[1] LI Y, OLDENBURG D W J G. 3 -D inversion of magnetic data [J]. 1996, 61(2): 394-408.
[2] LI Y, OLDENBURG D W J G. Separation of regional and residual magnetic field data [J]. 1998, 63(2): 431-9.
[3] GALLARDO-DELGADO L A, PéREZ-FLORES M A, GóMEZ-TREVIñO E J G. A versatile algorithm for joint 3D inversion of gravity and magnetic data [J]. 2003, 68(3): 949-59.
[4] HOVERSTEN G M, CASSASSUCE F, GASPERIKOVA E, et al. Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data [J]. 2006, 71(3): C1-C13.
[5] LIANG L, ABUBAKAR A, HABASHY T M J G. Estimating petrophysical parameters and average mud-filtrate invasion rates using joint inversi on of induction logging and pressure transient data [J]. 2011, 76(2): E21 -E34.
[6] GAO G, ABUBAKAR A, HABASHY T M J G. Joint petrophysical inversion of electromagnetic and full-waveform seismic dataJoint petrophysical EM and seismic inversion [J]. 2012, 77(3): WA3-WA18.
[7] GALLARDO L A, MEJU M A J J O G R S E. Joint two‐dimensional DC resistivity and seismic travel time inversion with cross‐gradients constraints [J]. 2004, 109(B3).
[8] HU W, ABUBAKAR A, HABASHY T M J G. Joint electromagnetic and seismic inversion using structural constraints [J]. 2009, 74(6): R99 -R109.
[9] LAN T, LIU N, HAN F, et al. Joint petrophysical and structural inversion of electromagnetic and seismic data based on volume integral equation method [J]. 2018, 57(4): 2075-86.
[10] DELL’AVERSANA P, BERNASCONI G, MIOTTI F, et al. Joint inversion of rock properties from sonic, resistivity and density well‐log measurements [J]. 2011, 59(6): 1144-54.
[11] HABER E, OLDENBURG D J I P. Joint inversion: a structural approach [J]. 1997, 13(1): 63.
[12] COLOMBO D, DE STEFANO M J T L E. Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging [J]. 2007, 26(3): 326 -31.
[13] GALLARDO L A J G R L. Multiple cross‐gradient joint inversion for geospectral imaging [J]. 2007, 34(19).
[14] GALLARDO L, FONTES S, MEJU M, et al. Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: Example from Santos Basin, offshore Brazil [J]. 201 2, 77(5): B237-B51.
[15] SUN J, LI Y. Joint inversion of multiple geophysical data using guided fuzzy c -means clustering [J]. 2016, 81(3): ID37 -ID57.
[16] ZEYEN H, POUS J J G J I. 3-D joint inversion of magnetic and gravimetric data with a priori information [J]. 1993, 112(2): 244-56.
[17] MOORKAMP M, HEINCKE B, JEGEN M, et al. A framework for 3 -D joint inversion of MT, gravity and seismic refraction data [J]. Geophysical Journal International, 2011, 184(1): 477 -93.
[18] ABDOLLAHI S, ZEYEN H, ARDESTANI V E, et al. 3D joint inversion of gravity data and Rayleigh wave group velocities to resolve shear-wave velocity and density structure in the Makran subduction zone, south -east Iran [J]. 2019, 173: 275 -90.
[19] KRIZHEVSKY A, SUTSKEVER I, HINTON G E J C O T A. Imagenet classification with deep convolutional neural networks [J]. 2017, 60(6): 84 -90.
[20] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2015 [C].
[21] WANG F, CASALINO L P, KHULLAR D J J I M. Deep learning in medicine—promise, progress, and challenges [J]. 2019, 179(3): 293 -4.
[22] SALMAN A G, KANIGORO B, HERYADI Y. Weather forecasting using deep learning techniques; proceedings of the 2015 international conference on advanced computer science and information systems (ICACSIS), F, 2015 [C]. Ieee.
[23] ZHU X X, TUIA D, MOU L, et al. Deep learning in remote sensing: A comprehensive review and list of resources [J]. 2017, 5(4): 8 -36.
[24] PUZYREV V J G J I. Deep learning electromagnetic inversion with convolutional neural networks [J]. 2019, 218(2): 817 -32.
[25] PUZYREV V, CELA J M J G J I. A review of block Krylov subspace methods for multisource electromagnetic modelling [J]. 2015, 202(2): 1241-52.
[26] ZHANG Y, PAULSON K J G P. Magnetotelluric inversion using regularized Hopfield neural networks [Link] [J]. 1997, 45(5): 725 -43.
[27] 韩卫雪, 周亚同, 石油物探 池 J. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 2018, 57(6): 862-9.
[28] 奚先, 地球物理学进展 黄 J. 散射波场的深度学习反演成像法 [J]. 2018, 33(6): 2483-9.
[29] 李建国, 张卫东, 科技创新与应用 刘 J. 深度学习在测井岩性识别中的应用 [J]. 2015, (14): 21-2.
