中文版 | English
题名

海底非传统地震信号:仪器观测、数据处理及定位溯源

其他题名
UNCONVENTIONAL SEISMIC SIGNALS OF OCEAN BOTTOM: INSTRUMENTAL OBSERVATION, DATA PROCESSING AND LOCATION TRACEABILITY
姓名
姓名拼音
WANG Yizhi
学号
11949045
学位类型
博士
学位专业
085272 先进制造
学科门类/专业学位类别
0852 工程博士
导师
杨挺
导师单位
海洋科学与工程系
论文答辩日期
2023-04-24
论文提交日期
2023-07-04
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

地震仪研制的初衷是为了进行地震事件的观测,开展地震预警、地下结构成像等方面的研究。然而,在没有地震信号发生的时候,地震仪仍记录大量高于地震仪本体噪音的具有明显能量特征的信号,包括“地嗡鸣”信号,单频微地动(SFM),双频微地动(DFM)以及短时震动事件(SDE),统称为非传统地震信号。这些非传统地震信号主要是由海洋环境震动波场引起的,在海洋地球物理及海洋探测方面的研究中发挥着重要作用。

由于海洋环境的影响,考虑到观测系统供电、压力、腐蚀等因素,对海洋的观测和研究是及其困难的,尤其是远洋深海的长时间海底观测,其任何海底观测数据都是难得可贵的。宽频带海底地震仪(OBS)是近些年才发展起来的,长期放置在海底进行原位震动观测的设备,它不仅可以记录地震事件,还可以记录来自海底的地质活动过程引起的震动或者水体中的声发射源引起的震动。挖掘OBS长期观测数据中的非传统地震信号及其处理方法,对拓展来之不易的长期在海底进行原位采集的OBS观测数据应用范围,提高数据的使用效率具有科学价值和实践意义。基于此,本文使用OBS在南海西北次海盆7个月的观测数据,拾取了其记录非传统地震信号,并对其进行特征、形成与传播机制、定位方法和溯源的分析。利用这些非传统地震信号对南海的环境震动波场、水下移动目标和海底碳排放的时空分布进行了研究,有效的提高数据使用效率,促进对南海西北次海盆的震动波场认识,进而探索更多的海洋奥秘。

首先,通过自主研制的OBS在南海西北次海盆的观测数据与OBS传感器单元在陆地基准地震台(上海佘山地震台)上的观测数据进行对比分析,明确了OBS记录的非传统地震信号主要来自南海海洋环境与海底地质结构的作用过程。与陆地台站不同,南海海底OBS观测的DFM信号频谱呈现单峰特征,且向高频端偏移(周期为1-5s),结合模拟分析,证明了大洋海底是DFM信号的主要源区。此外,南海海底DFM信号能量既受到南海季节变化等长周期因素影响,又受局部的极端海况所控制,如台风路径上的异常波高,造成了南海地区的DFM信号源区空间和时间上的非均匀性特征。

其次,针对传统地震拾取算法(STA/LTA)在OBS记录的短时震动信号(SDE)拾取过程中存在的漏拾取问题,提出了基于视周期变化检测(APCD)的SDE拾取算法。使用该算法对2019年10月-2020年5月在南海西北次海盆布放的OBS数据进行了SDE信号拾取,其中单个台站达到39万余条。在拾取结果中首次发现了OBS记录的连续发生且有规律的连续短时震动事件(C-SDE)。从时间分布分析,C-SDE信号源一段时间内处于活动状态,持续几个小时或者几天,部分时间处于静默状态。该信号在相距约52 Km的三个台站上均有记录。提出了一种基于OBS的C-SDE信号的波速估计方法。使用格点搜索定位法对2020年5月3日-6日发生的三次C-SDE进行定位,该信号源是靠近南海西北次海盆东部的移动源,三次C-SDE信号源的移动方向均是从北向南,移动速度约26km/h。根据其OBS记录的C-SDE信号特征及定位结果表明,OBS可以用于对水下移动目标进行震动观测和数据搜集。

最后,对布放在南海西北次海盆的OBS数据进行了随机短时信号(R-SDE)的拾取,使用该信号对该区域的浅层地质活动过程进行研究。R-SDE信号的溯源分析表明该信号主要来自于该区域海底沉积层的气体逃逸引起的震动,表明南海西北次海盆地区存在海底碳排放。针对海底碳排放的时空分布观测难的问题,提出了基于OBS长期观测数据中SDE信号的海底碳排放的时空分布的研究方法。OBS数据中拾取的R-SDE的数量多少与海底气体逃逸的活跃程度相关和时间分布,而通过R-SDE信号的反方位角和入射角的优势方向统计,可以确定气体逃逸引起的震动的源的深度和方位的空间分布关系。由此,确定了南海西北次海盆区域海底碳排放的活跃区域在其西北部。

关键词
语种
中文
培养类别
联合培养
入学年份
2019
学位授予年份
2023-07
参考文献列表

[1] 樊丛维. 中国科技兴海视域下海洋强国战略研究[D]. 长春:吉林大学,2021.
