中文版 | English
题名

用于药物合成的酮和酰亚胺选择性氢化反应研究

其他题名
SELECTIVE HYDROGENATION OF KETONES AND CYCLOIMIDES FOR DRUG SYNTHESIS
姓名
姓名拼音
WU Chao
学号
11949015
学位类型
博士
学位专业
085274 能源与环保
学科门类/专业学位类别
0852 工程博士
导师
张绪穆
导师单位
理学院
论文答辩日期
2023-04-17
论文提交日期
2023-07-05
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

具有光学活性的手性仲醇结构存在于许多天然产物、药物、香料、农药以及功能性材料中。不对称氢化前手性酮是手性醇现有合成方法中较为高效且原子经济的方法之一。自Noyori一代和二代催化体系发现以来,过渡金属催化的酮不对称氢化有了快速发展,许多高效的催化体系已经成功应用于手性中间体和手性药物的工业化生产中。早期酮的不对称氢化体系,主要是以钌催化剂为主,近十年,铱催化酮的不对称氢化反应因其高效和高选择性而备受化学家青睐。近几年,廉价金属(锰、铁、钴和镍等)的催化体系得到发展并在催化酮的不对称氢化反应中取得众多进展。然而现已发展的催化体系存在一些不足,如配体或催化剂较不稳定、合成步骤繁琐,或者催化剂负载量大、底物范围窄等。此外,一些酮类化合物,例如甲基乙基酮和二芳基酮等的高活性高对映选择性氢化仍未解决。因此发展易合成、底物适用性广和高活性高对映选择性的催化剂是十分必要的。

本文从具有特殊官能团的药物关键中间体的合成出发,开发了两类化合物的高效氢化体系;在过程中总结发现,合成新二茂铁基三齿配体仍具有研究价值,因此合成了一系列新二茂铁骨架的三齿配体,并探索了其在不对称氢化领域的应用,主要内容有:

以环状酰亚胺为底物,借助新合成的二茂铁骨架的手性三齿配体的铱络合物,在低催化剂负载下(S/C = 2 000),通过直接氢化的方法实现了23例ω-羟基内酰胺和23例ω-羟基酰胺化合物的高效制备,产物收率高达99%。本体系中的氢化反应模式(开环/不开环)可以通过配体结构的微小调节而改变,从而得到两种产物。该反应具有较好的官能团耐受性,对于N-芳基、杂芳基环和烷基取代的底物都具有很好的反应活性。此外,该反应体系可以实现ω-羟基内酰胺和ω-羟基酰胺的克级规模制备,反应的TON高达48 000。

以α-N-杂芳基酮为底物,借助Noyori二代催化剂,通过不对称氢化的方法实现了22例β-杂芳基氨基醇的高效制备,产物有高达98%的分离收率和 99%的ee值。该反应具有很好的官能团耐受性,对于含咪唑、三氮唑和四氮唑的底物都具有很好的对映选择性控制。同时,该反应也具有很好的化学选择性,当体系中含有碳碳双键时,可以专一地只氢化碳氧双键而保留碳碳双键。此外,该反应体系可以实现苯巴那酯和舍他康唑关键手性中间体的克级规模制备,反应的TON高达4 000,氢化反应产物经由一步反应即可得到苯巴那酯药物分子。

在前期研究工作的基础上,设计合成了一系列新型二茂铁骨架的三齿PNN配体和PNP配体。和传统的二茂铁骨架相比,新开发的二茂铁骨架含有稳定性高且酸性更强的胺片段和富电子的膦片段。这两类配体具有稳定性好、合成简便、结构容易调节和富电性等特点。PNN和PNP配体在铱催化的酮的不对称氢化反应中具有较大差别,PNN配体对于位阻较大酮的不对称氢化的对映选择性控制较好,产物ee值可达93%,PNP配体在苯乙酮的不对称氢化中可获得89% ee值。

 

关键词
语种
中文
培养类别
联合培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] Akabori S, Sakurai S, Izumi Y, et al. An Asymmetric Catalyst[J]. Nature, 1956, 178(4528): 323-324.

[2] Calvin M, Polanyi M. Homogeneous Catalytic Hydrogenation[J]. Transactions of the Faraday Society, 1938, 34(0): 1181-1191.

[3] Osborn J A, Jardine F H, Young J F, et al. The Preparation and Properties of Tris(Triphenylphosphine)Halogenorhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, (0): 1711-1732.

[4] Hallman P S, Evans D, Osborn J A, et al. Selective Catalytic Homogeneous Hydrogenation of Terminal Olefins Using Tris(Triphenylphosphine)Hydridochlororuthenium(Ii); Hydrogen Transfer in Exchange and Isomerisation Reactions of Olefins[J]. Chemical Communications (London), 1967, (7): 305-306.

[5] Knowles W S, Sabacky M J. Catalytic Asymmetric Hydrogenation Employing a Soluble, Optically Active, Rhodium Complex[J]. Chemical Communications (London), 1968, (22): 1445-1446.

[6] Horner L, Siegel H, Büthe H. Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution[J]. Angewandte Chemie International Edition in English, 1968, 7(12): 942-942.

[7] Dang T P, Kagan H B. The Asymmetric Synthesis of Hydratropic Acid and Amino-Acids by Homogeneous Catalytic Hydrogenation[J]. Journal of the Chemical Society D: Chemical Communications, 1971, (10): 481-481.

[8] Knowles W S, Sabacky M J, Vineyard B D, et al. Asymmetric Hydrogenation with a Complex of Rhodium and a Chiral Bisphosphine[J]. Journal of the American Chemical Society, 1975, 97(9): 2567-2568.

[9] Noyori R, Ohkuma T, Kitamura M, et al. Asymmetric Hydrogenation Of .Beta.-Keto Carboxylic Esters. A Practical, Purely Chemical Access To .Beta.-Hydroxy Esters in High Enantiomeric Purity[J]. Journal of the American Chemical Society, 1987, 109(19): 5856-5858.

[10] Berthod M, Mignani G, Woodward G, et al. Modified Binap:  The How and the Why[J]. Chemical Reviews, 2005, 105(5): 1801-1836.

