中文版 | English
题名

两种 Angstrom 法的开发及其在低维热物性测量中的应用

其他题名
DEVELOPMENT OF TWO ANGSTROM METHODS AND THEIR APPLICATION IN LOW DIMENSIONAL THERMOPHYSICAL PROPERTY MEASUREMENT
姓名
姓名拼音
YANG Jingxi
学号
12132021
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
祝渊
导师单位
深港微电子学院
论文答辩日期
2023-05-20
论文提交日期
2023-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着摩尔定律不断逼近极限,电子产品对散热的要求愈加严苛,亟需开发一种

新型高分子复合材料来满足散热的需求。为此将不得不大量使用高导热的低维材 料来掺杂以提升复合材料的热导率,但目前成熟的热物性测试方法主要基于三维结 构体系,而针对低维材料热物性测试的方法还不够完善。为此,本文基于 Angstrom 法搭建了一维材料温度场测试装置与二维多层材料热物性测试平台,成功实现了 低维材料的热物性测试,并通过 Ansys 仿真对测试结果进行了模拟验证。

具体的 研究如下:

首先,本文通过对传统的 Angstrom 法热物性测试装置进行升级改造,针对一 维结构的纤维进行温度场研究。随后,利用改造好的 Angstrom 温度场测试装置来测试实验所设计的温度场变化规律,验证了相变纤维在温度场变化下相变发生前后的热物性测试结果,进而通过对比相变纤维与非相变纤维在测试结果上的差异分析了引起其变化的机理。