[2] Ardhuin F, Gualtieri L, Stutzmann E. How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophysical Research Letters, 2015, 42, 765–772.
[3] Lepore S, Grad M. Analysis of the primary and secondary microseisms in the wavefield of the ambient noise recorded in northern Poland[J]. Acta Geophysica, 2018, 66, 915–929.
[4] Wang Y Z, Yang T, Wu Y C, et al. A new broad-band ocean bottom seismograph and characteristics of the seismic ambient noise on the South China Sea seafloor based on its recordings[J]. Geophysical Journal International, 2022, 230(1): 684–695.
[5] Shapiro N M, Campillo M. Emergence of broadband Rayleigh waves fromcorrelations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7).
[6] Mordret A, Sun H, Prieto G A, et al. Continuous Monitoring of High‐Rise Buildings Using Seismic Interferometry[J]. Bulletin of the Seismological Society of America, 2017, 107(6): 2759-2773.
[7] Franek P, Plaza F A, Mienert J, et al. Microseismicity linked to gas migration and leakage on the Western Svalbard Shelf[J]. Geochemistry, Geophysics, Geosystems, 2017,18, 4623–4645.
[8] Pontoise B, Hello Y. Monochromatic infra-sound waves recorded offshore Ecuador: Possible evidence of methane release[J]. Terra Nova. 2002, 14(6), 425–435.
[9] Hsu S K, Wang S Y, Liao Y C, et al. Tide-modulated gas emissions and tremors off SW Taiwan[J]. Earth Planet. Sci. Lett. 2013, 369-370, 98–107.
[10] Kuna V M, Nabelek J L. Seismic crustal imaging using fin whale songs[J]. Science, 2021, 371, 731–735.
[11] Suetsugu D, Shiobara H. Broadband Ocean-Bottom Seismology[J]. Annual Review of Earth and Planetary Sciences, 2014, 42, 27-43.
[12] Yang Y J, Ritzwoller M H, Levshin A L, et al. Ambient noise Rayleigh wave tomography across Europe[J]. Geophysical Journal International, 2007, 168(1): 259-274.
[13] Yao H, van Der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
[14] Bromirski P D, Gerstoft P. Dominant source regions of the Earth's hum are coastal[J]. Geophysical Research Letters, 2009, 36:1–5.
[15] Kurrle D, Widmer-Schnidrig R. Spatiotemporal features of the Earth's background oscillations observed in central Europe[J]. Geophysical Research Letters, 2006, 33:2–5.
[16] Rhie J, Romanowicz B. A study of the relation between ocean storms and the Earth's hum[J]. Geochemistry, Geophysics, Geosystems,2006, 7: Q10004.
[17] Okada Y,Kasahara K, Hori S, et al. Recent progress of seismic observation networks in Japan - Hi-net, F-net, K-NET and KiK-net[J]. Earth Planets Space, 2004, 56(8): Xv-Xxviii.
[18] Berger J, Davis P, Ekstrom G. Ambient earth noise: a survey of the global seismographic network[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B11).
[19] Kanai K. On microtremor[J]. VII. Bull, Earth-quake Research Institute, 1961, 39.
[20] Frantti G. The nature of high-frequency earth noise spectra[J]. Geophysics, 1963, 28(4): 547-562.
[21] Peterson J R. Observation and modeling of seismic background noise[J]. Geology, 1993, 93-322, 1-95.
[22] McNamara D E, Buland R P. Ambient noise levels in the continental United States[J]. 2004. Bulletin of the seismological society of America, 94(4): 1517-1527.
[23] McNamara D E, Boaz R. Seismic noise analysis system,power spectral density probability density function: stand-alone software package[K].2005.
[24] Brown D, Ceranna L, Prior M. The IDC seismic, hydroacoustic and infrasound global low and high noise models[J]. Pure and Applied Geophysics, 2014, 171(3-5):361-375.
[25] Nakata N, Gualtieri L, Fichtner A. Seismic Ambient Noise[M]. Cambridge University Press, 2019.
[26] 陈潇翰. 传统非地震信号探测与震源定位[D]. 合肥:中国科学技术大学, 2019.5.
[27] Traer J, Gerstoft P, Bromirski P D, Shearer P M. Microseisms and hum from ocean surface gravity waves[J]. Journal of Geophysical Research, 2012, 117: B11307.
[28] Benioff H, Press F, Smith S. Excitation of the free oscillations of the Earth by earthquakes[J]. Journal of Geophysical Research, 1961, 66:605–19.