[11] Schrock R R, Osborn J A. Rhodium Catalysts for the Homogeneous Hydrogenation of Ketones[J]. Journal of the Chemical Society D: Chemical Communications, 1970, (9): 567-568.

[12] Bonvicini P, Levi A, Modena G, et al. Asymmetric Reduction of Ketones by Homogeneous Catalytic Hydrogenation[J]. Journal of the Chemical Society, Chemical Communications, 1972, (21): 1188-1189.

[13] Masato T, Yoshihisa W, Take-Aki M, et al. Asymmetric Reduction of Ketones with a Cationic Chiral Phosphine Rhodium Complex Catalyst[J]. Chemistry Letters, 1973, 2(3): 239-240.

[14] Hayashi T, Katsumura A, Konishi M, et al. Asymmetric Synthesis of 2-Amino-1-Arylethanols by Catalytic Asymmetric Hydrogenation[J]. Tetrahedron Letters, 1979, 20(5): 425-428.

[15] Togni A, Breutel C, Schnyder A, et al. A Novel Easily Accessible Chiral Ferrocenyldiphosphine for Highly Enantioselective Hydrogenation, Allylic Alkylation, and Hydroboration Reactions[J]. Journal of the American Chemical Society, 1994, 116(9): 4062-4066.

[16] Carpentier J-F, Mortreux A. Asymmetric Hydrogenation of Α-Keto Acid Derivatives by Rhodium-{Amidophosphine-Phosphinite} Catalysts[J]. Tetrahedron: Asymmetry, 1997, 8(7): 1083-1099.

[17] Devocelle M, Agbossou F, Mortreux A. Asymmetric Hydrogenation of Α, Β, and Γ-Aminoketones Catalyzed by Cationic Rhodium(I){AMPP} Complexes[J]. Synlett, 1997, 1997(11): 1306-1308.

[18] Pasquier C, Naili S, Pelinski L, et al. Synthesis and Application in Enantioselective Hydrogenation of New Free and Chromium Complexed Aminophosphine–Phosphinite Ligands[J]. Tetrahedron: Asymmetry, 1998, 9(2): 193-196.

[19] Nagy-Magos Z, Vastag S N, Heil B L, et al. Phosphinerhodium Complexes as Homogeneous Catalysts: Ix. Asymmetric Hydrogenation of an Olefin with Catalysts Formed from a Chiral Rhodium(I) Carboxylate and Non-Chiral Phosphines[J]. Journal of Organometallic Chemistry, 1979, 171(1): 97-102.

[20] Bakos J, Tóth I, Heil B, et al. A Facile Method for the Preparation of 2,4-Bis(Diphenylphosphino)Pentane (BDPP) Enantiomers and Their Application in Asymmetric Hydrogenation[J]. Journal of Organometallic Chemistry, 1985, 279(1): 23-29.

[21] Jiang Q, Xiao D, Zhang Z, et al. Highly Enantioselective Hydrogenation of Cyclic Enol Acetates Catalyzed by a Rh–Pennphos Complex[J]. Angewandte Chemie International Edition, 1999, 38(4): 516-518.

[22] Liu D, Zhang X. Practical P-Chiral Phosphane Ligand for Rh-Catalyzed Asymmetric Hydrogenation[J]. European Journal of Organic Chemistry, 2005, 2005(4): 646-649.

[23] Liu D, Gao W, Wang C, et al. Practical Synthesis of Enantiopure γ-Amino Alcohols by Rhodium-Catalyzed Asymmetric Hydrogenation of β-Secondary-Amino Ketones[J]. Angewandte Chemie International Edition, 2005, 44(11): 1687-1689.

[24] Hu Q, Zhang Z, Liu Y, et al. ZnCl2-Promoted Asymmetric Hydrogenation of β-Secondary-Amino Ketones Catalyzed by a P-Chiral Rh–Bisphosphine Complex[J]. Angewandte Chemie International Edition, 2015, 54(7): 2260-2264.

[25] Yang H, Huo N, Yang P, et al. Rhodium Catalyzed Asymmetric Hydrogenation of 2-Pyridine Ketones[J]. Organic Letters, 2015, 17(17): 4144-4147.

[26] Brüning F, Nagae H, Käch D, et al. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(Iii) Monohydride Complexes Bearing Josiphos Ligands[J]. Chemistry – A European Journal, 2019, 25(46): 10818-10822.

[27] Osakada K, Obana M, Ikariya T, et al. Catalytic Asymmetric Hydrogenation of Cyclic Anhydrides Using Ruthenium (Ii) Chiral Phosphine Complex[J]. Tetrahedron Letters, 1981, 22(43): 4297-4300.

[28] Mashima K, Kusano K-H, Sato N, et al. Cationic BINAP-Ru(II) Halide Complexes: Highly Efficient Catalysts for Stereoselective Asymmetric Hydrogenation Of .Alpha.- And .Beta.-Functionalized Ketones[J]. The Journal of Organic Chemistry, 1994, 59(11): 3064-3076.

[29] Ohta T, Tonomura Y, Nozaki K, et al. An Anionic Dinuclear Binap−Ruthenium(II) Complex:  Crystal Structure of [NH2Et2][{RuCl((R)-P-MeO-Binap)}2(μ-Cl)3] and Its Use in Asymmetric Hydrogenation[J]. Organometallics, 1996, 15(6): 1521-1523.

[30] Lei A, Wu S, He M, et al. Highly Enantioselective Asymmetric Hydrogenation of Α-Phthalimide Ketone:  An Efficient Entry to Enantiomerically Pure Amino Alcohols[J]. Journal of the American Chemical Society, 2004, 126(6): 1626-1627.

[31] Kitamura M, Ohkuma T, Inoue S, et al. Homogeneous Asymmetric Hydrogenation of Functionalized Ketones[J]. Journal of the American Chemical Society, 1988, 110(2): 629-631.

[32] Ohkuma T, Ooka H, Hashiguchi S, et al. Practical Enantioselective Hydrogenation of Aromatic Ketones[J]. Journal of the American Chemical Society, 1995, 117(9): 2675-2676.

