中文版 | English
题名

基于蜂窝网络的被动雷达目标检测

其他题名
PASSIVE RADAR TARGET DETECTION BASED ON CELLULAR NETWORK
姓名
姓名拼音
LUO Yan
学号
12032796
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
王锐
导师单位
电子与电气工程系
论文答辩日期
2023-05
论文提交日期
2023-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着移动通信系统从万物互联到万物智联的发展,感知环境的需求不断增加, 利用无线通信信号进行感知的研究日益引发重视。被动雷达是一种利用接收外部 信号源来感知目标的技术。由于蜂窝网络的广泛部署,被动雷达可以充分利用环 境中存在的无线通信信号,在不影响通信的情况下,实现目标感知,是一种重要的 通信感知一体化技术。在现有的文献中,被动雷达主要利用 Sub-6G 频段的无线通 信发射机作为照明信号来实现对运动飞机、车辆的发现,以及对人体动作的简单 识别。本文的创新点在于:搭建多通道采集系统,利用 Sub-6GHz 蜂窝信号对较小 目标(人体、无人机等)的被动轨迹追踪,并实现了基于毫米波蜂窝信号进行人体 轨迹和书写轨迹的被动追踪。 本文首先介绍了一个 Sub-6GHz 频段的多通道多天线信号采集系统。该系统包 含一个四通道的参考阵列天线、一个八通道的监测天线和采集平台,能够实现多 通道无线信号的同步采集与高速率存储。依托该系统,本文进一步阐述了在体育 场等空旷环境中对人体运动和无人机飞行进行定位和轨迹追踪的相关研究,并展 示了实验结果。具体而言,我们利用数字波束成形提纯参考信号。再利用杂波消除 (clutter cancellation ,CC)算法抑制监视信号中直达径和杂波的干扰。接着利用交 叉模糊函数得到每个阵列的时间多普勒图获取距离信息。最后遍历各个数字波束 所得的多普勒图,得到角度信息,联合距离信息估计目标的位置实现定位和追踪。 为了进一步研究毫米波频段的人体运动轨迹追踪,本文阐述了一个基于毫米 波模拟多天线(Analog MIMO)射频前端的通信与被动感知一体化系统。该系统使 用 60GHz 相控阵天线作为发射天线和接收天线。依托该系统,本文阐述了在室内 环境中对运动人体进行追踪的单链路和多链路相关研究成果。其中,发射端模拟 产生 5G 信号,接收端参考信号和接收信号通过交叉模糊函数得到时间多普勒谱。 单链路实验表明该系统能够检测到人体轻微晃动脚、手、头和呼吸,并且能够精 确测量人体运动的位移信息,测量误差在分米级。多链路实验表明该系统具有对 书写轨迹追踪的能力。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LIU F, CUI Y, MASOUROS C, et al. Integrated sensing and communications: Towards dual functional wireless networks for 6G and beyond[A]. 2021.
[2] ZHANG J A, LIU F, MASOUROS C, et al. An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing[J/OL]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295-1315. DOI: 10.1109/JSTSP.2021.3113120.
[3] LEE H, ABDALLAH A A, PARK J, et al. Neural Network-Based Ranging with LTE Chan nel Impulse Response for Localization in Indoor Environments[C/OL]//2020 20th Interna tional Conference on Control, Automation and Systems (ICCAS). 2020: 939-944. DOI: 10.23919/ICCAS50221.2020.9268386.
[4] GRIFFITHS H D, LONG N R W. Television-based bistatic radar[J/OL]. IEE Proceedings F(Communications, Radar and Signal Processing), 1986, 133(7): 649-657
[2023-02-28]. https://digital-library.theiet.org/content/journals/10.1049/ip-f-1.1986.0104.
[5] DI LALLO A, FARINA A, FULCOLI R, et al. Design, development and test on real data of an FM based prototypical passive radar[C/OL]//2008 IEEE Radar Conference. 2008: 1-6. DOI:10.1109/RADAR.2008.4720985.
[6] UMMENHOFER M, LAVAU L C, CRISTALLINI D, et al. UAV Micro-Doppler SignatureAnalysis Using DVB-S Based Passive Radar[C/OL]//2020 IEEE International Radar Confer ence (RADAR). 2020: 1007-1012. DOI: 10.1109/RADAR42522.2020.9114747.
[7] Micro-UAV detection using DAB-based passive radar | IEEE Conference Publication | IEEEXplore[EB/OL].
[2023-02-28]. https://ieeexplore.ieee.org/document/7944357.
[8] SCHüPBACH C, PATRY C, MAASDORP F, et al. Micro-UAV detection using DAB-based passive radar[C/OL]//2017 IEEE Radar Conference (RadarConf). 2017: 1037-1040. DOI:10.1109/RADAR.2017.7944357.