[29] Beroza G, Jordan T. Searching for slow and silent earthquakes using free oscillations[J]. Journal of Geophysical Research, 1990, 95:2485–510.
[30] Widmer R, Zürn W. Bichromatic excitation of long-period Rayleigh and air waves by the Mount Pinatubo and El Chichon volcanic eruptions[J]. Geophysical Research Letters, 1992, 19:765–68.
[31] Kobayashi N, Nishida K. Continuous excitation of planetary free oscillations by atmospheric disturbances[J]. Nature, 1998, 395(6700), 357–360.
[32] Nawa K, Suda N, Fukao Y, Sato T, Aoyama Y, Shibuya K. Incessant excitation of the Earth's free oscillations[J]. Earth, Planets and Space, 1998, 50(1), 3–8.
[33] Kurrle D, Widmer-Schnidrig R. Spatiotemporal features of the Earth's background oscillations observed in central Europe[J]. Geophysical Research Letters, 2006, 33:2–5.
[34] Deen M, Stutzmann E, Ardhuin F. The Earth’s Hum Variations From a Global Model and Seismic Recordings Around the Indian Ocean[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(10), 4006–4020.
[35] Tanimoto T, Um J. Cause of continuous oscillations of the Earth[J]. Journal of Geophysical Research, 1999, 104(B12), 28,723–28,739.
[36] Ekström G. Time domain analysis of Earth's long-period background seismic radiation[J]. Journal of Geophysical Research, 2001, 106(B11), 26,483–26,493.
[37] Ermert L, Sager K, Afanasiev M, Boehm C, Fichtner A. Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum[J]. Journal of Geophysical Research: Solid Earth, 2017,122, 9184 - 9207.
[38] Suda N, Nawa K, Fukao Y. Earth's background free oscillations[J]. Science, 1998, 279 (5359), 2089–2091.
[39] Bertin X, Bakker A, Dongeren A, et al. Infragravity waves: From driving mechanisms to impacts[J]. Earth-Science Reviews, 2018, 177, 774–799.
[40] Nishida K, Montagner J P, Kawakatsu H. Global surface wave tomography using seismic hum[J], Science, 2009, 326(5949), 112.
[41] Nishida K. Global propagation of body waves revealed by cross-correlation analysis of seismic hum[J]. Geophysical Research Letters, 2013 40(9), 1691–1696.
[42] Nishida K. Ambient seismic wave field[J]. Proceedings of the Japan Academy, 2017, Series, B, 93(7):423-448.
[43] Haned A, Stutzmann E, Schimmel M, et al. Global tomography using seismic hum[J]. Geophysical Journal International, Volume 204, Issue 2, February 2016, Pages 1222–1236.
[44] Spahr C W. The Earth's hum: the excitation of Earth normal modes by ocean waves[J]. Geophysical Journal International, August 2008, Volume 174, Issue 2, Pages 542–566.
[45] Gutenberg B. On microseisms. Bulletin of the seismological society of America, 1936, 26, 111–117.
[46] Haubrich R A, McCamy K. Microseisms: Coastal and pelagic sources[J]. Reviews of Geophysics, 1969, 7, 539–571.
[47] Oliver J. A worldwide storm of microseisms with periods of about 27 s[J]. Bulletin of the seismological society of America, 1962, 52(3),507-517,1962.
[48] Oliver J, Page R. Concurrent storms of long and ultralong period microseisms[J]. Bulletin of the seismological society of America, 1963, 53, 15-26.
[49] Haubrich R A, Munk W H, Snodgrass F E, Comparative spectra of microseisms and swell[J]. Bulletin of the Seismological Society of America, 1963, 53(1),27 37.
[50] Juretzek C, Hadziioannou C. Linking source region and ocean wave parameters with the observed primary microseismic noise[J]. Geophysical Journal International, 2017, 211(3), 1640–1654
[51] Tian Y, Ritzwoller M H. Directionality of ambient noise on the Juan de Fuca-plate: implications for source locations of the primary and secondary microseisms[J]. Geophysical Journal International, 2015, 201(1):429-443.
[52] Bromirski P D, Duennebier F K. The near-coastal microseism spectrum: Spatial and temporal wave climate relationships[J]. Journal of Geophysical Research, 2002, 107(B8), 2166.
[53] Haubrich R A, McCamy K. Microseisms: coastal and pelagic sources[J]. Reviews of Geophysics, 1969, 7(3), 539–571.
[54] Gordeev E I. Generation of microseisms in the coastal area. Physics of the Earth and Planetary Interiors, 1990, 63, 201-208.
[55] Cessaro R K. Sources of primary and secondary microseisms[J]. Bulletin of the Seismological Society of America, 1994, 84, 142–148.
[56] Bromirski P D, Duennebier F K, Stephen R A. Mid-ocean microseisms[J]. Geochemistry, Geophysics, Geosystems, 2005, 6, Q04009.