[33] Zhu G, Cao P, Jiang Q, et al. Highly Enantioselective Rh-Catalyzed Hydrogenations with a New Chiral 1,4-Bisphosphine Containing a Cyclic Backbone[J]. Journal of the American Chemical Society, 1997, 119(7): 1799-1800.

[34] Cao P, Zhang X. Ru-BICP-Catalyzed Asymmetric Hydrogenation of Aromatic Ketones[J]. The Journal of Organic Chemistry, 1999, 64(6): 2127-2129.

[35] Li W, Sun X, Zhou L, et al. Highly Efficient and Highly Enantioselective Asymmetric Hydrogenation of Ketones with Tunesphos/1,2-Diamine−Ruthenium(II) Complexes[J]. The Journal of Organic Chemistry, 2009, 74(3): 1397-1399.

[36] Burk M J, Hems W, Herzberg D, et al. A Catalyst for Efficient and Highly Enantioselective Hydrogenation of Aromatic, Heteroaromatic, and α,β-Unsaturated Ketones[J]. Organic Letters, 2000, 2(26): 4173-4176.

[37] Xie J-H, Wang L-X, Fu Y, et al. Synthesis of Spiro Diphosphines and Their Application in Asymmetric Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 2003, 125(15): 4404-4405.

[38] Xie J-H, Liu S, Huo X-H, et al. Ruii-Sdp-Complex-Catalyzed Asymmetric Hydrogenation of Ketones. Effect of the Alkali Metal Cation in the Reaction[J]. The Journal of Organic Chemistry, 2005, 70(8): 2967-2973.

[39] Liu S, Xie J-H, Wang L-X, et al. Dynamic Kinetic Resolution Allows a Highly Enantioselective Synthesis of Cis-α-Aminocycloalkanols by Ruthenium-Catalyzed Asymmetric Hydrogenation[J]. Angewandte Chemie International Edition, 2007, 46(39): 7506-7508.

[40] Xie J-H, Zhou Z-T, Kong W-L, et al. Ru-Catalyzed Asymmetric Hydrogenation of Racemic Aldehydes via Dynamic Kinetic Resolution:  Efficient Synthesis of Optically Active Primary Alcohols[J]. Journal of the American Chemical Society, 2007, 129(7): 1868-1869.

[41] Liu S, Xie J-H, Li W, et al. Highly Enantioselective Synthesis of Chiral Cyclic Amino Alcohols and Conhydrine by Ruthenium-Catalyzed Asymmetric Hydrogenation[J]. Organic Letters, 2009, 11(21): 4994-4997.

[42] Xie J-H, Liu S, Kong W-L, et al. Highly Enantioselective and Diastereoselective Synthesis of Chiral Amino Alcohols by Ruthenium-Catalyzed Asymmetric Hydrogenation of α-Amino Aliphatic Ketones[J]. Journal of the American Chemical Society, 2009, 131(12): 4222-4223.

[43] Bai W-J, Xie J-H, Li Y-L, et al. Enantioselective Synthesis of Chiral β-Aryloxy Alcohols by Ruthenium-Catalyzed Ketone Hydrogenation Via Dynamic Kinetic Resolution (DKR)[J]. Advanced Synthesis & Catalysis, 2010, 352(1): 81-84.

[44] Xie J-H, Guo L-C, Yang X-H, et al. Enantioselective Synthesis of 2,6-Cis-Disubstituted Tetrahydropyrans Via a Tandem Catalytic Asymmetric Hydrogenation/Oxa-Michael Cyclization: An Efficient Approach to (−)-Centrolobine[J]. Organic Letters, 2012, 14(18): 4758-4761.

[45] Li G, Xie J-H, Hou J, et al. Catalytic Asymmetric Hydrogenation of Α-Arylcyclohexanones and Total Synthesis of (−)-α-Lycorane[J]. Advanced Synthesis & Catalysis, 2013, 355(8): 1597-1604.

[46] Liu C, Xie J-H, Li Y-L, et al. Asymmetric Hydrogenation of α,α′-Disubstituted Cycloketones through Dynamic Kinetic Resolution: An Efficient Construction of Chiral Diols with Three Contiguous Stereocenters[J]. Angewandte Chemie International Edition, 2013, 52(2): 593-596.

[47] Xie J-H, Bao D-H, Zhou Q-L. Recent Advances in the Development of Chiral Metal Catalysts for the Asymmetric Hydrogenation of Ketones[J]. Synthesis, 2015, 47(04): 460-471.

[48] Liu Y, Cheng L-J, Yue H-T, et al. Divergent Enantioselective Synthesis of Hapalindole-Type Alkaloids Using Catalytic Asymmetric Hydrogenation of a Ketone to Construct the Chiral Core Structure[J]. Chemical Science, 2016, 7(7): 4725-4729.

[49] Wu J, Chen H, Kwok W, et al. Air-Stable Catalysts for Highly Efficient and Enantioselective Hydrogenation of Aromatic Ketones[J]. The Journal of Organic Chemistry, 2002, 67(22): 7908-7910.

[50] Hu A, Ngo H L, Lin W. 4,4‘-Disubstituted Binaps for Highly Enantioselective Ru-Catalyzed Asymmetric Hydrogenation of Ketones[J]. Organic Letters, 2004, 6(17): 2937-2940.

[51] Burk S, Franciò G, Leitner W. Ruthenium-Catalysed Asymmetric Hydrogenation of Ketones Using Quinaphos as the Ligand[J]. Chemical Communications, 2005, (27): 3460-3462.

[52] Ngo H L, Lin W. Development of 4,4-Substituted-Xylbinap Ligands for Highly Enantioselective Hydrogenation of Ketones[J]. The Journal of Organic Chemistry, 2005, 70(4): 1177-1187.

[53] Mikami K, Wakabayashi K, Aikawa K. “Achiral” Benzophenone Ligand for Highly Enantioselective Ru Catalysts in Ketone Hydrogenation[J]. Organic Letters, 2006, 8(8): 1517-1519.

[54] Rodríguez S, Qu B, Fandrick K R, et al. Amine-Tunable Ruthenium Catalysts for Asymmetric Reduction of Ketones[J]. Advanced Synthesis & Catalysis, 2014, 356(2-3): 301-307.

