 21(4): 257-275.
[131]AMATORI S, TAVOLARO S, GAMBARDELLA S, et al. The dark side of histones: genomic organization and role of oncohistones in cancer[J]. Clin Epigenetics, 2021, 13(1): 71.
[132]VARDABASSO C, GASPAR-MAIA A, HASSON D, et al. Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma[J]. Mol Cell, 2015, 59(1): 75-88.
[133]BENNETT R L, BELE A, SMALL E C, et al. A Mutation in Histone H2B Represents a New Class of Oncogenic Driver[J]. Cancer Discov, 2019, 9(10): 1438-1451.
[134]BÖNISCH C, HAKE S B. Histone H2A variants in nucleosomes and chromatin: more or less stable?[J]. Nucleic Acids Res, 2012, 40(21): 10719-10741.
[135]KALASHNIKOVA A A, PORTER-GOFF M E, MUTHURAJAN U M, et al. The role of the nucleosome acidic patch in modulating higher order chromatin structure[J]. J R Soc Interface, 2013, 10(82): 20121022.
[136]ARIMURA Y, KIMURA H, ODA T, et al. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin[J]. Sci Rep, 2013, 3: 3510.
[137]ZHOU J, FAN J Y, RANGASAMY D, et al. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression[J]. Nat Struct Mol Biol, 2007, 14(11): 1070-1076.
[138]SALES-GIL R, KOMMER D C, DE CASTRO I J, et al. Non-redundant functions of H2A.Z.1 and H2A.Z.2 in chromosome segregation and cell cycle progression[J]. EMBO Rep, 2021, 22(11): e52061.
[139]BARGAJE R, ALAM M P, PATOWARY A, et al. Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain[J]. Nucleic Acids Res, 2012, 40(18): 8965-8978.
[140]LONG H, ZHANG L, LV M, et al. H2A.Z facilitates licensing and activation of early replication origins[J]. Nature, 2020, 577(7791): 576-581.
[141]NEVES L T, DOUGLASS S, SPREAFICO R, et al. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae[J]. Genes Dev, 2017, 31(7): 702-717.
[142]WRATTING D, THISTLETHWAITE A, HARRIS M, et al. A conserved function for the H2A.Z C terminus[J]. J Biol Chem, 2012, 287(23): 19148-19157.
[143]GIAIMO B D, FERRANTE F, HERCHENRÖTHER A, et al. The histone variant H2A.Z in gene regulation[J]. Epigenetics Chromatin, 2019, 12(1): 37.
[144]CORUJO D, BUSCHBECK M. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer[J]. Cancers (Basel), 2018, 10(3)
[145]SUTO R K, CLARKSON M J, TREMETHICK D J, et al. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z[J]. Nat Struct Biol, 2000, 7(12): 1121-1124.
[146]GIAIMO B D, FERRANTE F, VALLEJO D M, et al. Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response[J]. Nucleic Acids Res, 2018, 46(16): 8197-8215.
[147]COLE L, KURSCHEID S, NEKRASOV M, et al. Multiple roles of H2A.Z in regulating promoter chromatin architecture in human cells[J]. Nat Commun, 2021, 12(1): 2524.
[148]GUILLEMETTE B, BATAILLE A R, GÉVRY N, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning[J]. PLoS Biol, 2005, 3(12): e384.
[149]MAVRICH T N, JIANG C, IOSHIKHES I P, et al. Nucleosome organization in the Drosophila genome[J]. Nature, 2008, 453(7193): 358-362.
[150]RAISNER R M, HARTLEY P D, MENEGHINI M D, et al. Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin[J]. Cell, 2005, 123(2): 233-248.
[151]TALBERT P B, HENIKOFF S. Histone variants--ancient wrap artists of the epigenome[J]. Nat Rev Mol Cell Biol, 2010, 11(4): 264-275.
[152]HUA S, KALLEN C B, DHAR R, et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression[J]. Mol Syst Biol, 2008, 4: 188.
[153]VALDES-MORA F, SONG J Z, STATHAM A L, et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer[J]. Genome Res, 2012, 22(2): 307-321.
[154]KIM K, PUNJ V, CHOI J, et al. Gene dysregulation by histone variant H2A.Z in bladder cancer[J]. Epigenetics Chromatin, 2013, 6(1): 34.