其次,针对二维多层材料的热物性测试方面,本文基于拓展的 Angstrom 法搭 建了二维多层材料的测试平台,成功解决了传统 Angstrom 法对二维多层材料的测试局限性。通过比对凝胶-铜与凝胶-石墨烯的多层材料体系测试结果的分析,总结了不同的多层材料之间的热扩散系数变化规律,为后续拓展 Angstrom 法在二维多层材料方面的工程应用打好了基础。后续为了探究层级间流动的热流流动方向与变化对测试过程进行仿真。先确定了对仿真至关重要的初始边界条件自然对流系数,并以此对整个二维测试平台的测试过程进行仿真分析。最终通过仿真解决了实际实验中难以通过测量获得的层级间热流传递数据的难题。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] BONDYOPADHYAY P K. Moore’s law governs the silicon revolution[J]. Proceedings of theIEEE, 1998, 86(1): 78-81.
[2] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J].Nature materials, 2011, 10(8): 569-581.
[3] SADEGHI M M, PETTES M T, SHI L. Thermal transport in graphene[J]. Solid State Commu￾nications, 2012, 152(15): 1321-1330.
[4] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash Method of Determining ThermalDiffusivity, Heat Capacity, and Thermal Conductivity[J]. Journal of Applied Physics, 1961, 32(9): 1679-1684.
[5] BLUMM J, LINDEMANN A, MIN S. Thermal characterization of liquids and pastes using theflash technique[J]. Thermochimica acta, 2007, 455(1-2): 26-29.
[6] ÅNGSTRöM A. Neue Methode, das Wärmeleitungsvermögen der Körper zu bestimmen[J].Ann. Phys. Chem., 1861, 114.
[7] 陈桂生, 廖艳, 曾亚光, 等. 材料热物性测试的研究现状及发展需求[J]. 中国测试, 2010, 36(5): 5-8.
[8] GRIMVALL G. Thermophysical properties of materials[M]. Elsevier, 1999.
[9] 唐一科, 许静, 韦立凡. 纳米材料制备方法的研究现状与发展趋势[J]. 重庆大学学报, 2005,28(1): 5-10.
[10] XIAN Y, ZHANG P, ZHAI S, et al. Experimental characterization methods for thermal contactresistance: A review[J]. Applied Thermal Engineering, 2018, 130: 1530-1548.
[11] DICKINSON H, VAN DUSEN M. The testing of thermal insulators[J]. ASRE J, 1916, 3(2):5-25.
[12] VAN DUSEN M. The thermal conductivity of heat insulators[J]. J. Am. Soc. Heat. Vent. Eng,1920, 26: 625-656.
[13] TYE R. Thermal conductivity[M]. Springer, 1964.
[14] HAHN M, ROBINSON H, FLYNN D, et al. Heat Transmission Measurements in ThermalInsulations[J]. STP, 1974, 544: 167-192.
[15] ZHANG X, FUJIWARA S, FUJII M. Measurements of thermal conductivity and electricalconductivity of a single carbon fiber[J]. International Journal of Thermophysics, 2000, 21:965-980.
[16] FUJII M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbonnanotube[J]. Physical review letters, 2005, 95(6): 065502.
[17] WU S, LI Q Y, IKUTA T, et al. Thermal conductivity measurement of an individual millimeter￾long expanded graphite ribbon using a variable-length T-type method[J]. International Journalof Heat and Mass Transfer, 2021, 171: 121115.57参考文献
[18] NARASAKI M, LI Q Y, IKUTA T, et al. Modification of thermal transport in an individualcarbon nanofiber by focused ion beam irradiation[J]. Carbon, 2019, 153: 539-544.
[19] LI Q Y, FENG T, OKITA W, et al. Enhanced thermoelectric performance of as-grown suspendedgraphene nanoribbons[J]. ACS nano, 2019, 13(8): 9182-9189.
[20] YAN R, SIMPSON J R, BERTOLAZZI S, et al. Thermal conductivity of monolayer molybde￾num disulfide obtained from temperature-dependent Raman spectroscopy[J]. ACS nano, 2014,8(1): 986-993.
[21] ZHANG P, ZENG J, ZHAI S, et al. Thermal properties of graphene filled polymer compos￾ite thermal interface materials[J]. Macromolecular Materials and Engineering, 2017, 302(9):1700068.
[22] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the propertiesof graphene[J]. Nature nanotechnology, 2013, 8(4): 235-246.
[23] GHOSH D, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity ofgraphene: Prospects for thermal management applications in nanoelectronic circuits[J]. AppliedPhysics Letters, 2008, 92(15): 151911.
[24] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layergraphene[J]. Nano letters, 2008, 8(3): 902-907.
[25] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multi￾walled nanotubes[J]. Physical review letters, 2001, 87(21): 215502.
[26] SHI L, LI D, YU C, et al. Measuring thermal and thermoelectric properties of one-dimensionalnanostructures using a microfabricated device[J]. J. Heat transfer, 2003, 125(5): 881-888.
[27] YANG L, ZHAO Y, ZHANG Q, et al. Thermal transport through fishbone silicon nanoribbons:unraveling the role of Sharvin resistance[J]. Nanoscale, 2019, 11(17): 8196-8203.
[28] YANG L, ZHANG Q, WEI Z, et al. Kink as a new degree of freedom to tune the thermalconductivity of Si nanoribbons[J]. Journal of Applied Physics, 2019, 126(15): 155103.
[29] WINGERT M C, CHEN Z C, KWON S, et al. Ultra-sensitive thermal conductance measure￾ment of one-dimensional nanostructures enhanced by differential bridge[J]. Review of ScientificInstruments, 2012, 83(2): 024901.
[30] WEATHERS A, BI K, PETTES M T, et al. Reexamination of thermal transport measurementsof a low-thermal conductance nanowire with a suspended micro-device[J]. Review of ScientificInstruments, 2013, 84(8): 084903.