[55] Ohkuma T, Hattori T, Ooka H, et al. Binap/1,4-Diamine−Ruthenium(II) Complexes for Efficient Asymmetric Hydrogenation of 1-Tetralones and Analogues[J]. Organic Letters, 2004, 6(16): 2681-2683.

[56] Arai N, Akashi M, Sugizaki S, et al. Asymmetric Hydrogenation of Bicyclic Ketones Catalyzed by BINAP/IPHAN−Ru(II) Complex[J]. Organic Letters, 2010, 12(15): 3380-3383.

[57] Grasa G A, Zanotti-Gerosa A, Medlock J A, et al. Asymmetric Hydrogenation of Isobutyrophenone Using a [(Diphosphine) RuCl2 (1,4-Diamine)] Catalyst[J]. Organic Letters, 2005, 7(8): 1449-1451.

[58] Arai N, Ooka H, Azuma K, et al. General Asymmetric Hydrogenation of Α-Branched Aromatic Ketones Catalyzed by Tolbinap/DMAPEN−Ruthenium(II) Complex[J]. Organic Letters, 2007, 9(5): 939-941.

[59] Li Y, Ding K, Sandoval C A. Hybrid NH2-Benzimidazole Ligands for Efficient Ru-Catalyzed Asymmetric Hydrogenation of Aryl Ketones[J]. Organic Letters, 2009, 11(4): 907-910.

[60] Li Y, Zhou Y, Shi Q, et al. An Efficient Diphosphine/Hybrid-Amine Combination for Ruthenium(II)-Catalyzed Asymmetric Hydrogenation of Aryl Ketones[J]. Advanced Synthesis & Catalysis, 2011, 353(2-3): 495-500.

[61] Zhu Q, Shi D, Xia C, et al. Ruthenium Catalysts Containing Rigid Chiral Diamines and Achiral Diphosphanes for Highly Enantioselective Hydrogenation of Aromatic Ketones[J]. Chemistry – A European Journal, 2011, 17(28): 7760-7763.

[62] Chen X, Zhou H, Zhang K, et al. Highly Enantioselective Hydrogenation of Steric Hindrance Enones Catalyzed by Ru Complexes with Chiral Diamine and Achiral Phosphane[J]. Organic Letters, 2014, 16(15): 3912-3915.

[63] Jiang Y, Jiang Q, Zhang X. A New Chiral Bis(Oxazolinylmethyl)Amine Ligand for Ru-Catalyzed Asymmetric Transfer Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 1998, 120(15): 3817-3818.

[64] Li W, Hou G, Wang C, et al. Asymmetric Hydrogenation of Ketones Catalyzed by a Ruthenium(II)-Indan–Ambox Complex[J]. Chemical Communications, 2010, 46(22): 3979-3981.

[65] Clarke M L, Díaz-Valenzuela M B, Slawin A M Z. Hydrogenation of Aldehydes, Esters, Imines, and Ketones Catalyzed by a Ruthenium Complex of a Chiral Tridentate Ligand[J]. Organometallics, 2007, 26(1): 16-19.

[66] Phillips S D, Fuentes J A, Clarke M L. On the NH Effect in Ruthenium-Catalysed Hydrogenation of Ketones: Rational Design of Phosphine-Amino-Alcohol Ligands for Asymmetric Hydrogenation of Ketones[J]. Chemistry – A European Journal, 2010, 16(27): 8002-8005.

[67] Yamamura T, Nakatsuka H, Tanaka S, et al. Asymmetric Hydrogenation of Tert-Alkyl Ketones: DMSO Effect in Unification of Stereoisomeric Ruthenium Complexes[J]. Angewandte Chemie International Edition, 2013, 52(35): 9313-9315.

[68] Patchett R, Magpantay I, Saudan L, et al. Asymmetric Hydrogenation of Ketones with H2 and Ruthenium Catalysts Containing Chiral Tetradentate S2N2 Ligands[J]. Angewandte Chemie International Edition, 2013, 52(39): 10352-10355.

[69] Huang H, Okuno T, Tsuda K, et al. Enantioselective Hydrogenation of Aromatic Ketones Catalyzed by Ru Complexes of Goodwin−Lions-Type Sp2n/Sp3n Hybrid Ligands R-Binan-r-Py[J]. Journal of the American Chemical Society, 2006, 128(27): 8716-8717.

[70] Naud F, Malan C, Spindler F, et al. Ru-(Phosphine-Oxazoline) Complexes as Effective, Industrially Viable Catalysts for the Enantioselective Hydrogenation of Aryl Ketones[J]. Advanced Synthesis & Catalysis, 2006, 348(1-2): 47-50.

[71] Schuecker R, Zirakzadeh A, Mereiter K, et al. Synthesis, Coordination Behavior, and Structural Features of Chiral Amino-, Pyrazolyl-, and Phosphino-Substituted Ferrocenyloxazolines and Their Application in Asymmetric Hydrogenations[J]. Organometallics, 2011, 30(17): 4711-4719.

[72] Baratta W, Fanfoni L, Magnolia S, et al. Benzo[H]Quinoline Pincer Ruthenium and Osmium Catalysts for Hydrogenation of Ketones[J]. European Journal of Inorganic Chemistry, 2010, 2010(9): 1419-1423.

[73] Wang J, Liu D, Liu Y, et al. Asymmetric Hydrogenation of β-Amino Ketones with the Bimetallic Complex Ruphox-Ru as the Chiral Catalyst[J]. Organic & Biomolecular Chemistry, 2013, 11(23): 3855-3861.

[74] Ito J-I, Ujiie S, Nishiyama H. New Bis(Oxazolinyl)Phenyl−Ruthenium(Ii) Complexes and Their Catalytic Activity for Enantioselective Hydrogenation and Transfer Hydrogenation of Ketones[J]. Organometallics, 2009, 28(2): 630-638.

[75] Baratta W, Chelucci G, Herdtweck E, et al. Highly Diastereoselective Formation of Ruthenium Complexes for Efficient Catalytic Asymmetric Transfer Hydrogenation[J]. Angewandte Chemie International Edition, 2007, 46(40): 7651-7654.

