[1]刘训,游国庆.中国的板块构造区划[J].中国地质,2015,42(01):1-17.
[2]张昌榕,张贵宾,江国明,等.下扬子及周边地区深部泊松比结构及深部动力过程约束研究[J].地球物理学报,2018,61(11):4418-4435.
[3]LI C M, ZHANG C H, TIM D C, et al. Out-of-sequence thrusting in polycyclic thrust belts: An example from the Mesozoic Yanshan belt, North China Craton[J]. Tectonics,2016,35(9).
[4]李廷栋.中国岩石圈的基本特征[J].地学前缘,2010,17(03):1-13.
[5]索艳慧,李三忠,戴黎明,等.东亚及其大陆边缘新生代构造迁移与盆地演化[J].岩石学报,2012,28(08):2602-2618.
[6]张国伟,郭安林,王岳军,等.中国华南大陆构造与问题[J].中国科学:地球科学,2013,43(10):1553-1582.
[7]YAN D P, ZHOU M F, SONG H L, et al. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)[J]. Tectonophysics,2003,361:239-254.
[8]ZHAO G, CAWOOD P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222–223:13-54.
[9]王孝磊,周金城,陈昕,等.江南造山带的形成与演化[J].矿物岩石地球化学通报,2017. 36: 714-735+696.
[10]舒良树.华南构造演化的基本特征[J].地质通报, 2012.31: 1035-1053.
[11]叶卓,李秋生,张洪双,等.下扬子及其邻区地壳和上地幔结构的接收函数研究及其地质意义[J].地质学报,2020,94(3):707-715.
[12]陈毓川,王登红,徐志刚,等.华南区域成矿和中生代岩浆成矿规律概要[J].大地构造与成矿学,2014,38(02):219-229.
[13]ZHENG Y F, FU B, GONG B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime[J]. Earth-Science Reviews,2003,62(1/2):105-161.
[14]HACKER B R, WEBB L, MCWILLIAMS M, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research. Biogeosciences,2000,105(B6):13339-13364.
[15]MASSONNE H J. Involvement of Crustal Material in Delamination of the Lithosphere after Continent-Continent Collision[J]. International Geology Review,2005,47(8):792-804.
[16]XU Y X, ZHANG S, GRIFFIN W L, et al. How did the Dabie Orogen collapse? Insights from 3-D magnetotelluric imaging of profile data[J]. Journal of Geophysical Research: Solid Earth,2016,121(7):5169-5158.
[17]李曙光,黄方,周红英,等.大别山双河超高压变质岩及北部片麻岩的U-Pb同位素组成——对超高压岩石折返机制的制约[J].中国科学(D辑:地球科学),2001(12):977-984.
[18]李曙光,李秋立,侯振辉,等.大别山超高压变质岩的冷却史及折返机制[J].岩石学报,2005(04):1117-1124.
[19]陈俊,张珣,王辉,等.下扬子地区冶山埃达克质岩的年代学、地球化学特征及其岩石成因[J].华南地质与矿产,2020,36(01):19-32.
[20]资锋,王强,刘新华,等.扬子东部冶山和山里陈埃达克质侵入岩年代学与地球化学:岩石成因和动力学意义[J].矿物学报,2011,31(02):185-200.
[21]周涛发,范裕,王世伟,等.长江中下游成矿带成矿规律和成矿模式[J].岩石学报,2017,33(11):3353-3372.
[22]薛怀民,董树文,马芳.长江中下游庐枞盆地火山岩的SHRIMP锆石U-Pb年龄:对扬子克拉通东部晚中生代岩石圈减薄机制的约束[J].地质学报,2012,86(10):1569-1583.
[23]王强,许继峰,赵振华,等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约[J].中国科学(D辑:地球科学),2003(04):323-334.
[24]LING M X, WANG F Y, DING X, et al. Different origins of adskites from the Dabie Mountains and the Lower Yangtze River Belt,eastern China:geochemical constraints[J]. International Geology Review,2011,53(5/6):727-740.
[25]YANG Y Z, LONG Q, SIEBEL W, et al. Paleo-Pacific Subduction in the Interior of Eastern China: Evidence from Adakitic Rocks in the Edong-Jiurui District[J]. The Journal of Geology: a semi-quarterly magazine of geology and related sciences,2014,122(1):77-97.
[26]王椿镛,张先康,丁志峰,等.大别造山带上部地壳结构的有限差分层析成像[J].地球物理学报,1997(04):495-502.