[155]YUAN Y, CAO W, ZHOU H, et al. H2A.Z acetylation by lincZNF337-AS1 via KAT5 implicated in the transcriptional misregulation in cancer signaling pathway in hepatocellular carcinoma[J]. Cell Death Dis, 2021, 12(6): 609.
[156]YANG B, TONG R, LIU H, et al. H2A.Z regulates tumorigenesis, metastasis and sensitivity to cisplatin in intrahepatic cholangiocarcinoma[J]. Int J Oncol, 2018, 52(4): 1235-1245.
[157]RISPAL J, BARON L, BEAULIEU J F, et al. The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis[J]. Nat Commun, 2019, 10(1): 1827.
[158]AVILA-LOPEZ P A, GUERRERO G, NUNEZ-MARTINEZ H N, et al. H2A.Z overexpression suppresses senescence and chemosensitivity in pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 40(11): 2065-2080.
[159]BRUNELLE M, NORDELL MARKOVITS A, RODRIGUE S, et al. The histone variant H2A.Z is an important regulator of enhancer activity[J]. Nucleic Acids Res, 2015, 43(20): 9742-9756.
[160]HSU C C, SHI J, YUAN C, et al. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer[J]. Genes Dev, 2018, 32(1): 58-69.
[161]ZHENG Y, HAN X, WANG T. Role of H2A.Z.1 in epithelial-mesenchymal transition and radiation resistance of lung adenocarcinoma in vitro[J]. Biochem Biophys Res Commun, 2022, 611: 118-125.
[162]HOU J, AERTS J, DEN HAMER B, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction[J]. PLoS One, 2010, 5(4): e10312.
[163]DIRECTOR'S CHALLENGE CONSORTIUM FOR THE MOLECULAR CLASSIFICATION OF LUNG A, SHEDDEN K, TAYLOR J M, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study[J]. Nat Med, 2008, 14(8): 822-827.
[164]XIE S, WU Z, QI Y, et al. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges[J]. Biomedicine & Pharmacotherapy, 2021, 138: 111450.
[165]ZHU T, BAO X, CHEN M, et al. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis[J]. Front Oncol, 2020, 10: 585284.
[166]SEO J S, JU Y S, LEE W C, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma[J]. Genome Res, 2012, 22(11): 2109-2119.
[167]CANCER GENOME ATLAS RESEARCH N. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511(7511): 543-550.
[168]OKAYAMA H, KOHNO T, ISHII Y, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas[J]. Cancer Res, 2012, 72(1): 100-111.
[169]TANG Z, LI C, KANG B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
[170]KIKUCHI T, DAIGO Y, ISHIKAWA N, et al. Expression profiles of metastatic brain tumor from lung adenocarcinomas on cDNA microarray[J]. Int J Oncol, 2006, 28(4): 799-805.
[171]SU W, FENG S, CHEN X, et al. Silencing of Long Noncoding RNA MIR22HG Triggers Cell Survival/Death Signaling via Oncogenes YBX1, MET, and p21 in Lung Cancer[J]. Cancer Res, 2018, 78(12): 3207-3219.
[172]GILLETTE M A, SATPATHY S, CAO S, et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma[J]. Cell, 2020, 182(1): 200-225.e235.
[173]NORONHA A, BELUGALI NATARAJ N, SANG LEE J, et al. AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer[J]. Cancer Discov, 2022
[174]MAMO M, YE I C, DIGIACOMO J W, et al. Hypoxia Alters the Response to Anti-EGFR Therapy by Regulating EGFR Expression and Downstream Signaling in a DNA Methylation-Specific and HIF-Dependent Manner[J]. Cancer Res, 2020, 80(22): 4998-5010.
[175]RANKIN E B, FUH K C, CASTELLINI L, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET[J]. Proc Natl Acad Sci U S A, 2014, 111(37): 13373-13378.
[176]MAGRI L, GACIAS M, WU M, et al. c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal histones during oligodendrocyte differentiation[J]. Neuroscience, 2014, 276: 72-86.
[177]RISPAL J, BARON L, BEAULIEU J-F, et al. The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis[J]. Nature Communications, 2019, 10(1): 1827.
[178]RAJABI H, ALAM M, TAKAHASHI H, et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition[J]. Oncogene, 2014, 33(13): 1680-1689.
[179]MUZ B, DE LA PUENTE P, AZAB F, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy[J]. Hypoxia (Auckl), 2015, 3: 83-92.