[76] Baratta W, Chelucci G, Magnolia S, et al. Highly Productive CNN Pincer Ruthenium Catalysts for the Asymmetric Reduction of Alkyl Aryl Ketones[J]. Chemistry – A European Journal, 2009, 15(3): 726-732.

[77] Mashima K, Akutagawa T, Zhang X, et al. Chemoselective Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds to Allylic Alcohols Catalysed by [Ir(BINAP)(COD)]BF4-Aminophosphine[J]. Journal of Organometallic Chemistry, 1992, 428(1): 213-222.

[78] Zhang X, Taketomi T, Yoshizumi T, et al. Asymmetric Hydrogenation of Cycloalkanones Catalyzed by BINAP-Iridium(I)-Aminophosphine Systems[J]. Journal of the American Chemical Society, 1993, 115(8): 3318-3319.

[79] Xie J-B, Xie J-H, Liu X-Y, et al. Highly Enantioselective Hydrogenation of α-Arylmethylene Cycloalkanones Catalyzed by Iridium Complexes of Chiral Spiro Aminophosphine Ligands[J]. Journal of the American Chemical Society, 2010, 132(13): 4538-4539.

[80] Xie J-B, Xie J-H, Liu X-Y, et al. Chiral Iridium Spiro Aminophosphine Complexes: Asymmetric Hydrogenation of Simple Ketones, Structure, and Plausible Mechanism[J]. Chemistry – An Asian Journal, 2011, 6(3): 899-908.

[81] 许聪, 胡文浩. 手性螺环配体及催化剂在不对称催化反应中的应用研究进展[J]. 高等学校化学学报, 2020, 41(10): 2153-2173.

[82] Xie J-H, Liu X-Y, Xie J-B, et al. An Additional Coordination Group Leads to Extremely Efficient Chiral Iridium Catalysts for Asymmetric Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2011, 50(32): 7329-7332.

[83] Xie J-H, Liu X-Y, Yang X-H, et al. Chiral Iridium Catalysts Bearing Spiro Pyridine-Aminophosphine Ligands Enable Highly Efficient Asymmetric Hydrogenation of Β-Aryl Β-Ketoesters[J]. Angewandte Chemie International Edition, 2012, 51(1): 201-203.

[84] Yang X-H, Xie J-H, Liu W-P, et al. Catalytic Asymmetric Hydrogenation of δ-Ketoesters: Highly Efficient Approach to Chiral 1,5-Diols[J]. Angewandte Chemie International Edition, 2013, 52(30): 7833-7836.

[85] Yan P-C, Xie J-H, Zhang X-D, et al. Direct Asymmetric Hydrogenation of α-Keto Acids by Using the Highly Efficient Chiral Spiro Iridium Catalysts[J]. Chemical Communications, 2014, 50(100): 15987-15990.

[86] Liu Y-T, Chen J-Q, Li L-P, et al. Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enones to Chiral Cycloalkanols with Three Contiguous Stereocenters[J]. Organic Letters, 2017, 19(12): 3231-3234.

[87] Hua Y-Y, Bin H-Y, Wei T, et al. Iridium-Catalyzed Asymmetric Hydrogenation of γ- and δ-Ketoacids for Enantioselective Synthesis of γ- and δ-Lactones[J]. Organic Letters, 2020, 22(3): 818-822.

[88] Bao D-H, Wu H-L, Liu C-L, et al. Development of Chiral Spiro P-N-S Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of β-Alkyl-β-Ketoesters[J]. Angewandte Chemie International Edition, 2015, 54(30): 8791-8794.

[89] Bao D-H, Gu X-S, Xie J-H, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Racemic β-Keto Lactams Via Dynamic Kinetic Resolution[J]. Organic Letters, 2017, 19(1): 118-121.

[90] Chen G-Q, Lin B-J, Huang J-M, et al. Design and Synthesis of Chiral Oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann’s Lactones with Molecular H2[J]. Journal of the American Chemical Society, 2018, 140(26): 8064-8068.

[91] Zheng Z, Cao Y, Chong Q, et al. Chiral Cyclohexyl-Fused SpirobIIndanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis[J]. Journal of the American Chemical Society, 2018, 140(32): 10374-10381.

[92] Zhang F-H, Wang C, Xie J-H, et al. Synthesis of Tridentate Chiral Spiro Aminophosphine−Oxazoline Ligands and Application to Asymmetric Hydrogenation of Α-Keto Amides[J]. Advanced Synthesis & Catalysis, 2019, 361(12): 2832-2835.

[93] Zhang F-H, Zhang F-J, Li M-L, et al. Enantioselective Hydrogenation of Dialkyl Ketones[J]. Nature Catalysis, 2020, 3(8): 621-627.

[94] Le Roux E, Malacea R, Manoury E, et al. Highly Efficient Asymmetric Hydrogenation of Alkyl Aryl Ketones Catalyzed by Iridium Complexes with Chiral Planar Ferrocenyl Phosphino-Thioether Ligands[J]. Advanced Synthesis & Catalysis, 2007, 349(3): 309-313.

[95] Nie H, Zhou G, Wang Q, et al. Asymmetric Hydrogenation of Aromatic Ketones Using an Iridium(I) Catalyst Containing Ferrocene-Based P–N–N Tridentate Ligands[J]. Tetrahedron: Asymmetry, 2013, 24(24): 1567-1571.

[96] Wang H, Wen J, Zhang X. Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation[J]. Chemical Reviews, 2021, 121(13): 7530-7567.

[97] Wu W, Liu S, Duan M, et al. Iridium Catalysts with F-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones[J]. Organic Letters, 2016, 18(12): 2938-2941.

[98] Gu G, Yang T, Yu O, et al. Enantioselective Iridium-Catalyzed Hydrogenation of α-Keto Amides to α-Hydroxy Amides[J]. Organic Letters, 2017, 19(21): 5920-5923.

[99] Hu Y, Wu W, Dong X-Q, et al. Efficient Access to Chiral 1,2-Amino Alcohols Via Ir/f-Amphox-Catalyzed Asymmetric Hydrogenation of α-Amino Ketones[J]. Organic Chemistry Frontiers, 2017, 4(8): 1499-1502.