[9] DAUN M, KOCH W. Multistatic Target Tracking for Non-Cooperative Illuminating byDAB/DVB-T[C/OL]//OCEANS 2007 - Europe. 2007: 1-6. DOI: 10.1109/OCEANSE.2007.4302238.
[10] BAO Q, WANG Y, ZHANG Y, et al. An experimental study of Multiband Bistatic PassiveRadar system[C]//2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE,2016: 1339-1344.
[11] CARUSO M, LOMBARDO P, SEDEHI M. A weighted least squares approach for multi-targetDoppler-only localization[C]//2013 IEEE Radar Conference (RadarCon13). IEEE, 2013: 1-6.
[12] Use of a graphics processing unit for passive radar signal and data processing | IEEE Journals& Magazine | IEEE Xplore[EB/OL].
[2023-02-28]. https://ieeexplore.ieee.org/document/6373912.58
[13] ALDOWESH A, SHOAIB M, JAMIL K, et al. A passive bistatic radar experiment for verylow radar cross-section target detection[C/OL]//2015 IEEE Radar Conference. 2015: 406-410.DOI: 10.1109/RadarConf.2015.7411917.
[14] TAN D, SUN H, LU Y. Sea and air moving target measurements using a GSM based passiveradar[C/OL]//IEEE International Radar Conference, 2005. 2005: 783-786. DOI: 10.1109/RADAR.2005.1435932.
[15] KNOEDLER B, ZEMMARI R, KOCH W. On the detection of small UAV using a GSM passivecoherent location system[C/OL]//2016 17th International Radar Symposium (IRS). 2016: 1-4.DOI: 10.1109/IRS.2016.7497375.
[16] LTE‐based passive radar for drone detection and its experimental results - Dan - 2019 - TheJournal of Engineering - Wiley Online Library[EB/OL].
[2023-02-28]. https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/joe.2019.0583.
[17] KLöCK C, WINKLER V, EDRICH M. LTE-signal processing for passive radar air traf fic surveillance[C/OL]//2017 18th International Radar Symposium (IRS). 2017: 1-9. DOI:10.23919/IRS.2017.8008105.
[18] 胡晓凯万显荣刘同同易建新 但阳鹏. LTE 外辐射源雷达系统设计及目标探测实验研究[J/OL]. 雷达学报, 2020, 9. https://radars.ac.cn/article/doi/10.12000/JR18111.
[19] KALAVAKUNTA R, KRIPALANI A. Evolution of mobile broadband access technologies andservices -considerations and solutions for smooth migration from 2G to 3G networks[C/OL]//2005 IEEE International Conference on Personal Wireless Communications, 2005. ICPWC2005. 2005: 144-149. DOI: 10.1109/ICPWC.2005.1431320.
[20] KUMAR S, GUPTA G, SINGH K R. 5G: Revolution of future communication technology[C/OL]//2015: 143-147. DOI: 10.1109/ICGCIoT.2015.7380446.
[21] YANG X, HUO K, JIANG W, et al. A passive radar system for detecting UAV based onthe OFDM communication signal[J]. 2016 Progress in Electromagnetic Research Symposium(PIERS), 2016: 2757-2762.
[22] SALAH A A, ABDULLAH R R, ISMAIL A, et al. Feasibility study of LTE signal as a newilluminators of opportunity for passive radar applications[C]//2013 IEEE International RF andMicrowave Conference (RFM). IEEE, 2013: 258-262.
[23] SALAH A, ABDULLAH R R, ISMAIL A, et al. Experimental study of LTE signals as illumi nators of opportunity for passive bistatic radar applications[J]. Electronics Letters, 2014, 50(7):545-547.
[24] ABDULLAH R R, SALAH A A, ISMAIL A, et al. Ground moving target detection usingLTE-based passive radar[C]//2015 International Conference on Radar, Antenna, Microwave,Electronics and Telecommunications (ICRAMET). IEEE, 2015: 70-75.
[25] ABDULLAH R S A R, SALAH A A, ISMAIL A, et al. Experimental investigation on targetdetection and tracking in passive radar using long-term evolution signal[J]. IET Radar, Sonar& Navigation, 2016, 10(3): 577-585.
[26] LIU F, YUAN W, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicularlinks: Communication served by sensing[J]. IEEE Transactions on Wireless Communications,2020, 19(11): 7704-7719.59参考文献
[27] VA V, VIKALO H, HEATH R W. Beam tracking for mobile millimeter wave communicationsystems[C]//2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP).IEEE, 2016: 743-747.
[28] JAYAPRAKASAM S, MA X, CHOI J W, et al. Robust beam-tracking for mmWave mobilecommunications[J]. IEEE Communications Letters, 2017, 21(12): 2654-2657.