[30] 安鹏, 地球物理学进展 曹 J. 基于深度学习的测井岩性识别方法研究与应用 [J]. 2018, 33(3): 1029-34.
[31] 宋超, 郭智奇, 鹿琪, et al. 基于支持向量机法识别砂岩中流体类型 [J]. 2015, 30(2): 616-20.
[32] 单敬福, 陈欣欣, 赵忠军, et al. 利用 BP 神经网络法对致密砂岩气藏储集层复杂岩性的识别 [J]. 2015, (3): 1257-63.
[33] 张彦周, 刘叶玲, 勘探地球物理进展 谢 J. 支持向量机在储层厚度预测中的应用 [J]. 2005, 28(6): 422-4.
[34] LI Y, YANG D. Imaging of steel casing’s conductivity using surface electrical data and a deep learning approach [M]. SEG Technical Program Expanded Abstracts 2020. Society of Exploration Geophysicists. 2020: 636 -40.
[35] LI Y, YANG D J G. Electrical imaging of hydraulic fracturing fluid using steel -cased wells and a deep -learning methodElectrical hydraulic fracturing imaging [J]. 2021, 86(4): E315-E32.
[36] GUO R, YAO H M, LI M, et al. Joint inversion of audio-magnetotelluric and seismic travel time data with deep learning constraint [J]. 2020, 59(9): 7982 -95.
[37] OH S, NOH K, YOON D, et al. Salt delineation from electromagnetic data using convolutional neural networks [J]. 2018, 16(4): 519-23.
[38] OH S, NOH K, SEOL S J, et al. Cooperative deep learning inversion of controlled -source electromagnetic data for salt delineation [J]. Geophysics, 2020, 85(4): E121-E37.
[39] 张志厚, 廖晓龙, 曹云勇, et al. 基于深度学习的重力异常与重力梯度异常联合反演 [J]. 2021, 64(4): 1435-52.
[40] GOODFELLOW I J, BULATOV Y, IBARZ J, et al. Multi-digit number recognition from street view imagery using deep convolutional neural networks [J]. 2013.
[41] LE CUN Y, BOSER B, DENKER J, et al. Handwritten digit recognition width a backpropagation network. Advances in Neural Information Systems, 2 [Z]. Morgan Kaufman, San Mateo, CA. 1990.
[42] BISHOP C M, NASRABADI N M. Pattern recognition and machine learning [M]. Springer, 2006.
[43] ZHANG Y, LING C J N C M. A strategy to apply machine learn ing to small datasets in materials science [J]. 2018, 4(1): 25.
[44] RUDIN C J N M I. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead [J]. 2019, 1(5): 206 -15.
[45] LEIJNEN S, VEEN F V. The neural netwo rk zoo; proceedings of the Proceedings, F, 2020 [C]. MDPI.
[46] POUYANFAR S, SADIQ S, YAN Y, et al. A survey on deep learning: Algorithms, techniques, and applications [J]. 2018, 51(5): 1 -36.
[47] YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning b ased natural language processing [J]. 2018, 13(3): 55 -75.
[48] BENGIO Y, SIMARD P, FRASCONI P J I T O N N. Learning long -term dependencies with gradient descent is difficult [J]. 1994, 5(2): 157-66.
[49] SUTSKEVER I, MARTENS J, HINTON G E. Generating text with recurrent neural networks; proceedings of the Proceedings of the 28th international conference on machine learning (ICML-11), F, 2011 [C].
[50] MIKOLOV T, JOULIN A, CHOPRA S, et al. Learning longer memory in recurrent neural networks [J]. 2014.
[51] SALEHINEJAD H, SANKAR S, BARFETT J, et al. Recent advances in recurrent neural networks [J]. 2017.
[52] BRYANT G A J F I P. Animal signals and emotion in music: Coordinating affect across groups [J]. 2013, 4: 990.
[53] HSU C-C, ZHUANG Y-X, LEE C-Y J A S. Deep fake image detection based on pairwise learning [J]. 2020, 10(1): 370.
[54] MARRA F, GRAGNANIELLO D, COZZOLINO D, et al. Detection of gan -generated fake images over social networks; proceedings of the 2018 IEEE conference on multimedia information processing and retrieval (MIPR), F, 2018[C]. IEEE.
[55] AGGARWAL A, MITTAL M, BATTINENI G J I J O I M D I. Generative adversarial network: An overview of theory and applications [J]. 2021, 1(1): 100004.
[56] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2015 [C].
[57] NIE D, WANG L, GAO Y, et al. Fully convolutional networks for multi-modality isointense infant brain image segmentation; proceedings of the 2016 IEEE 13Thinternational symposium on biomedical imaging (ISBI), F, 2016 [C]. IEEE.
[58] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation; proceedings of the Medical Image Computing and Computer-Assisted Intervention –MICCAI 2015: 18th International Conference, Munich, Germany, October 5 -9, 2015, Proceedings, Part III 18, F, 2015 [C]. Springer.