[100] Wu W, Xie Y, Li P, et al. Asymmetric Hydrogenation of Α-Hydroxy Ketones with an Iridium/F-Amphox Catalyst: Efficient Access to Chiral 1,2-Diols[J]. Organic Chemistry Frontiers, 2017, 4(4): 555-559.

[101] Wang S, Yu Y, Wen J, et al. Iridium/F-Amphox-Catalyzed Asymmetric Hydrogenation of Styrylglyoxylamides[J]. Synlett, 2018, 29(16): 2203-2207.

[102] Yin C, Wu W, Hu Y, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins[J]. Advanced Synthesis & Catalysis, 2018, 360(11): 2119-2124.

[103] Wang J, Shao P-L, Lin X, et al. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined[J]. Angewandte Chemie International Edition, 2020, 59(41): 18166-18171.

[104] Yu J, Duan M, Wu W, et al. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones[J]. Chemistry – A European Journal, 2017, 23(4): 970-975.

[105] Hou C-J, Hu X-P. Sterically Hindered Chiral Ferrocenyl P,N,N-Ligands for Highly Diastereo-/Enantioselective Ir-Catalyzed Hydrogenation of α-Alkyl-β-Ketoesters Via Dynamic Kinetic Resolution[J]. Organic Letters, 2016, 18(21): 5592-5595.

[106] Qin C, Hou C-J, Liu H, et al. Ir-Catalyzed Asymmetric Hydrogenation of Simple Ketones with Chiral Ferrocenyl P,N,N-Ligands[J]. Tetrahedron Letters, 2018, 59(8): 719-722.

[107] Liang Z, Yang T, Gu G, et al. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones[J]. Chinese Journal of Chemistry, 2018, 36(9): 851-856.

[108] Ling F, Nian S, Chen J, et al. Development of Ferrocene-Based Diamine-Phosphine-Sulfonamide Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones[J]. The Journal of Organic Chemistry, 2018, 83(18): 10749-10761.

[109] Wang Y, Yang G, Xie F, et al. A Ferrocene-Based NH-Free Phosphine-Oxazoline Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones[J]. Organic Letters, 2018, 20(19): 6135-6139.

[110] 郭娜,朱守非. 铁催化氢化反应研究进展[J]. 有机化学, 2015, 35(7): 1383-1398.

[111] Morris R H. Asymmetric Hydrogenation, Transfer Hydrogenation and Hydrosilylation of Ketones Catalyzed by Iron Complexes[J]. Chemical Society Reviews, 2009, 38(8): 2282-2291.

[112] Yu S, Shen W, Li Y, et al. Iron-Catalyzed Highly Enantioselective Reduction of Aromatic Ketones with Chiral P2N4-Type Macrocycles[J]. Advanced Synthesis & Catalysis, 2012, 354(5): 818-822.

[113] 陈建珊,陈玲玲,邢雁,等. 手性羰基铁体系催化酮的不对称氢转移氢化[J]. 化学学报, 2004, 62(18): 1745-1750.

[114] Casey C P, Guan H. An Efficient and Chemoselective Iron Catalyst for the Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 2007, 129(18): 5816-5817.

[115] Sui-Seng C, Freutel F, Lough A J, et al. Highly Efficient Catalyst Systems Using Iron Complexes with a Tetradentate Pnnp Ligand for the Asymmetric Hydrogenation of Polar Bonds[J]. Angewandte Chemie International Edition, 2008, 47(5): 940-943.

[116] Zuo W, Lough A J, Li Y F, et al. Amine(Imine)Diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines[J]. Science, 2013, 342(6162): 1080-1083.

[117] Berkessel A, Reichau S, Von Der Höh A, et al. Light-Induced Enantioselective Hydrogenation Using Chiral Derivatives of Casey’s Iron–Cyclopentadienone Catalyst[J]. Organometallics, 2011, 30(14): 3880-3887.

[118] Li Y, Yu S, Wu X, et al. Iron Catalyzed Asymmetric Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 2014, 136(10): 4031-4039.

[119] Lagaditis P O, Sues P E, Sonnenberg J F, et al. Iron(II) Complexes Containing Unsymmetrical P–N–P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines[J]. Journal of the American Chemical Society, 2014, 136(4): 1367-1380.

[120] Smith S M, Lagaditis P O, Lüpke A, et al. Unsymmetrical Iron P-NH-P′ Catalysts for the Asymmetric Pressure Hydrogenation of Aryl Ketones[J]. Chemistry – A European Journal, 2017, 23(30): 7212-7216.

[121] Zirakzadeh A, Kirchner K, Roller A, et al. Iron(II) Complexes Containing Chiral Unsymmetrical Pnp′ Pincer Ligands: Synthesis and Application in Asymmetric Hydrogenations[J]. Organometallics, 2016, 35(21): 3781-3787.

[122] Elangovan S, Topf C, Fischer S, et al. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes[J]. Journal of the American Chemical Society, 2016, 138(28): 8809-8814.

[123] Widegren M B, Harkness G J, Slawin A M Z, et al. A Highly Active Manganese Catalyst for Enantioselective Ketone and Ester Hydrogenation[J]. Angewandte Chemie International Edition, 2017, 56(21): 5825-5828.

[124] Widegren M B, Clarke M L. Towards Practical Earth Abundant Reduction Catalysis: Design of Improved Catalysts for Manganese Catalysed Hydrogenation[J]. Catalysis Science & Technology, 2019, 9(21): 6047-6058.

[125] Garbe M, Junge K, Walker S, et al. Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand[J]. Angewandte Chemie International Edition, 2017, 56(37): 11237-11241.

[126] Zhang L, Tang Y, Han Z, et al. Lutidine-Based Chiral Pincer Manganese Catalysts for Enantioselective Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2019, 58(15): 4973-4977.

[127] Zhang L, Wang Z, Han Z, et al. Manganese-Catalyzed Anti-Selective Asymmetric Hydrogenation of α-Substituted Β-Ketoamides[J]. Angewandte Chemie International Edition, 2020, 59(36): 15565-15569.