[180]DA CUNHA SANTOS G, SHEPHERD F A, TSAO M S. EGFR mutations and lung cancer[J]. Annu Rev Pathol, 2011, 6: 49-69.
[181]LEVIN P A, BREKKEN R A, BYERS L A, et al. Axl Receptor Axis: A New Therapeutic Target in Lung Cancer[J]. J Thorac Oncol, 2016, 11(8): 1357-1362.
[182]ZHANG Z, LEE J C, LIN L, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer[J]. Nat Genet, 2012, 44(8): 852-860.
[183]TANIGUCHI H, YAMADA T, WANG R, et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells[J]. Nat Commun, 2019, 10(1): 259.
[184]PERKINS N D. The diverse and complex roles of NF-κB subunits in cancer[J]. Nat Rev Cancer, 2012, 12(2): 121-132.
[185]YANG H D, KIM P J, EUN J W, et al. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer[J]. Oncotarget, 2016, 7(10): 11412-11423.
[186]DOMASCHENZ R, KURSCHEID S, NEKRASOV M, et al. The Histone Variant H2A.Z Is a Master Regulator of the Epithelial-Mesenchymal Transition[J]. Cell Rep, 2017, 21(4): 943-952.
[187]XIA H, GREEN D R, ZOU W. Autophagy in tumour immunity and therapy[J]. Nat Rev Cancer, 2021, 21(5): 281-297.
[188]HAWLEY S A, PAN D A, MUSTARD K J, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase[J]. Cell Metab, 2005, 2(1): 9-19.
[189]WOODS A, DICKERSON K, HEATH R, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells[J]. Cell Metab, 2005, 2(1): 21-33.
[190]SHACKELFORD D B, SHAW R J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression[J]. Nat Rev Cancer, 2009, 9(8): 563-575.
[191]DRILON A, CAPPUZZO F, OU S I, et al. Targeting MET in Lung Cancer: Will Expectations Finally Be MET?[J]. J Thorac Oncol, 2017, 12(1): 15-26.
[192]NASB M, KIRBERGER M, CHEN N. Molecular Processes and Regulation of Autophagy[M]//CHEN N. Exercise, Autophagy and Chronic Diseases. Singapore; Springer Singapore. 2021: 1-27.
[193]JING K, LIM K. Why is autophagy important in human diseases?[J]. Experimental & Molecular Medicine, 2012, 44(2): 69-72.
[194]MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741.
[195]TANIDA I, UENO T, KOMINAMI E. LC3 and Autophagy[J]. Methods Mol Biol, 2008, 445: 77-88.
[196]COOPER G M. The Cell: A Molecular Approach. 2nd edition[M]. Sinauer Associates 2000, 2000.
[197]LIU W J, YE L, HUANG W F, et al. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation[J]. Cell Mol Biol Lett, 2016, 21: 29.
[198]HENNIG P, FENINI G, DI FILIPPO M, et al. The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer[J]. Biomedicines, 2021, 9(7)
[199]WANG X, TERPSTRA E J. Ubiquitin receptors and protein quality control[J]. J Mol Cell Cardiol, 2013, 55: 73-84.
[200]LIN X, LI S, ZHAO Y, et al. Interaction domains of p62: a bridge between p62 and selective autophagy[J]. DNA Cell Biol, 2013, 32(5): 220-227.
[201]PANKIV S, CLAUSEN T H, LAMARK T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33): 24131-24145.
[202]KE R, XU Q, LI C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism[J]. Cell Biol Int, 2018, 42(4): 384-392.
[203]BOLSTER D R, CROZIER S J, KIMBALL S R, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling[J]. J Biol Chem, 2002, 277(27): 23977-23980.
[204]GE Y, ZHOU M, CHEN C, et al. Role of AMPK mediated pathways in autophagy and aging[J]. Biochimie, 2022, 195: 100-113.
[205]SALMINEN A, HYTTINEN J M, KAARNIRANTA K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan[J]. J Mol Med (Berl), 2011, 89(7): 667-676.
[206]MARINO A, HAUSENLOY D J, ANDREADOU I, et al. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury[J]. Free Radical Biology and Medicine, 2021, 166: 238-254.
[207]JEON S M. Regulation and function of AMPK in physiology and diseases[J]. Exp Mol Med, 2016, 48(7): e245.