[27]刘福田,徐佩芬,刘劲松等.大陆深俯冲带的地壳速度结构——东大别造山带深地震宽角反射/折射研究[J].地球物理学报,2003(03):366-372.
[28]杨文采,胡振远,程振炎,等.郯城-涟水综合地球物理剖面[J].地球物理学报,1999(02):206-217.
[29]OUYANG L B, LI H Y, LV Q T, et al. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle–Lower Yangtze River region[J]. Earth and Planetary Science Letters,2014,408.
[30]LI H Y, SONG X D, LV Q T, et al. Seismic Imaging of Lithosphere Structure and Upper Mantle Deformation Beneath East‐Central China and Their Tectonic Implications[J]. Journal of Geophysical Research: Solid Earth,2018,123(4).
[31]SHI D N, LV Q T, XU W Y, et al. Crustal structure beneath the middle–lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization[J]. Tectonophysics,2013,606.
[32]SODOUDI F, YUAN X, LIU Q, et al. Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions[J]. Geophysical Journal International,2016, 166(3):1363-1367.
[33]ZHAO T, ZHU G, LIN SZ, et al. Indentation-induced tearing of a subducting continent: Evidence from the Tan-Lu Fault Zone, East China[J]. Earth-Science Reviews,2016,15214-36.
[34]郑朗荪,高维明,郑传贝.郯庐断裂带的分段与沂沭断裂的活动性[J].中国地震,1988(03):129-135.
[35]张鹏,王良书,钟锴,等. 郯庐断裂带的分段性研究[J]. 地质论评,2007,53(5):586-591.
[36]DENG Y F, FAN W M, ZHANG Z J, et al. Geophysical evidence on segmentation of the Tancheng-Lujiang fault and its implications on the lithosphere evolution in East China[J]. Journal of Asian earth sciences,2013,78(Dec.15):263-276.
[37]朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应[J].地质科学,2004(01):36-49.
[38]ZHU G, LIU G S, NIU M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China[J]. International Journal of Earth Sciences,2009,98,135-155.
[39]郑建平,戴宏坤.西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合[J].中国科学:地球科学,2018,48(04):436-456.
[40]郑永飞,徐峥,赵子福,等.华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J].中国科学:地球科学,2018,48(04):379-414.
[41]朱日祥,徐义刚,朱光,等.华北克拉通破坏[J].中国科学:地球科学,2012,42(08):1135-1159.
[42]HUANG J I, ZHAO D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth,2006,111.
[43]张永谦,徐峣,严加永,等.华南东南部地壳厚度、属性及其与成矿的关系:基于地震接收函数的约束[J].中国地质,2019,46(04):723-736.
[44]徐强,赵俊猛.接收函数方法的研究综述[J].地球物理学进展,2008,23(06):1709-1716.
[45]刘启元,李顺成.接收函数复谱比的最大或然性估计及非线性反演[J].地球物理学 报,1996(04):442-443.
[46]吴庆举,曾融生.用宽频带远震接收函数研究青藏高原的地壳结构[J].地球物理学报,1998(05):669-679.
[47]GURROLA H, BAKER G E, MINSTER J B. Simultaneous time‐domain deconvolution with application to the computation of receiver functions[J]. Geophysical Journal International,1995,120(3):537-543.
[48]吴庆举,田小波,张乃铃,等.计算台站接收函数的最大熵谱反褶积方法[J].地震学报,2003(04):382-389+451.
[49]LIGORRIA J P, AMMON C J. Iterative Deconvolution and Receiver-Function Estimation[J]. Bulletin of the Seismological Society of America,1999,89(5):1395-1400.
[50]HELMBERGER D, WIGGINS R A. Upper mantle structure of midwestern United States[J]. Journal of Geophysical Research,1971,76(14):3229-3245.
[51]陈凌,王旭,王新,等.接收函数界面和波速成像研究进展与展望[J].地球与行星物理论评,2022,53(06):680-701.
[52]YUAN X, Ni J, KIND R, et al. Lithospheric and Upper Mantle Structure of Southern Tibet from a Seismological Passive Source Experiment[J]. Journal of Geophysical Research Atmospheres, 1997,102(B12):325-327.
[53]DUEKER K G, SHEEHAN A F. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track[J]. Journal of Geophysical Research, 1997,102(B4),8313-8327.
[54]ZHU L P. Crustal structure across the San Andreas Fault Southern California from teleseismic converted waves[J]. Earth and Planetary Science Letters,2000,179,183-190.