[128] Ling F, Hou H, Chen J, et al. Highly Enantioselective Synthesis of Chiral Benzhydrols via Manganese Catalyzed Asymmetric Hydrogenation of Unsymmetrical Benzophenones Using an Imidazole-Based Chiral Pnn Tridentate Ligand[J]. Organic Letters, 2019, 21(11): 3937-3941.

[129] Zeng L, Yang H, Zhao M, et al. C1-Symmetric Pnp Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model[J]. ACS Catalysis, 2020, 10(23): 13794-13799.

[130] Shmidt F K, Levkovskii Y S, Ryutina N M, et al. Isoprene Hydrogenation in the Presence of Cobalt Pohosphine Complexes[J]. Reaction Kinetics and Catalysis Letters, 1979, 12(4): 475-478.

[131] Zhong H, Friedfeld M R, Chirik P J. Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(Phosphine) Cobalt(I) Diene and Arene Compounds[J]. Angewandte Chemie International Edition, 2019, 58(27): 9194-9198.

[132] Zhang G, Scott B L, Hanson S K. Mild and Homogeneous Cobalt-Catalyzed Hydrogenation of C=C, C=O, and C=N Bonds[J]. Angewandte Chemie International Edition, 2012, 51(48): 12102-12106.

[133] Hu Y, Zhang Z, Zhang J, et al. Cobalt-Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions[J]. Angewandte Chemie International Edition, 2019, 58(44): 15767-15771.

[134] Zhang G, Scott B L, Hanson S K. Mild and Homogeneous Cobalt-Catalyzed Hydrogenation of C=C, C=O, and C=N Bonds[J]. Angewandte Chemie International Edition, 2012, 51(48): 12102-12106.

[135] Gärtner D, Welther A, Rad B R, et al. Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations[J]. Angewandte Chemie International Edition, 2014, 53(14): 3722-3726.

[136] Rösler S, Obenauf J, Kempe R. A Highly Active and Easily Accessible Cobalt Catalyst for Selective Hydrogenation of C=O Bonds[J]. Journal of the American Chemical Society, 2015, 137(25): 7998-8001.

[137] Zhong R, Wei Z, Zhang W, et al. A Practical and Stereoselective in Situ NHC-Cobalt Catalytic System for Hydrogenation of Ketones and Aldehydes[J]. Chem, 2019, 5(6): 1552-1566.

[138] Zhang D, Zhu E-Z, Lin Z-W, et al. Enantioselective Hydrogenation of Ketones Catalyzed by Chiral Cobalt Complexes Containing Pnnp Ligand[J]. Asian Journal of Organic Chemistry, 2016, 5(11): 1323-1326.

[139] Du T, Wang B, Wang C, et al. Cobalt-Catalyzed Asymmetric Hydrogenation of Ketones: A Remarkable Additive Effect on Enantioselectivity[J]. Chinese Chemical Letters, 2021, 32(3): 1241-1244.

[140] Shimizu H, Igarashi D, Kuriyama W, et al. Asymmetric Hydrogenation of Aryl Ketones Mediated by a Copper Catalyst[J]. Organic Letters, 2007, 9(9): 1655-1657.

[141] Junge K, Wendt B, Addis D, et al. Copper-Catalyzed Enantioselective Hydrogenation of Ketones[J]. Chemistry – A European Journal, 2011, 17(1): 101-105.

[142] Krabbe S W, Hatcher M A, Bowman R K, et al. Copper-Catalyzed Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones[J]. Organic Letters, 2013, 15(17): 4560-4563.

[143] Zatolochnaya Olga v, Rodríguez S, Zhang Y, et al. Copper-Catalyzed Asymmetric Hydrogenation of 2-Substituted Ketones Via Dynamic Kinetic Resolution[J]. Chemical Science, 2018, 9(19): 4505-4510.

[144] 刘元华,董秀琴,张绪穆. 镍催化均相不对称氢化反应研究进展[J]. 有机化学, 2020, 40(5): 1096-1104.

[145] Liu Yuanhua D X-Q, Zhang Xumu. Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1096-1104.

[146] Hamada Y, Koseki Y, Fujii T, et al. Catalytic Asymmetric Hydrogenation of α-Amino-β-Keto Ester Hydrochlorides Using Homogeneous Chiral Nickel-Bisphosphine Complexes through DKR[J]. Chemical Communications, 2008, (46): 6206-6208.

[147] Hibino T, Makino K, Sugiyama T, et al. Homogeneous Chiral Nickel-Catalyzed Asymmetric Hydrogenation of Substituted Aromatic α-Aminoketone Hydrochlorides through Dynamic Kinetic Resolution[J]. ChemCatChem, 2009, 1(2): 237-240.

[148] Chen F, Zhang Y, Yu L, et al. Enantioselective NiH/Pmrox-Catalyzed 1,2-Reduction of α,β-Unsaturated Ketones[J]. Angewandte Chemie International Edition, 2017, 56(8): 2022-2025.

[149] Wang F, Tan X, Wu T, et al. Ni-Catalyzed Asymmetric Reduction of α-Keto-β-Lactams Via DKR Enabled by Proton Shuttling[J]. Chemical Communications, 2020, 56(99): 15557-15560.

[150] Bollikonda S, Mohanarangam S, Jinna R R, et al. An Enantioselective Formal Synthesis of Montelukast Sodium[J]. The Journal of Organic Chemistry, 2015, 80(8): 3891-3901.

[151] Zhao M M, Zhang H, Iimura S, et al. Process Development of Tryptophan Hydroxylase Inhibitor LX1031, a Drug Candidate for the Treatment of Irritable Bowel Syndrome[J]. Organic Process Research & Development, 2020, 24(2): 261-273.

[152] Smith A G, Bio M M, Colyer J T, et al. Development of a Robust and Highly Selective Ru(II)-Catalyzed Dynamic Kinetic Resolution Used to Manufacture Amg 232[J]. Organic Process Research & Development, 2020, 24(6): 1164-1174.

[153] Noyori R, Ohkuma T. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2001, 40(1): 40-73.

[154] Noyori R, Koizumi M, Ishii D, et al. Asymmetric Hydrogenation Via Architectural and Functional Molecular Engineering[J]. Pure and Applied Chemistry, 2001, 73(2): 227-232.