[31] ZHENG J, WINGERT M C, DECHAUMPHAI E, et al. Sub-picowatt/kelvin resistive thermom￾etry for probing nanoscale thermal transport[J]. Review of Scientific Instruments, 2013, 84(11):114901.
[32] BOUKAI A I, BUNIMOVICH Y, TAHIR-KHELI J, et al. Silicon nanowires as efficient ther￾moelectric materials[J]. nature, 2008, 451(7175): 168-171.
[33] PETTES M T, JO I, YAO Z, et al. Influence of polymeric residue on the thermal conductivityof suspended bilayer graphene[J]. Nano letters, 2011, 11(3): 1195-1200.
[34] LIU D, XIE R, YANG N, et al. Profiling nanowire thermal resistance with a spatial resolutionof nanometers[J]. Nano letters, 2014, 14(2): 806-812.58参考文献
[35] AIYITI A, HU S, WANG C, et al. Thermal conductivity of suspended few-layer MoS 2[J].Nanoscale, 2018, 10(6): 2727-2734.
[36] AIYITI A, BAI X, WU J, et al. Measuring the thermal conductivity and interfacial thermalresistance of suspended MoS2 using electron beam self-heating technique[J]. Science bulletin,2018, 63(7): 452-458.
[37] WANG Q, CHEN Y, AIYITI A, et al. Scaling behavior of thermal conductivity in single￾crystalline 𝛼-Fe2O3 nanowires[J]. Chinese Physics B, 2020, 29(8): 084402.
[38] WANG Q, LIANG X, LIU B, et al. Thermal conductivity of V 2 O 5 nanowires and their contactthermal conductance[J]. Nanoscale, 2020, 12(2): 1138-1143.
[39] FU Y, HANSSON J, LIU Y, et al. Graphene related materials for thermal management[J]. 2DMaterials, 2020, 7(1): 012001.
[40] CASALEGNO V, VAVASSORI P, VALLE M, et al. Measurement of thermal properties of aceramic/metal joint by laser flash method[J]. Journal of Nuclear Materials, 2010, 407(2): 83-87.
[41] CEZAIRLIYAN A, RIGHINI F. Simultaneous measurements of heat capacity, electrical resis￾tivity and hemispherical total emittance by a pulse heating technique: zirconium, 1500 to 2100K[J]. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry,1974, 78(4): 509.
[42] DOS SANTOS W N, MUMMERY P, WALLWORK A. Thermal diffusivity of polymers by thelaser flash technique[J]. Polymer testing, 2005, 24(5): 628-634.
[43] CHIGUMA J, JOHNSON E, SHAH P, et al. Thermal diffusivity and thermal conductivity ofepoxy-based nanocomposites by the laser flash and differential scanning calorimetry techniques[M]. Scientific Research Publishing, 2013.
[44] SALMON D R, TYE R P. An inter-comparison of a steady-state and transient methods for mea￾suring the thermal conductivity of thin specimens of masonry materials[J]. Journal of BuildingPhysics, 2011, 34(3): 247-261.
[45] CAHILL D G, POHL R O. Thermal conductivity of amorphous solids above the plateau[J].Physical review B, 1987, 35(8): 4067.
[46] CAHILL D G, POHL R O. Thermal properties of a tetrahedrally bonded amorphous solid:CdGeAs 2[J]. Physical Review B, 1988, 37(15): 8773.
[47] CAHILL D G. Thermal conductivity measurement from 30 to 750 K: the 3𝜔 method[J]. Reviewof scientific instruments, 1990, 61(2): 802-808.
[48] DAMES C. Measuring the thermal conductivity of thin films: 3 omega and related electrother￾mal methods[J]. Annual Review of Heat Transfer, 2013, 16.
[49] LEE S M, CAHILL D G. Heat transport in thin dielectric films[J]. Journal of applied physics,1997, 81(6): 2590-2595.
[50] CAHILL D G, BULLEN A, SEUNG-MIN L. Interface thermal conductance and the thermalconductivity of multilayer thin films[J]. High Temperatures High Pressures, 2000, 32(2): 135-142.
[51] JIN Y, YADAV A, SUN K, et al. Thermal boundary resistance of copper phthalocyanine-metalinterface[J]. Applied physics letters, 2011, 98(9): 48.59参考文献
[52] VILLAROMAN D J, DAI W, WANG X, et al. Characterization of Thermal ResistancesAcross CVD-Grown Graphene/Al2O3 and Graphene/Metal Interfaces Using Differential 3-Omega Technique[C]//International Conference on Micro/Nanoscale Heat Transfer: volume49651. American Society of Mechanical Engineers, 2016: V001T03A005.
[53] ERFANTALAB S, PARISH G, KEATING A. Determination of thermal conductivity, ther￾mal diffusivity and specific heat capacity of porous silicon thin films using the 3𝜔 method[J].International Journal of Heat and Mass Transfer, 2022, 184: 122346.
[54] MORI R, NORIMASA O, KUROKAWA T, et al. Measurement of thermal boundary resistanceand thermal conductivity of single-crystalline Bi2Te3 nanoplate films by differential 3𝜔 method[J]. Applied Physics Express, 2020, 13(3): 035501.
[55] SINGHAL D, PATERSON J, TAINOFF D, et al. Measurement of anisotropic thermal conduc￾tivity of a dense forest of nanowires using the 3 𝜔 method[J]. Review of Scientific Instruments,2018, 89(8): 084902.
[56] QIU L, OUYANG Y, FENG Y, et al. Note: Thermal conductivity measurement of individ￾ual porous polyimide fibers using a modified wire-shape 3 𝜔 method[J]. Review of ScientificInstruments, 2018, 89(9): 096112.
[57] FILATOVA-ZALEWSKA A, LITWICKI Z, SUSKI T, et al. Thermal conductivity of thin filmsof gallium nitride, doped with aluminium, measured with 3𝜔 method[J]. Solid State Sciences,2020, 101: 106105.