[57] Kedar S, Longuet-Higgins M S, Webb F, et al. The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 464, 777 - 793.
[58] Peureux C, Ardhuin F. Ocean bottom pressure records from the Cascadia array and short surface gravity waves[J]. Journal of Geophysical Research: Oceans, 2016, 121(5), 2862–2873.
[59] Longuet-Higgins M S. A theory of the origin of microseisms[J]. Phil. Trans. R. Soc., 1950, A, 243(857), 1–35.
[60] Hasselmann K. A statistical analysis of the generation of microseisms[J]. Rev. Geophys., 1963, 1(2), 177–210.
[61] Gal M,Reading A M,Ellingsen S P, et al. The frequency dependence and locations of short-period microseisms generated in the Southern Ocean and West Pacific[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(8):5764-5781.
[62] Hillers G, Graham N, Campillo M, et al. Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1).
[63] 刘巧霞. 基于地震台阵技术的地脉动背景噪声研究[D]. 合肥:中国科学技术大学, 2018.
[64] 陈栋炉, 林建民, 倪四道等. 西北太平洋海岛地区地震背景噪声特征及海洋学解释[J]. 地球物理学报, 2018, 61(01):230-241.
[65] Ardhuin F, Gualtieri L, Stutzmann E. Physics of ambient noise generation by ocean waves, in Seismic Ambient Noise[J]. chap. 3, pp. 69– 108, eds Nakata, N., Gualtieri, L. & Fichtner, A., Cambridge University. Press. 2019,
[66] Ardhuin F, Roland A. Coastal wave reflection, directional spread, and seismo-acoustic noise sources[J]. Journal of Geophysical Research, 2012,117, C00J20.
[67] Obrebski M, Ardhuin F, Stutzmann E, Schimmel M. Detection of microseismic compressional (P) body waves aided by numerical modeling of oceanic noise sources[J]. Journal of Geophysical Research, 2013, 118(8), 4312–4324.
[68] Juretzek C, Hadziioannou C. Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios[J]. Journal of Geophysical Research, 2016, 121(9), 6741–6756.
[69] Landes M, Hubans F, Shapiro N M, et al. Origin of deep ocean microseisms by using teleseismic body waves[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B5).
[70] Gal M, Reading A, Rawlinson N, Schulte-Pelkum V. Matched field processing of 3 component seismic array data applied to Rayleigh and Love microseisms[J]. Journal of Geophysical Research, 2018, 123, 6781–6789.
[71] 刘巧霞, 邱勇, 曾祥方等. 基于中国内陆大孔径地震台阵的Rayleigh面波噪声源分布特征研究[J]. 地球物理学报, 2020, 63(07):2534-2547.
[72] Lin F C, Moschetti M P, Ritzwoller M H. Surface wave tomography of thewestern United States from ambient seismic noise: Rayleigh and Love wave phase velocitymaps[J]. Geophysical Journal International, 2008, 173(1): 281-298.
[73] Nishida K, Kawakatsu H, Fukao Y et al. Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors[J]. Geophysical Research Letters, 2008, 35(16), L16307.
[74] Tanimoto T, Hadziioannou C, Igel H, et al. Estimate of Rayleigh‐to‐Love wave ratio in the secondary microseism by colocated ring laser and seismograph[J]. Geophysical Research Letters,2015, 42, 2650 - 2655.
[75] Tanimoto T C, Hadziioannou H I. Seasonal variations in the Rayleigh -to - Love wave ratio in the secondary microseism from co-located ring laser and seismograph[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2447-2459.
[76] Gualtieri L, Stutzmann E, Capdeville Y, et al. Modelling secondary microseismic noise by normal mode summation[J]. Geophysical Journal International, 2013, 193(3), 1732–1745.
[77] Gualtieri L, Bachmann E, Simons F J, Tromp J. The origin of secondary microseism Love waves[J]. Proceedings of the National Academy of Sciences. USA, 2020, 117, 29 504–29 511.
[78] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Engineering, 1957, 35: 415-456.
[79] Claerbout J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264.
[80] Shapiro N M, Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7): L07614.
[81] Campillo M, Paul A. Long-range correlations in the diffuse seismic coda[J]. Science, 2003, 299(5606): 547-549.
[82] Shapiro N M. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise[J]. Science, 2005, 307(5715): 1615-1618.
[83] Yang Y, Ritzwoller M H, Zheng Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04303.
[84] Larose E, Carriere S, Voisin C, et al. Environmental seismology: What can welearn on earth surface processes with ambient noise? [J]. Journal of Applied Geophysics. 2015, 116,62-74.
[85] Havskov J, Alguacil G. Instrumentation in Earthquake Seismology[M]. Springer, Basel, Switzerland, 2016.
[86] Groos J C, Ritter J R R. Time domain classification and quantification of seismic noise in an urban environment[J]. Geophysical Journal International, 2009, 179, no. 2, 1213–1231.
