[1] BONDYOPADHYAY P K. Moore’s law governs the silicon revolution[J]. Proceedings of theIEEE, 1998, 86(1): 78-81.
[2] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J].Nature materials, 2011, 10(8): 569-581.
[3] SADEGHI M M, PETTES M T, SHI L. Thermal transport in graphene[J]. Solid State Communications, 2012, 152(15): 1321-1330.
[4] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash Method of Determining ThermalDiffusivity, Heat Capacity, and Thermal Conductivity[J]. Journal of Applied Physics, 1961, 32(9): 1679-1684.
[5] BLUMM J, LINDEMANN A, MIN S. Thermal characterization of liquids and pastes using theflash technique[J]. Thermochimica acta, 2007, 455(1-2): 26-29.
[6] ÅNGSTRöM A. Neue Methode, das Wärmeleitungsvermögen der Körper zu bestimmen[J].Ann. Phys. Chem., 1861, 114.
[7] 陈桂生, 廖艳, 曾亚光, 等. 材料热物性测试的研究现状及发展需求[J]. 中国测试, 2010, 36(5): 5-8.
[8] GRIMVALL G. Thermophysical properties of materials[M]. Elsevier, 1999.
[9] 唐一科, 许静, 韦立凡. 纳米材料制备方法的研究现状与发展趋势[J]. 重庆大学学报, 2005,28(1): 5-10.
[10] XIAN Y, ZHANG P, ZHAI S, et al. Experimental characterization methods for thermal contactresistance: A review[J]. Applied Thermal Engineering, 2018, 130: 1530-1548.
[11] DICKINSON H, VAN DUSEN M. The testing of thermal insulators[J]. ASRE J, 1916, 3(2):5-25.
[12] VAN DUSEN M. The thermal conductivity of heat insulators[J]. J. Am. Soc. Heat. Vent. Eng,1920, 26: 625-656.
[13] TYE R. Thermal conductivity[M]. Springer, 1964.
[14] HAHN M, ROBINSON H, FLYNN D, et al. Heat Transmission Measurements in ThermalInsulations[J]. STP, 1974, 544: 167-192.
[15] ZHANG X, FUJIWARA S, FUJII M. Measurements of thermal conductivity and electricalconductivity of a single carbon fiber[J]. International Journal of Thermophysics, 2000, 21:965-980.
[16] FUJII M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbonnanotube[J]. Physical review letters, 2005, 95(6): 065502.
[17] WU S, LI Q Y, IKUTA T, et al. Thermal conductivity measurement of an individual millimeterlong expanded graphite ribbon using a variable-length T-type method[J]. International Journalof Heat and Mass Transfer, 2021, 171: 121115.57参考文献
[18] NARASAKI M, LI Q Y, IKUTA T, et al. Modification of thermal transport in an individualcarbon nanofiber by focused ion beam irradiation[J]. Carbon, 2019, 153: 539-544.
[19] LI Q Y, FENG T, OKITA W, et al. Enhanced thermoelectric performance of as-grown suspendedgraphene nanoribbons[J]. ACS nano, 2019, 13(8): 9182-9189.
[20] YAN R, SIMPSON J R, BERTOLAZZI S, et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy[J]. ACS nano, 2014,8(1): 986-993.
[21] ZHANG P, ZENG J, ZHAI S, et al. Thermal properties of graphene filled polymer composite thermal interface materials[J]. Macromolecular Materials and Engineering, 2017, 302(9):1700068.
[22] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the propertiesof graphene[J]. Nature nanotechnology, 2013, 8(4): 235-246.
[23] GHOSH D, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity ofgraphene: Prospects for thermal management applications in nanoelectronic circuits[J]. AppliedPhysics Letters, 2008, 92(15): 151911.
[24] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layergraphene[J]. Nano letters, 2008, 8(3): 902-907.
[25] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical review letters, 2001, 87(21): 215502.