[29] SHAHAM S, DING M, KOKSHOORN M, et al. Fast channel estimation and beam tracking formillimeter wave vehicular communications[J]. IEEE Access, 2019, 7: 141104-141118.
[30] FALCONE P, COLONE F, MACERA A, et al. Localization and tracking of moving targets withWiFi-based passive radar[C]//2012 IEEE Radar Conference. IEEE, 2012: 0705-0709.
[31] GUO H, WOODBRIDGE K, BAKER C. Evaluation of WiFi beacon transmissions for wirelessbased passive radar[C]//2008 IEEE Radar Conference. IEEE, 2008: 1-6.
[32] QIAN K, WU C, YANG Z, et al. Widar: Decimeter-level passive tracking via velocity mon itoring with commodity Wi-Fi[C/OL]//Association for Computing Machinery, 2017. DOI:10.1145/3084041.3084067.
[33] XIE Y, XIONG J, LI M, et al. mD-Track: Leveraging Multi-Dimensionality in Passive IndoorWi-Fi Tracking[Z]. 2019.
[34] QIAN K, WU C, YANG Z, et al. PADS: Passive detection of moving targets with dynamic speedusing PHY layer information[C/OL]//2014 20th IEEE International Conference on Parallel andDistributed Systems (ICPADS). 2014: 1-8. DOI: 10.1109/PADSW.2014.7097784.
[35] AJEY S, SRIVALLI B, RANGARAJ G. On performance of MIMO-OFDM based LTE systems[C/OL]//2010 International Conference on Wireless Communication and Sensor Computing(ICWCSC). 2010: 1-5. DOI: 10.1109/ICWCSC.2010.5415899.
[36] Supervised Reciprocal Filter for OFDM radar signal processing | IEEE Journals & Magazine |IEEE Xplore[EB/OL].
[2023-02-28]. https://ieeexplore.ieee.org/document/10021612.
[37] A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems | IEEE Jour nals & Magazine | IEEE Xplore[EB/OL].
[2023-02-28]. https://ieeexplore.ieee.org/document/8879484.
[38] PELCAT M, ARIDHI S, PIAT J, et al. 3GPP Long Term Evolution[M/OL]. London: SpringerLondon, 2013: 9-51. https://doi.org/10.1007/978-1-4471-4210-2_2.
[39] CHIURTU N, RIMOLDI B, TELATAR E. On the capacity of multi-antenna Gaussian channels[C/OL]//Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat.No.01CH37252). 2001: 53-. DOI: 10.1109/ISIT.2001.935916.
[40] PAULRAJ A, NABAR R U, GORE D. Introduction to Space-Time Wireless Communications[C]//2003.
[41] CHEN S, SUN S, WANG Y, et al. A comprehensive survey of TDD-based mobile commu nication systems from TD-SCDMA 3G to TD-LTE(A) 4G and 5G directions[J/OL]. ChinaCommunications, 2015, 12(2): 40-60. DOI: 10.1109/CC.2015.7084401.
[42] A Survey on 5G Networks for the Internet of Things: Communication Technologies and Chal lenges | IEEE Journals & Magazine | IEEE Xplore[EB/OL].
[2023-02-28]. https://ieeexplore.ieee.org/document/8141874.60参考文献
[43] A Review on Design and Analysis of 5G Mobile Communication MIMO System with OFDM |IEEE Conference Publication | IEEE Xplore[EB/OL].
[2023-02-28]. https://ieeexplore.ieee.org/document/8474695.
[44] BąCZYK M K, MALANOWSKI M. Reconstruction of the Reference Signal in DVB-T-basedPassive Radar[J/OL]. International Journal of Electronics and Telecommunications, 2011, 57.DOI: 10.2478/v10177-011-0006-y.
[45] SEARLE S, HOWARD S, PALMER J. Remodulation of DVB—T signals for use in PassiveBistatic Radar[C/OL]//2010: 1112-1116. DOI: 10.1109/ACSSC.2010.5757576.
[46] XIANRONG W, JUNFANG W, SHENG H, et al. Reconstruction of reference signal for DTMB based passive radar systems[C/OL]//Proceedings of 2011 IEEE CIE International Conferenceon Radar: volume 1. 2011: 165-168. DOI: 10.1109/CIE-Radar.2011.6159501.
[47] MAHFOUDIA O, HORLIN F, NEYT X. Optimum reference signal reconstruction for DVB T based passive radars[C/OL]//2017 IEEE Radar Conference (RadarConf). 2017: 1327-1331.DOI: 10.1109/RADAR.2017.7944411.