[87] Riahi N, Gerstoft P. The seismic traffic footprint: Tracking trains, aircraft, and cars seismically[J]. Geophysical Research Letters, 2015, 42, 2674–2681.
[88] Coward D, Blair D, Burman R, Zhao C. Vehicle induced seismic effects at a gravitational wave observatory[J]. Review of Scientific Instruments. 2003, 74, no. 11, 4846–4854.
[89] Díaz J M, Ruiz L, Crescentini A, et al. Seismic monitoring of an alpine mountain river[J]. Journal of Geophysical Research, 2014, 119, 3276–3289.
[90] Díaz J. On the origin of the signals observed across the seismic spectrum[J]. Earth-Science Reviews. 2016, 161, 224–232.
[91] Burtin A L, Bollinger J, Vergne R, et al. Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics[J]. Journal of Geophysical Research, 2008, 113, no. B05301.
[92] Hong T K, Lee J, Lee G, et al. Correlation between Ambient Seismic Noises and Economic Growth[J]. Seismological Research Letters, 2020, 91, 2343–2354.
[93] Piccinini D, Giunchi C, Olivieri M, et al. COVID-19 lockdown and its latency in Northern Italy: seismic evidence and socio-economic interpretation[J]. Scientific Reports, 2020, 10, 16487.
[94] Lecocq T, Hicks S P, Van Noten K, et al. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures[J]. Science, 2020, 369(6509), 1338–1343.
[95] Díaz J, Ruiz M, Sánchez-Pastor P S. et al. Urban Seismology: on the origin of earth vibrations within a city[J]. Scientific Reports, 2017, 7, 15296.
[96] Behm M, Leahy G M, Snieder R. Retrieval of local surface wave velocities from traffic noise – an example from La Barge basin (Wyoming) [J]. Geophys.2014, Prospecting 62, 223–243.
[97] Manea, E. F. et al. Improving the shear wave velocity structure beneath Bucharest (Romania) using ambient vibrations[J]. Geophysical Journal International, 2016, 207, 848–861.
[98] Chen K H, Yeh T C, Chen Y, et al. Characteristics and impact of environmental shaking in the Taipei metropolitan area[J]. Scientific Reports, 2022, 12, 743.
[99] Wu X, Guo Z, Liu L, et al. Seismic Monitoring of Super High‐Rise Building Using Ambient Noise with Dense Seismic Array[J]. Seismological Research Letters, 2021, 92(1): 396-407.
[100] Tary J B, Geli L, Guennou C, et al. Microevents produced by gas migration and expulsion at the seabed: A study based on sea bottom recordings from the Sea of Marmara[J]. Geophysical Journal International, 2012, 190(2), 993–1007.
[101] Tsang-Hin-Sun E, Batsi E, Klingelhoefer F, Géli L. Spatial and temporal dynamics of gas-related processes in the Sea of Marmara monitored with ocean bottom seismometers[J]. Geophysical Journal International, 2019, 216(3), 1989-2003.
[102] Batsi E, Tsang-Hin-Sun E, Klingelhoefer F, et al. Nonseismic signals in the ocean: Indicators of deep sea and seafloor processes on ocean-bottom seismometer data[J]. Geochemistry, Geophysics, Geosystems, 2019, 4(10),
[103] Buskirk R E, Frohlich C, Latham G V, Lawton J, Chen A T. Evidence that biological activity affects ocean bottom seismograph recordings[J]. Marine Geophysical Research, 1981, 5(2), 189–205.
[104] McDonald M A, Hildebrand J A, Webb S C. Blue and fin whales observed on a seafloor array in the Northeast Pacific[J]. The Journal of the Acoustical Society of America, 1995, 98(2), 712–721.
[105] Rebull O G, Cusí J Z, Fernández M R, Muset J, Ruiz G. Tracking fin whale calls offshore the Galicia Margin, North East Atlantic Ocean[J]. The Journal of the Acoustical Society of America, 2006, 120(4):2077-2085.
[106] Dunn R A, Hernandez O. Tracking blue whales in the eastern tropical Pacific with an ocean-bottom seismometer and hydrophone array[J]. The Journal of the Acoustical Society of America, 2009, 126(3), 1084–1094.
[107] Soule D C, Wilcock W S. Fin whale tracks recorded by a seismic network on the Juan de Fuca Ridge, Northeast Pacific Ocean[J]. The Journal of the Acoustical Society of America, 2013, 133, 1751–1761.
[108] Brodie D C, Dunn R A. Low frequency baleen whale calls detected on ocean-bottom seismometers in the Lau basin, southwest Pacific Ocean[J]. The Journal of the Acoustical Society of America, 2014, 137, 53–62.