[58] ROCCI M, DEMONTIS V, PRETE D, et al. Suspended InAs Nanowire-Based Devices forThermal Conductivity Measurement Using the 3 𝜔 Method[J]. Journal of Materials Engineeringand Performance, 2018, 27: 6299-6305.
[59] RODRIGO O, BERTRAND G. Radial thermal conductivity of a PAN type carbon fiber usingthe 3 omega method[J]. International Journal of Thermal Sciences, 2022, 172: 107321.
[60] TONG T, LI Y, WU C, et al. Thermal conductivity of single silk fibroin fibers measured fromthe 3𝜔 method[J]. International Journal of Thermal Sciences, 2023, 185: 108057.
[61] PADDOCK C A, EESLEY G L. Transient thermoreflectance from thin metal films[J]. Journalof applied physics, 1986, 60(1): 285-290.
[62] SCHMIDT A J, CHEAITO R, CHIESA M. A frequency-domain thermoreflectance methodfor the characterization of thermal properties[J]. Review of scientific instruments, 2009, 80(9):094901.
[63] JOHANSSON P, HAGENTOFT C E, ADL-ZARRABI B. Measurements of thermal propertiesof vacuum insulation panels by using transient plane source sensor[C]//Proceedings of the 10thInternational Vacuum Insulation Symposium, Ottawa, Canada, 15-16 September, 2011. 2011.
[64] MANN K, BAYER A, GLOGER J, et al. Photothermal measurement of absorption and wave￾front deformations in fused silica[C]//Laser-Induced Damage in Optical Materials: 2008: vol￾ume 7132. SPIE, 2008: 434-444.
[65] PARKER W, JENKINS R, BUTLER C, et al. Flash method of determining thermal diffusivity,heat capacity, and thermal conductivity[J]. Journal of applied physics, 1961, 32(9): 1679-1684.60参考文献
[66] WAGONER G, SKOKOVA K, LEVAN C. Angstrom’s method for thermal property measure￾ments of carbon fibers and composites[C]//The American Carbon Society, CARBON Confer￾ence. 1999.
[67] PRASAD A, AMBIRAJAN A. Criteria for accurate measurement of thermal diffusivity ofsolids using the Angstrom method[J]. International Journal of Thermal Sciences, 2018, 134:216-223.
[68] ANGSTRÖM A. XVII. New method of determining the thermal conductibility of bodies[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1863, 25(166): 130-142.
[69] JANG D, LEE D S, LEE A, et al. Opto-thermal technique for measuring thermal conductivityof polyacrylonitrile based carbon fibers[J]. Journal of Industrial and Engineering Chemistry,2019, 78: 137-142.
[70] BARCZEWSKI M, SAŁASIŃSKA K, KLOZIŃSKI A, et al. Application of the basalt powderas a filler for polypropylene composites with improved thermo-mechanical stability and reducedflammability[J]. Polymer Engineering & Science, 2019, 59(s2): E71-E79.
[71] WANG H, GUO L, WANG D, et al. Measuring in-plane thermal conductivity of polymers usinga membrane-based modified Ångström method[J]. International Journal of Thermal Sciences,2022, 179: 107701.
[72] HU Y, FISHER T S. Accurate Thermal Diffusivity Measurements Using a Modified Ångström’sMethod With Bayesian Statistics[J]. Journal of Heat Transfer, 2020, 142(7).
[73] TOMANEK L B, STUTTS D S. Thermal conductivity estimation via a multi-point harmonicone-dimensional convection model[J]. International Journal of Heat and Mass Transfer, 2022,186: 122467.
[74] 陈昭栋. 平面热源法瞬态测量材料热物性的研究[J]. 电子科技大学学报, 2004, 33(5): 551-554.
[75] 孟飞燕. 保温隔热材料热扩散率和热导率测试技术的研究[D]. 南京理工大学, 2010.
[76] ZHU Y. Heat-loss modified Angstrom method for simultaneous measurements of thermal dif￾fusivity and conductivity of graphite sheets: The origins of heat loss in Angstrom method[J].International Journal of Heat and Mass Transfer, 2016, 92: 784-791.
[77] SINGH S K, YADAV M K, KHANDEKAR S. Measurement issues associated with surfacemounting of thermopile heat flux sensors[J]. Applied Thermal Engineering, 2017, 114: 1105-1113.
[78] GUO W, CHEN A, LV Y, et al. Microscale heat-flux meter for low-dimensional thermal mea￾surement and its application in heat-loss modified Angstrom method[J]. International Journalof Heat and Mass Transfer, 2021, 169: 120938.
[79] 朱玉祥. 改进型瞬态平面热源法的实验研究[D]. 青岛: 青岛理工大学, 2015.
[80] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[81] TANG Z, JIA S, SHI S, et al. Coaxial carbon nanotube/polymer fibers as wearable piezoresistivesensors[J]. Sensors and Actuators A: Physical, 2018, 284: 85-95.61参考文献
[82] CHEN H, YUE Z, REN D, et al. Thermal conductivity during phase transitions[J]. AdvancedMaterials, 2019, 31(6): 1806518.
[83] BROWN M E, BROWN R E. Kinetic aspects of the thermal stability of ionic solids[J]. Thermochimica acta, 2000, 357: 133-140.

所在学位评定分委会
材料科学与工程
国内图书分类号
TK315
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545054
专题创新创业学院
推荐引用方式
GB/T 7714
杨景西. 两种 Angstrom 法的开发及其在低维热物性测量中的应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132021-杨景西-创新创业学院.(15177KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨景西]的文章
百度学术
百度学术中相似的文章
[杨景西]的文章
必应学术
必应学术中相似的文章
[杨景西]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。