[59] WENG Y, ZHOU T, LI Y, et al. Nas-unet: Neural architecture search for medical image segmentation [J]. 2019, 7: 44247 -57.
[60] BALTRUŠAITIS T, AHUJA C, MORENCY L-P J I T O P A, et al. Multimodal machine learning: A survey and taxonomy [J]. 2018, 41(2): 423 -43.
[61] D'MELLO S K, KORY J J A C S. A review and meta -analysis of multimodal affect detection systems [J]. 2015, 47(3): 1 -36.
[62] SNOEK C G, WORRING M, SMEULDERS A W. Early versus late fusion in semantic video analysis; proceedings of the Proceedings of the 13th annual ACM international conference on Multimedia, F, 2005 [C].
[63] PIGNATELLI A, NICOLOSI I, CARLUCCIO R, et al. Graphical interactive generation of gravity and magnetic fields [J]. 2011, 37(4): 567 -72.
[64] CHEN T, ZHANG G J C, GEOSCIENCES. Forward modeling of gravity anomalies based on cell mergence and parallel computing [J]. 2018, 120: 1 -9.
[65] EFREMOVA A, BULYCHEV A J M U G B. The accuracy of d etermining the effective layer density at gravity logging [J]. 2008, 63(6): 405.
[66] LINDSEY N J, NEWMAN G A J G. Improved workflow for 3D inverse modeling of magnetotelluric data: Examples from five geothermal systems [J]. 2015, 53: 527 -32.
[67] CHERKOSE B A, SAIBI H J G. Investigation of the Ayrobera geothermal field using 3D magnetotelluric data inversion, Afar depression, NE Ethiopia [J]. 2021, 94: 102114.
[68] HANNESON C, UNSWORTH M. Magnetotelluric Exploration at Mount Meager, Southwestern Canada: Imaging the Magma Body Beneath a Holocene Volcanic Center; proceedings of the AGU Fall Meeting Abstracts, F, 2021 [C].
[69] KARLSDóTTIR R, VILHJáLMSSON A M, GUðNASON E Á J J O V, et al. Three dimensional inversion of magnetotelluric (MT) resistivity data from Reykjanes high temperature field in SW Iceland [J]. 2020, 391: 106498.
[70] GHALATI F H, CRAVEN J A, MOTAZEDIAN D, et al. Modeling a fractured geothermal reservoir using 3-D AMT data inversion: insights from Garibaldi Volcanic Belt, British Columbia, Canada [J]. 2022, 105: 102528.
[71] KELBERT A, MEQBEL N, EGBERT G D, et al. ModEM: A modular system for inversion of electromagnetic geophysical data [J]. 2014, 66: 40 -53.
[72] HAO Z, WANG Z, BAI D, et al. Intelligent detectio n of steel defects based on improved split attention networks [J]. 2022, 9: 1478.
[73] ELKINS A, FREITAS F F, SANZ V J A P A. Developing an app to interpret chest X-rays to support the diagnosis of respiratory pathology with artificial intelligence [J]. 2019.
[74] HARDER M, SMITH B S, HETMAN C, et al. The evolution of geological models for the DO-27 kimberlite, NWT, Canada: Implications for evaluation [J]. 2009, 112: 61-72.
[75] MACNAE J J J O G E. Applications of geophysics for the detection and exploration of kimberlites and lamproites [J]. 1995, 53(1 -3): 213-43.
[76] KEATING P, SAILHAC P J G. Use of the analytic signal to identify magnetic anomalies due to kimberlite pipes [J]. 2004, 69(1): 180 -90.
[77] POWER M, HILDES D. Geophysical strategies for kimberlite exploration in northern Canada; proceedings of the Proceedings of Exploration, F, 2007 [C].
[78] JANSEN J, WITHERLY K. The Tli Kwi Cho kimberlite complex, Northwest Territories, Canada: A geophysical case study [M]. SEG Technical Program Expanded Abstracts 2004. Society of Explora tion Geophysicists. 2004: 1147 -50.
[79] DEVRIESE S G, DAVIS K, OLDENBURG D W J I. Inversion of airborne geophysics over the DO-27/DO-18 kimberlites—Part 1: Potential fields [J]. 2017, 5(3): T299-T311.
[80] FOURNIER D, KANG S, MCMILLAN M S, et al. Inversion of airbor ne geophysics over the DO-27/DO-18 kimberlites—Part 2: Electromagnetics [J]. 2017, 5(3): T313-T25.
[81] KANG S, FOURNIER D, OLDENBURG D W J I. Inversion of airborne geophysics over the DO-27/DO-18 kimberlites—Part 3: Induced polarization [J]. 2017, 5(3): T327-T40.
[82] ASTIC T. A framework for joint petrophysically and geologically guided geophysical inversion [D]; University of British Columbia, 2020.
修改评论