[109] Dréo R, Bouffaut L, Leroy E, Barruol G, Samaran F. Baleen Whale distribution and seasonal occurrence Revealed by An Ocean Bottom Seismometer Network in The Western Indian Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography. 2019, vol. 161, pp. 132-144.
[110] Bouffaut L, Madhusudhana S, Labat V, Boudraa A L, Klinck H. A performance comparison of tonal detectors for low-frequency vocalizations of Antarctic blue whales[J]. The Journal of the Acoustical Society of America, 2020, 147, 260
[111] Pereira A, Romagosa M, Corela C, Silva M A, Matias L. Source Levels of 20 Hz Fin Whale Notes Measured as Sound Pressure and Particle Velocity from Ocean-Bottom Seismometers in the North Atlantic[J]. Journal of Marine Science and Engineering, 2021, 9, 646.
[112] Wilcock S D W, Hilmo R S. A method for tracking blue whales (Balaenoptera musculus) with a widely spaced network of ocean bottom seismometers[J]. PLoS ONE. 2021, 16(12): e0260273.
[113] Gavrilov A, McCauley R, Pattiaratchi C, Bondarenko O. The use of passive acoustics to observe the presence and movement of pygmy blue whales (balaenoptera musculus brevicauda) in the Perth Canyon, WA. 11th European[C]. Conference on Underwater Acoustics (ECUA). Jul 2-6, 2012, Volume 34 (Pt 3), pp. 1802-1809.
[114] Chang E T, Chao Y. Chen B F, et al. Internal tides recorded at ocean bottom off the coast of Southeast Taiwan[J]. J. Geophys. Res. Oceans. 2016, 121, 3381–3394
[115] Sultan N, Marsset B, Ker S et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. J. Geophys. Res. 2010, 115. B08101, 1-33.
[116] Sultan N, Plaza-Faverola A, Vadak K S, et al. Impact of tides and sea-level on deep-sea Arctic methane emissions[J]. Nature Communications, 2020, 11(1).
[117] Bayrakci G, Scalabrin C, Dupré S, et al. Acoustic monitoring of gas emissions from the seafloor[J]. Part II: A case study from the Sea of Marmara. Marine Geophysical Research. 2014, 35, 211–229.
[118] Embriaco D, Marinaro G, Frugoni F, et al. Monitoring of gas and seismic energy release by multiparametric benthic observatory along the North Anatolian Fault in the Sea of Marmara (NW Turkey) [J]. Geophysical Journal International, 2014, 196(2), 850–866.
[119] Dupré S, Scalabrin C, Grall C, et al. Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging[J]. Journal of Geophysical Research: Solid Earth, 2015, 120, 2891–2912.
[120] Römer M, Wenau S, Mau S, et al. Assessing marine gas emission activity and contribution to the atmospheric methane inventory: A multidisciplinary approach from the Dutch Dogger Bank seep area (North Sea) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18, 2617–2633.
[121] Ugalde A, Gaite B, Ruiz M, et al. Seismicity and noise recorded by passive seismic monitoring of drilling operations offshore the eastern Canary Islands[J]. Seismological Research Letters, 2019, 90. 1565-1576.
[122] Géli L, Henry P, Grall C. Gas and seismicity within the Istanbul seismic gap[J]. Scientific Reports. 2018, 8(1), 6819.
[123] Mau S, Tu T H, Becker M, et al, Methane Seeps and Independent Methane Plumes in the South China Sea Offshore Taiwan[J]. Frontiers in Marine Science, 2020, 7:543.
[124] Schneider von Deimling J, Greinert J, Chapman N R, et al. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents[J]. Limnology and Oceanography: Methods, 2010, 8, 155–171.
[125] Marcon Y, Kelley D, Thornton B, et al. Variability of natural methane bubble release at Southern Hydrate Ridge[J]. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009894.
[126] Dziak R P, Matsumoto H, Embley R W, et al. Passive acoustic records of seafloor methane bubble streams on the Oregon continental margin. Deep-sea Research Part Ii-topical Studies in Oceanography[J]. 2018. 150, 210-217.
[127] Crawford W C, Webb S C, Hildebrand J A. Seafloor compliance observed by long-period pressure and displacement measurements[J]. Journal of Geophysical Research, 1991, 96(B10):16151–60
[128] Sugioka H, Fukao Y, Kanazawa T. Evidence for infragravity wave–tide resonance in deep oceans[J]. Nature Communications, 2010, 1:1–7
[129] Huang B, Xue M, Guo Z, Song W. Exploring the Deep Ocean Single‐Frequency Microseisms Southwest of Japan in Northern Philippine Sea[J]. Geophysical Research Letters, 2022, 49(12). Portico.
[130] Guo Z, Mei X, Adnan A, Ma Z T. Exploring source regions of single- and double-frequency microseisms recorded in eastern North American margin (ENAM) by cross-correlation[J]. Geophysical Journal International, Volume 220, Issue 2, February 2020, Pages 1352–1367.