[55]KIND R, YUAN X, KUMAR P. Seismic receiver functions and the lithosphere–asthenosphere boundary[J]. Tectonophysics,2012,536-537,25-43.
[56]RYBERG T, WEBER M. Receiver function arrays: A reflection seismic approach[J]. Geophysical Journal International,2000,141,1-11.
[57]WILSON D, ASTER R. Seismic imaging of the crust and upper mantle using regularized joint receiver functions, frequency-wave number filtering, and multimode Kirchhoff migration[J]. Journal of Geophysical Research,2005,110,B05305.
[58]ZHU L P, KANAMORI H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research. Biogeosciences, 2000,105(B2):2969-2980.
[59]STEIN S, WYSESSION M. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Oxford,UK:Blackwell Publishing Ltd,2003:97-100.
[60]AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 35, 415-456.
[61]WEAVER R L, LOBKIS O I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies[J]. Physical review letters, 2001, 87(13): 4301.
[62]SHAPIRO N M, CAMPILLO M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7).
[63]SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise[J]. Science, 2005(307):1615-1618.
[64]BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1260.
[65]SNIEDER R. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical Review E, 2004, 69(4):046610.
[66]YAO H J, Van D H R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet[J]. Geophysical Journal International, 2009, (2):1113-1132.
[67]LEVSHIN A L, RITZWOLLER M H. Automated Detection, Extraction, and Measurement of Regional Surface Waves[J]. Pure and Applied Geophysics, 2001, 158(8): 1531-1545.
[68]BARMIN M P, RITZWOLLER M H, LEVSHIN A L, et al. A fast and reliable method for surface wave tomography[J]. Pure and Applied Geophysics, 2001, 158(8): 1351–1375.
[69]RAWLINSON N, SAMBRIDGE M. The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media[J]. Exploration geophysics,2005,36(4):341-350.
[70]杨志高,陈运泰,张雪梅,等.青藏高原东缘及东北缘S波速度结构和径向各向异性[J].地球物理学报,2019,62(12):4554-4570.
[71]李小勇,朱培民,周强,等.三峡库区上地壳横波速度结构[J].地球科学(中国地质大学学报),2014,39(12):1842-1850.
[72]JULIA J, HERRMANN R B, CORREIG A M, et al. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophysical Journal International, 2000,143(1):99-112.
[73]BODIN T, SAMBRIDGE M, TKALCIC H, et al. Transdimensional inversion of receiver functions and surface wave dispersion[J]. Journal of geophysical research. Solid earth: JGR,2012,117(B2).
[74]SHEN W, RITZWOLLER M H, SCHULTE-PELKUM V, et al. Joint inversion of surface wave dispersion and receiver functions: A Bayesianmonte-Carlo approach[J]. Geophysical Journal International,2013,192(2):807-836.
[75]GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika,1995,82(4):711-732.
[76]ZHAO Y Z, GUO Z, WANG Y B. Asthenospheric Flow From East Asia to the Philippine Sea Plate Revealed by Rj-MCMC Inversion of Surface Waves[J]. Geochemistry, Geophysics, Geosystems:23, e2022GC010342.
[77]SHEN W S, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International:2016,206, 954-979.
[78]HERRMANN R B. Computer Programs in Seismology: An Evolving Tool for Instruction and Research[J]. Seismological research letters,2013,84(6):1081-1088.
[79]LUO Y H, XU Y X, YANG Y J. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography[J]. Earth and Planetary Science Letters,2012,313-314,12-22.
[80]LI S G, LI Q L, HOU Z, et al. Cooling history and exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the Dabie mountains, Central China[J]. Acta Petrol. Sin. 21(4),1117–1124(In Chinese with English abstract).
[81]HACKER B R, RATSCHBACHER L, WEBB L E, et al. What brought them up? Exhumation of the Dabie Shan ultrahigh-pressure rocks[J]. Geology,1995,23,743–746.
[82]ZHAO Z, ZHENG Y. Remelting of subducted continental lithosphere: petrogenesis of Mesozoic magmatic rocks in the Dabie–Sulu orogenic belt[J]. Sci.China Ser.D, Earth Sci, 2009,52(9),1295–1318.
[83]朱光,刘国生.皖南江南陆内造山带的基本特征与中生代造山过程[J].大地构造与成矿学,2000,24(2):103-111.
修改评论