[208]LI Y, CHEN Y. AMPK and Autophagy[J]. Adv Exp Med Biol, 2019, 1206: 85-108.
[209]JIA J, BISSA B, BRECHT L, et al. AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System[J]. Mol Cell, 2020, 77(5): 951-969.e959.
[210]XIAO B, SANDERS M J, UNDERWOOD E, et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011, 472(7342): 230-233.
[211]HARDIE D G, ROSS F A, HAWLEY S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 251-262.
[212]HAWLEY S A, DAVISON M, WOODS A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase[J]. J Biol Chem, 1996, 271(44): 27879-27887.
[213]EGAN D F, SHACKELFORD D B, MIHAYLOVA M M, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011, 331(6016): 456-461.
[214]KIM J, KUNDU M, VIOLLET B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141.
[215]CARLING D, SANDERS M J, WOODS A. The regulation of AMP-activated protein kinase by upstream kinases[J]. Int J Obes (Lond), 2008, 32 Suppl 4: S55-59.
[216]FUJIWARA Y, KAWAGUCHI Y, FUJIMOTO T, et al. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms[J]. J Biol Chem, 2016, 291(26): 13802-13808.
[217]WU M, ZHANG P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance[J]. Cancer Lett, 2020, 469: 207-216.
[218]BELLOT G, GARCIA-MEDINA R, GOUNON P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains[J]. Mol Cell Biol, 2009, 29(10): 2570-2581.
[219]MAZURE N M, POUYSSÉGUR J. Hypoxia-induced autophagy: cell death or cell survival?[J]. Curr Opin Cell Biol, 2010, 22(2): 177-180.
[220]SOWTER H M, RATCLIFFE P J, WATSON P, et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors[J]. Cancer Res, 2001, 61(18): 6669-6673.
[221]LU N, LI X, TAN R, et al. HIF-1α/Beclin1-Mediated Autophagy Is Involved in Neuroprotection Induced by Hypoxic Preconditioning[J]. J Mol Neurosci, 2018, 66(2): 238-250.
[222]KIM J W, TCHERNYSHYOV I, SEMENZA G L, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3(3): 177-185.
[223]YANG X, LIAO H Y, ZHANG H H. Roles of MET in human cancer[J]. Clin Chim Acta, 2022, 525: 69-83.
[224]KIM Y C, GUAN K L. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015, 125(1): 25-32.
[225]LIU Y, LIU J H, CHAI K, et al. Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells[J]. J Pharm Pharmacol, 2013, 65(11): 1622-1642.
[226]ZHAO H, WANG Y, WU X, et al. FAM83A antisense RNA 1 (FAM83A-AS1) silencing impairs cell proliferation and induces autophagy via MET-AMPKɑ signaling in lung adenocarcinoma[J]. Bioengineered, 2022, 13(5): 13312-13327.
[227]GOWANS G J, HARDIE D G. AMPK: a cellular energy sensor primarily regulated by AMP[J]. Biochem Soc Trans, 2014, 42(1): 71-75.
[228]BARSKI A, CUDDAPAH S, CUI K, et al. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4): 823-837.
[229]HU G, CUI K, NORTHRUP D, et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation[J]. Cell Stem Cell, 2013, 12(2): 180-192.
[230]COLINO-SANGUINO Y, CLARK S J, VALDES-MORA F. The H2A.Z-nuclesome code in mammals: emerging functions[J]. Trends Genet, 2022, 38(3): 273-289.
[231]LIU X, ZHANG J, ZHOU J, et al. Hierarchical Accumulation of Histone Variant H2A.Z Regulates Transcriptional States and Histone Modifications in Early Mammalian Embryos[J]. Adv Sci (Weinh), 2022: e2200057.
[232]MURPHY K E, MENG F W, MAKOWSKI C E, et al. Genome-wide chromatin accessibility is restricted by ANP32E[J]. Nat Commun, 2020, 11(1): 5063.
[233]KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930.

所在学位评定分委会
生物学
国内图书分类号
R73-37
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545049
专题南方科技大学医学院
推荐引用方式
GB/T 7714
赵慧杰. 组蛋白变体H2AZ1在非小细胞肺癌中的作用及分子机制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930929-赵慧杰-南方科技大学医(19578KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵慧杰]的文章
百度学术
百度学术中相似的文章
[赵慧杰]的文章
必应学术
必应学术中相似的文章
[赵慧杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。