[131] Kohler M D, Hafner K, Park J. A Plan for a Long‐Term, Automated, Broadband Seismic Monitoring Network on the Global Seafloor[J]. Seismological Research Letters, 2020, 91: 1343–1355.
[132] Lin P Y, Gaherty J B, Jin G. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere[J]. Nature, 2016, 535:7613.
[133] Pozgay S H, Wiens D A, Conder J A. Seismic attenuation tomography of the Mariana Subduction System: Implications for thermal structure, volatile distribution, and slow-spreading dynamics[J]. Geochemistry, Geophysics, Geosystems, 2009, 10, Q04X05.
[134] Hung TD, Yang T, Le B M, Yu Y. Effects of Failure of the Ocean‐Bottom Seismograph Leveling System on Receiver Function Analysis[J]. Seismological Research Letters. 2019, 90 (3): 1191–1199.
[135] Liu D, Yang T, Wang Y, et al. Pankun: A New Generation of Broadband Ocean Bottom Seismograph[J]. Sensors 2023, 23(11).
[136] 刘丹,杨挺,黎伯孟等. 分体式宽频带海底地震仪的研制.测试和数据质量分析[J]. 地球物理学报, 2022, 65(7):2560 - 2572.
[137] Stähler S C, Sigloch K, Hosseini K, et al. Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion, western Indian Ocean[J]. Advances in Geosciences, 2016, 41, 43–63.
[138] Lázaro A M, Roset X, Río J D, et al. Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology[J]. Sensors (Basel, Switzerland), 2012.12, 3693 - 3719.
[139] 刘晨光, 华清峰, 裴彦良等.南海海底天然地震台阵观测实验及其数据质量分析[J].科学通报,2014, 59(16) :1542-1552.
[140] Clinton J, Heaton H. Potential Advantages of a Strong-motion Velocity Meter over a Strong-motion Accelerometer[J]. Seismological Research Letter. 2002; 73 (3): 332–342.
[141] Yang Y, Chen Z, Zhang Y J, Du Y J. Review and Prospect for the Land Seismic Data Acquisition System[J]. Advanced Materials Research, 2013, 684, 394 - 397.
[142] Shariat-Panahi S, Alegria F A, Lázaro A M. Design and test of a high-resolution acquisition system for marine seismology[J]. IEEE Instrumentation & Measurement Magazine, 2009, 12.
[143] 刘勇, 庹先国, 李怀良等. 一种多波宽频地震数据采集设计与仪器实现关键技术[J].地球物理学报,2017,60(11):4302-4312.
[144] Huang Y, Song J, Mo W, et al. A Seismic Data Acquisition System Based on Wireless Network Transmission[J]. Sensors (Basel, Switzerland), 2021, 21.
[145] 滕云田, 胡星星, 王喜珍等. 用多通道AD分级采集扩展地震数据采集器的动态范围[J].地球物理学报, 2016, 59(04):1435-1445.
[146] Sumy D F, Lodewyk J A, Woodward R, Evers B. Ocean‐Bottom Seismograph Performance during the Cascadia Initiative[J]. Seismological Research Letters, 2015, 86, 1238-1246.
[147] Panahi S S, Cadena J, Roset X, et al. Low power and easy to use ocean bottom seismometer (OBS) for long period surveys. Europe Oceans, 2005, 1, 282-286 Vol. 1.
[148] Mangano G, Alessandro A, Anna G. Long term underwater monitoring of seismic areas: Design of an Ocean Bottom Seismometer with Hydrophone and its performance evaluation[C]. OCEANS 2011 IEEE - Spain, 1-9.
[149] Gardner A T, Collins J A. A second look at Chip Scale Atomic Clocks for long term precision timing. OCEANS 2016 MTS/IEEE Monterey 2016, 1-9.
[150] Gardner A T, Collins J A. Advancements in high-performance timing for long term underwater experiments: A comparison of chip scale atomic clocks to traditional microprocessor-compensated crystal oscillators[J]. 2012 Oceans:1-8.
[151] Shinohara M, Yamada T, Shiobara H, Yamashita Y. Development and Evaluation of Compact Long-Term Broadband Ocean Bottom Seismometer[J] OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), 2018,1-4.
[152] 郑宏, 范建柯, Le Ba Manh等. 基于背景噪声互相关技术的雅浦俯冲带海底地震仪时间校正[J]. 地球物理学进展, 2020, 35(02):799-806.
[153] Tréhu A M. Coupling of ocean bottom seismometers to sediment: Results of tests with the U.S. geological survey ocean bottom seismometer[J]. Bulletin of the Seismological Society of America, 1985, 75, 271-289.
[154] 赵建忠, 李志伟, 林建民等. 南海地区地震背景噪声成像与壳幔深部结构[J]. 地球物理学报, 2019, 62(06):2070-2087.