[26] SHI L, LI D, YU C, et al. Measuring thermal and thermoelectric properties of one-dimensionalnanostructures using a microfabricated device[J]. J. Heat transfer, 2003, 125(5): 881-888.
[27] YANG L, ZHAO Y, ZHANG Q, et al. Thermal transport through fishbone silicon nanoribbons:unraveling the role of Sharvin resistance[J]. Nanoscale, 2019, 11(17): 8196-8203.
[28] YANG L, ZHANG Q, WEI Z, et al. Kink as a new degree of freedom to tune the thermalconductivity of Si nanoribbons[J]. Journal of Applied Physics, 2019, 126(15): 155103.
[29] WINGERT M C, CHEN Z C, KWON S, et al. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge[J]. Review of ScientificInstruments, 2012, 83(2): 024901.
[30] WEATHERS A, BI K, PETTES M T, et al. Reexamination of thermal transport measurementsof a low-thermal conductance nanowire with a suspended micro-device[J]. Review of ScientificInstruments, 2013, 84(8): 084903.
[31] ZHENG J, WINGERT M C, DECHAUMPHAI E, et al. Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport[J]. Review of Scientific Instruments, 2013, 84(11):114901.
[32] BOUKAI A I, BUNIMOVICH Y, TAHIR-KHELI J, et al. Silicon nanowires as efficient thermoelectric materials[J]. nature, 2008, 451(7175): 168-171.
[33] PETTES M T, JO I, YAO Z, et al. Influence of polymeric residue on the thermal conductivityof suspended bilayer graphene[J]. Nano letters, 2011, 11(3): 1195-1200.
[34] LIU D, XIE R, YANG N, et al. Profiling nanowire thermal resistance with a spatial resolutionof nanometers[J]. Nano letters, 2014, 14(2): 806-812.58参考文献
[35] AIYITI A, HU S, WANG C, et al. Thermal conductivity of suspended few-layer MoS 2[J].Nanoscale, 2018, 10(6): 2727-2734.
[36] AIYITI A, BAI X, WU J, et al. Measuring the thermal conductivity and interfacial thermalresistance of suspended MoS2 using electron beam self-heating technique[J]. Science bulletin,2018, 63(7): 452-458.
[37] WANG Q, CHEN Y, AIYITI A, et al. Scaling behavior of thermal conductivity in singlecrystalline 𝛼-Fe2O3 nanowires[J]. Chinese Physics B, 2020, 29(8): 084402.
[38] WANG Q, LIANG X, LIU B, et al. Thermal conductivity of V 2 O 5 nanowires and their contactthermal conductance[J]. Nanoscale, 2020, 12(2): 1138-1143.
[39] FU Y, HANSSON J, LIU Y, et al. Graphene related materials for thermal management[J]. 2DMaterials, 2020, 7(1): 012001.
[40] CASALEGNO V, VAVASSORI P, VALLE M, et al. Measurement of thermal properties of aceramic/metal joint by laser flash method[J]. Journal of Nuclear Materials, 2010, 407(2): 83-87.
[41] CEZAIRLIYAN A, RIGHINI F. Simultaneous measurements of heat capacity, electrical resistivity and hemispherical total emittance by a pulse heating technique: zirconium, 1500 to 2100K[J]. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry,1974, 78(4): 509.
[42] DOS SANTOS W N, MUMMERY P, WALLWORK A. Thermal diffusivity of polymers by thelaser flash technique[J]. Polymer testing, 2005, 24(5): 628-634.
[43] CHIGUMA J, JOHNSON E, SHAH P, et al. Thermal diffusivity and thermal conductivity ofepoxy-based nanocomposites by the laser flash and differential scanning calorimetry techniques[M]. Scientific Research Publishing, 2013.
[44] SALMON D R, TYE R P. An inter-comparison of a steady-state and transient methods for measuring the thermal conductivity of thin specimens of masonry materials[J]. Journal of BuildingPhysics, 2011, 34(3): 247-261.