[48] MAHFOUDIA O, HORLIN F, NEYT X. Performance analysis of the reference signal recon struction for DVB-T passive radars[J/OL]. Signal Processing, 2019, 158: 26-35. https://www.sciencedirect.com/science/article/pii/S0165168418304079. DOI: 10.1016/j.sigpro.2018.12.016.
[49] BOK D. Reconstruction and Reciprocal Filter of OFDM Waveforms for DVB-T2 Based PassiveRadar[C/OL]//2018 International Conference on Radar (RADAR). 2018: 1-6. DOI: 10.1109/RADAR.2018.8557339.
[50] O’HAGAN D W, SETSUBI M, PAINE S. Signal reconstruction of DVB-T2 signals in passiveradar[C/OL]//2018 IEEE Radar Conference (RadarConf18). 2018: 1111-1116. DOI: 10.1109/RADAR.2018.8378717.
[51] O’HAGAN D W, SETSUBI M, PAINE S. Signal reconstruction of DVB-T2 signals in passiveradar[C/OL]//2018 IEEE Radar Conference (RadarConf18). 2018: 1111-1116. DOI: 10.1109/RADAR.2018.8378717.
[52] ZHANG X, YI J, WAN X, et al. Reference Signal Reconstruction Under Oversampling forDTMB-Based Passive Radar[J/OL]. IEEE Access, 2020, 8: 74024-74038. DOI: 10.1109/ACCESS.2020.2986589.
[53] SCHWARK C, HECKENBACH J. Multi-sensor reference diversity for improved OFDM signalreconstruction[C/OL]//2017 IEEE Radar Conference (RadarConf). 2017: 1446-1449. DOI:10.1109/RADAR.2017.7944434.
[54] TAO R, WU H Z, SHAN T. Direct-path suppression by spatial filtering in digital televisionterrestrial broadcasting-based passive radar[J]. Radar Sonar Navigation Iet, 2010, 4(6): P.791-805.
[55] GOGINENI S, SETLUR P, RANGASWAMY M, et al. Passive Radar Detection With NoisyReference Channel Using Principal Subspace Similarity[J]. IEEE Transactions on Aerospaceand Electronic Systems, 2018: 1-1.
[56] PALMARINI C, MARTELLI T, COLONE F, et al. Disturbance removal in passive radar viasliding extensive cancellation algorithm (ECA-S)[C]//2015 IEEE Radar Conference. 2015.61参考文献
[57] XIAOHUA, LI, CHENXU, et al. DA-PMHT for Multistatic Passive Radar Multitarget Trackingin Dense Clutter Environment[J]. IEEE Access, 2019, 7(99): 49316-49326.
[58] VISWANATHAN R, VARSHNEY P. Distributed detection with multiple sensors Part I. Fun damentals[J/OL]. Proceedings of the IEEE, 1997, 85(1): 54-63. DOI: 10.1109/5.554208.
[59] JAMIL K, ALAM M, ALHEKAIL Z, et al. A multi-band multi-beam software-defined passiveradar. Part I: System design[C/OL]//IET International Conference on Radar Systems (Radar2012). Glasgow, UK: Institution of Engineering and Technology, 2012: 64-64
[2023-02-28].https://digital-library.theiet.org/content/conferences/10.1049/cp.2012.1580.
[60] BERIZZI F, MARTORELLA M, PETRI D, et al. USRP technology for multiband passive radar[C/OL]//2010 IEEE Radar Conference. 2010. DOI: 10.1109/RADAR.2010.5494622.
[61] COLONE F, CARDINALI R, LOMBARDO P. Cancellation of clutter and multipath in passiveradar using a sequential approach[C/OL]//2006 IEEE Conference on Radar. 2006: 1-7-. DOI:10.1109/RADAR.2006.1631830.
[62] 曹宇飞, 屈晓光, 刘尚钞. 模糊函数的快速计算[J]. 雷达与对抗, 2007(1): 4.
[63] SAHAL M, SAID Z A, PUTRA R Y, et al. Comparison of CFAR Methods on Multiple Targetsin Sea Clutter Using SPX-Radar-Simulator[C/OL]//2020 International Seminar on IntelligentTechnology and Its Applications (ISITIA). 2020: 260-265. DOI: 10.1109/ISITIA49792.2020.9163697.
[64] DAN Y, YI J, WAN X, et al. LTE-based passive radar for drone detection and its experimentalresults[J/OL]. The Journal of Engineering, 2019, 2019(20): 6910-6913. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/joe.2019.0583. DOI: https://doi.org/10.1049/joe.2019.0583.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN929.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545061
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
罗炎. 基于蜂窝网络的被动雷达目标检测[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032796-罗炎-电子与电气工程系(16419KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗炎]的文章
百度学术
百度学术中相似的文章
[罗炎]的文章
必应学术
必应学术中相似的文章
[罗炎]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。