[155] 敖威, 赵明辉, 丘学林等. 南海西北次海盆及其邻区地壳结构和构造意义[J]. 地球科学(中国地质大学学报), 2012, 37(04):779-790.
[156] 魏继东.地震数据表征:速度与加速度[J].石油地球物理勘探, 2019, 54(02) : 243-253.
[157] Huo D, Yang T. Seismic ambient noise around the South China Sea: seasonal and spatial variations, and implications for its climate and surface circulation[J]. Marine Geophysical Research, 2013, 34, 449–459.
[158] Xiao H, Xue M, Yang T, et al. The characteristics of microseisms in South China Sea: results from a combined dataset of OBSs, broadband land seismic stations, and a global wave height model[J]. Journal of Geophysical Research, 2018a, 123, 3923–3942.
[159] Lu X Q, Yu H, Ying M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4), 690−699.
[160] Pearson K G. Determination of the coefficient of correlation. Science, 1909, 30 757: 23-5.
[161] 王宜志﹐杨挺﹐刘晨光等, 南海西北次海盆海底地震记录的短时震动事件分析[J]. 地震学报. 2023 (已录用)
[162] 沈统. 微地震事件定位精度优化关键技术研究[D]. 成都:成都理工大学,2019.
[163] Stevenson R.1976.Microearthquakes at Flathead Lake,Montana:A study using automatic earthquake processing[J].Bulletin of the Seismological Research of America,66(5):61-79.
[164] Allen R V. Automatic earthquake recognition and timing from single traces[J]. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532.
[165] Baer M, Kradolfer U. An automatic phase picker for local and teleseismic events[J]. Bull. Seismol. Soc. Am. 1987, 77, 1437–1445.
[166] Earle P S, Shearer P M. Characterization of global seismograms using an automatic-picking algorithm[J]. Bull. Seismol. Soc. Am. 1994, 84, 366–376.
[167] Trnkoczy A. Understanding and parameter setting of STA/LTA trigger algorithm. In New Manual of Seismological Observatory Practice 2[G]. (NMSOP-2). 2012, IS 8.1, 20 pp.
[168] Gabor D. Theory of communication [J]. Journal of the Institute of Electrical Engineers, 1946, 93(26): 429-441.
[169] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47(2) 203-221.
[170] Kristekova M, Kristek J, Moczo P, Day S M. Misfit Criteria for Quantitative Comparison of Seismograms[J]. Bulletin of the Seismological Society of America, 2006, 96(5), 1836–1850.
[171] Hardy H R, Belesky R M, Ge M. Acoustic Emission/Microseismic Source Location in Geotechnical Applications[J]. Non-Destructive Testing, 1988, 3066–3075.
[172] Liu P, Guo Y, Zhuo Y, Qi W, Feng J, Chen H, Chen S. An Algorithm of Acoustic Emission Location for Complex Composite Structure[J]. Applied Sciences, 2022, 12, 12323.
[173] Jurkevics A. Polarization Analysis of Three-Component Array Data[J]. Bulletin of the Seismological Society of America, 1988, 78(5):1 725-1 743
[174] Kennett, B L N, Engdahl E R. Travel times for global earthquake location and phase identification[J]. Geophysical Journal International, 1991, 105, 429–466.
[175] Kennett B L N, Engdahl E R, Buland R. Constraints on seismic velocities in the Earth from travel times[J]. Geophysical Journal International, 1995, 122, 108–124.
[176] 宋维琪,杨晓东. 解域约束下的微地震事件网格搜索法、遗传算法联合反演[J].石油地球物理勘探, 2011, 46(02) :259-266.
[177] Geiger L. Probability method for the determination of earthquake epicenters from the arrival time only[J]. Bulletin. Saint Louis University, 1912, 8, 60–71
[178] Havskov J, Ottemöller L. Location. Routine Data Processing in Earthquake Seismology: With Sample Data, Exercises and Software[M]. Springer, Dordrecht 2010.
[179] Karasözen E, Karasözen B. Earthquake location methods[J]. Journal on Geomathematics, 2020, 1-28.
[180] Bibee L D. A Comparison of Seismometer and hydrophone recordings of VLF seismo-acoustic signals[J]. OCEANS, 1991, Proceedings 1: 93-96.
[181] Mandar Chitre. ARL Python Tools (a Python interface to BELLHOP) National University of Singapore 2018.

所在学位评定分委会
电子科学与技术
国内图书分类号
V249.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545055
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
王宜志. 海底非传统地震信号:仪器观测、数据处理及定位溯源[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11949045-王宜志-海洋科学与工程(11980KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王宜志]的文章
百度学术
百度学术中相似的文章
[王宜志]的文章
必应学术
必应学术中相似的文章
[王宜志]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。