[45] CAHILL D G, POHL R O. Thermal conductivity of amorphous solids above the plateau[J].Physical review B, 1987, 35(8): 4067.
[46] CAHILL D G, POHL R O. Thermal properties of a tetrahedrally bonded amorphous solid:CdGeAs 2[J]. Physical Review B, 1988, 37(15): 8773.
[47] CAHILL D G. Thermal conductivity measurement from 30 to 750 K: the 3𝜔 method[J]. Reviewof scientific instruments, 1990, 61(2): 802-808.
[48] DAMES C. Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods[J]. Annual Review of Heat Transfer, 2013, 16.
[49] LEE S M, CAHILL D G. Heat transport in thin dielectric films[J]. Journal of applied physics,1997, 81(6): 2590-2595.
[50] CAHILL D G, BULLEN A, SEUNG-MIN L. Interface thermal conductance and the thermalconductivity of multilayer thin films[J]. High Temperatures High Pressures, 2000, 32(2): 135-142.
[51] JIN Y, YADAV A, SUN K, et al. Thermal boundary resistance of copper phthalocyanine-metalinterface[J]. Applied physics letters, 2011, 98(9): 48.59参考文献
[52] VILLAROMAN D J, DAI W, WANG X, et al. Characterization of Thermal ResistancesAcross CVD-Grown Graphene/Al2O3 and Graphene/Metal Interfaces Using Differential 3-Omega Technique[C]//International Conference on Micro/Nanoscale Heat Transfer: volume49651. American Society of Mechanical Engineers, 2016: V001T03A005.
[53] ERFANTALAB S, PARISH G, KEATING A. Determination of thermal conductivity, thermal diffusivity and specific heat capacity of porous silicon thin films using the 3𝜔 method[J].International Journal of Heat and Mass Transfer, 2022, 184: 122346.
[54] MORI R, NORIMASA O, KUROKAWA T, et al. Measurement of thermal boundary resistanceand thermal conductivity of single-crystalline Bi2Te3 nanoplate films by differential 3𝜔 method[J]. Applied Physics Express, 2020, 13(3): 035501.
[55] SINGHAL D, PATERSON J, TAINOFF D, et al. Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3 𝜔 method[J]. Review of Scientific Instruments,2018, 89(8): 084902.
[56] QIU L, OUYANG Y, FENG Y, et al. Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3 𝜔 method[J]. Review of ScientificInstruments, 2018, 89(9): 096112.
[57] FILATOVA-ZALEWSKA A, LITWICKI Z, SUSKI T, et al. Thermal conductivity of thin filmsof gallium nitride, doped with aluminium, measured with 3𝜔 method[J]. Solid State Sciences,2020, 101: 106105.
[58] ROCCI M, DEMONTIS V, PRETE D, et al. Suspended InAs Nanowire-Based Devices forThermal Conductivity Measurement Using the 3 𝜔 Method[J]. Journal of Materials Engineeringand Performance, 2018, 27: 6299-6305.
[59] RODRIGO O, BERTRAND G. Radial thermal conductivity of a PAN type carbon fiber usingthe 3 omega method[J]. International Journal of Thermal Sciences, 2022, 172: 107321.
[60] TONG T, LI Y, WU C, et al. Thermal conductivity of single silk fibroin fibers measured fromthe 3𝜔 method[J]. International Journal of Thermal Sciences, 2023, 185: 108057.
[61] PADDOCK C A, EESLEY G L. Transient thermoreflectance from thin metal films[J]. Journalof applied physics, 1986, 60(1): 285-290.
[62] SCHMIDT A J, CHEAITO R, CHIESA M. A frequency-domain thermoreflectance methodfor the characterization of thermal properties[J]. Review of scientific instruments, 2009, 80(9):094901.
[63] JOHANSSON P, HAGENTOFT C E, ADL-ZARRABI B. Measurements of thermal propertiesof vacuum insulation panels by using transient plane source sensor[C]//Proceedings of the 10thInternational Vacuum Insulation Symposium, Ottawa, Canada, 15-16 September, 2011. 2011.
[64] MANN K, BAYER A, GLOGER J, et al. Photothermal measurement of absorption and wavefront deformations in fused silica[C]//Laser-Induced Damage in Optical Materials: 2008: volume 7132. SPIE, 2008: 434-444.
[65] PARKER W, JENKINS R, BUTLER C, et al. Flash method of determining thermal diffusivity,heat capacity, and thermal conductivity[J]. Journal of applied physics, 1961, 32(9): 1679-1684.60参考文献
[66] WAGONER G, SKOKOVA K, LEVAN C. Angstrom’s method for thermal property measurements of carbon fibers and composites[C]//The American Carbon Society, CARBON Conference. 1999.
[67] PRASAD A, AMBIRAJAN A. Criteria for accurate measurement of thermal diffusivity ofsolids using the Angstrom method[J]. International Journal of Thermal Sciences, 2018, 134:216-223.
[68] ANGSTRÖM A. XVII. New method of determining the thermal conductibility of bodies[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1863, 25(166): 130-142.
[69] JANG D, LEE D S, LEE A, et al. Opto-thermal technique for measuring thermal conductivityof polyacrylonitrile based carbon fibers[J]. Journal of Industrial and Engineering Chemistry,2019, 78: 137-142.
[70] BARCZEWSKI M, SAŁASIŃSKA K, KLOZIŃSKI A, et al. Application of the basalt powderas a filler for polypropylene composites with improved thermo-mechanical stability and reducedflammability[J]. Polymer Engineering & Science, 2019, 59(s2): E71-E79.
[71] WANG H, GUO L, WANG D, et al. Measuring in-plane thermal conductivity of polymers usinga membrane-based modified Ångström method[J]. International Journal of Thermal Sciences,2022, 179: 107701.
[72] HU Y, FISHER T S. Accurate Thermal Diffusivity Measurements Using a Modified Ångström’sMethod With Bayesian Statistics[J]. Journal of Heat Transfer, 2020, 142(7).
[73] TOMANEK L B, STUTTS D S. Thermal conductivity estimation via a multi-point harmonicone-dimensional convection model[J]. International Journal of Heat and Mass Transfer, 2022,186: 122467.
[74] 陈昭栋. 平面热源法瞬态测量材料热物性的研究[J]. 电子科技大学学报, 2004, 33(5): 551-554.
[75] 孟飞燕. 保温隔热材料热扩散率和热导率测试技术的研究[D]. 南京理工大学, 2010.
[76] ZHU Y. Heat-loss modified Angstrom method for simultaneous measurements of thermal diffusivity and conductivity of graphite sheets: The origins of heat loss in Angstrom method[J].International Journal of Heat and Mass Transfer, 2016, 92: 784-791.
[77] SINGH S K, YADAV M K, KHANDEKAR S. Measurement issues associated with surfacemounting of thermopile heat flux sensors[J]. Applied Thermal Engineering, 2017, 114: 1105-1113.
[78] GUO W, CHEN A, LV Y, et al. Microscale heat-flux meter for low-dimensional thermal measurement and its application in heat-loss modified Angstrom method[J]. International Journalof Heat and Mass Transfer, 2021, 169: 120938.
[79] 朱玉祥. 改进型瞬态平面热源法的实验研究[D]. 青岛: 青岛理工大学, 2015.
[80] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[81] TANG Z, JIA S, SHI S, et al. Coaxial carbon nanotube/polymer fibers as wearable piezoresistivesensors[J]. Sensors and Actuators A: Physical, 2018, 284: 85-95.61参考文献
[82] CHEN H, YUE Z, REN D, et al. Thermal conductivity during phase transitions[J]. AdvancedMaterials, 2019, 31(6): 1806518.
[83] BROWN M E, BROWN R E. Kinetic aspects of the thermal stability of ionic solids[J]. Thermochimica acta, 2000, 357: 133-140.
修改评论