[155] Dub P A, Gordon J C. The Mechanism of Enantioselective Ketone Reduction with Noyori and Noyori–Ikariya Bifunctional Catalysts[J]. Dalton Transactions, 2016, 45(16): 6756-6781.

[156] Aoun R, Renaud J-L, Dixneuf P H, et al. Concomitant Monoreduction and Hydrogenation of Unsaturated Cyclic Imides to Lactams Catalyzed by Ruthenium Compounds[J]. Angewandte Chemie International Edition, 2005, 44(13): 2021-2023.

[157] Ito M, Sakaguchi A, Kobayashi C, et al. Chemoselective Hydrogenation of Imides Catalyzed by Cp*Ru(PN) Complexes and Its Application to the Asymmetric Synthesis of Paroxetine[J]. Journal of the American Chemical Society, 2007, 129(2): 290-291.

[158] Takebayashi S, John J M, Bergens S H. Desymmetrization of Meso-Cyclic Imides Via Enantioselective Monohydrogenation[J]. Journal of the American Chemical Society, 2010, 132(37): 12832-12834.

[159] Li Y, Pasunooti K K, Li R-J, et al. Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3a4 Inhibition[J]. Journal of Medicinal Chemistry, 2018, 61(24): 11158-11168.

[160] Das U K, Janes T, Kumar A, et al. Manganese Catalyzed Selective Hydrogenation of Cyclic Imides to Diols and Amines[J]. Green Chemistry, 2020, 22(10): 3079-3082.

[161] Ito M, Kobayashi C, Himizu A, et al. Highly Enantioselective Hydrogenative Desymmetrization of Bicyclic Imides Leading to Multiply Functionalized Chiral Cyclic Compounds[J]. Journal of the American Chemical Society, 2010, 132(33): 11414-11415.

[162] 黄家欣,王宏毅,吴泽农,等. Cenobamate的合成工艺研究[J]. 中国药物化学杂志, 2021, 31(6): 4.

[163] Venkateswarlu Rayudu S, Kumar P. An Easy, Efficient and Improved Synthesis of Sertaconazole Nitrate[J]. Russian Journal of Organic Chemistry, 2019, 55(8): 1212-1216.

[164] La Regina G, D’auria F D, Tafi A, et al. 1-[(3-Aryloxy-3-Aryl)Propyl]-1H-Imidazoles, New Imidazoles with Potent Activity against Candida Albicans and Dermatophytes. Synthesis, Structure−Activity Relationship, and Molecular Modeling Studies[J]. Journal of Medicinal Chemistry, 2008, 51(13): 3841-3855.

[165] Casas M E, Kretschmann A C, Andernach L, et al. Separation, Isolation and Stereochemical Assignment of Imazalil Enantiomers and Their Quantitation in an in Vitro Toxicity Test[J]. Journal of Chromatography A, 2016, 1452: 116-120.

[166] Strzelczyk A, Mann C, Willems L M, et al. Cenobamate for the Treatment of Focal Epilepsies[J]. Expert Opinion on Pharmacotherapy, 2020, 21(18): 2215-2223.

[167] Carrillo-Muñoz A J, Giusiano G, Ezkurra P A, et al. Sertaconazole: Updated Review of a Topical Antifungal Agent[J]. Expert Rev Anti Infect Ther, 2005, 3(3): 333-42.

[168] Busto E, Gotor-Fernández V, Ríos-Lombardía N, et al. Simple and Straightforward Synthesis of Novel Enantiopure Ionic Liquids Via Efficient Enzymatic Resolution of (±)-2-(1H-Imidazol-1-yl)Cyclohexanol[J]. Tetrahedron Letters, 2007, 48(30): 5251-5254.

[169] Aher N G, Pore V S, Mishra N N, et al. Synthesis and Antifungal Activity of 1,2,3-Triazole Containing Fluconazole Analogues[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(3): 759-763.

[170] Porretta G C, Fioravanti R, Biava M, et al. Research on Antibacterial and Antifungal Agents. X. Synthesis and Antimicrobial Activities of 1-Phenyl-2-(1H-Azol-1-yl) Ethane Derivatives. Anticonvulsant Activity of 1-(4-Methylphenyl)-2-(1H-Imidazol-1-yl) Ethanol[J]. European Journal of Medicinal Chemistry, 1993, 28(10): 749-760.

[171] Wahbi Y, Caujolle R, Tournaire C, et al. Aromatic Ethers of 1-Aryl 2-(1H-Azolyl)Ethanol: Study of Antifungal Activity[J]. European Journal of Medicinal Chemistry, 1995, 30(12): 955-962.

[172] Tripathi R P, Yadav A K, Ajay A, et al. Application of Huisgen (3+2) Cycloaddition Reaction: Synthesis of 1-(2,3-Dihydrobenzofuran-2-yl-Methyl

[1,2,3]-Triazoles and Their Antitubercular Evaluations[J]. European Journal of Medicinal Chemistry, 2010, 45(1): 142-148.

[173] Vyas V K, Bhanage B M. Kinetic Resolution Driven Diastereo- and Enantioselective Synthesis of Cis-β-Heteroaryl Amino Cycloalkanols by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2016, 18(24): 6436-6439.

[174] Lennon I C, Ramsden J A. An Efficient Catalytic Asymmetric Route to 1-Aryl-2-Imidazol-1-yl-Ethanols[J]. Org Process Res Dev, 2005, 9(1): 110-112.

[175] Vyas V K, Bhanage B M. Catalytic Asymmetric Synthesis of Β-Triazolyl Amino Alcohols by Asymmetric Transfer Hydrogenation of Α-Triazolyl Amino Alkanones[J]. Tetrahedron: Asymmetry, 2017, 28(7): 974-982.

[176] Barrios-Rivera J, Xu Y, Clarkson G J, et al. Asymmetric Transfer Hydrogenation of Heterocycle-Containing Acetophenone Derivatives Using N-Functionalised [(Benzene)Ru(II)(Tsdpen)] Complexes[J]. Tetrahedron, 2022, 103: 132562.

[177] Díaz-Valenzuela M B, Phillips S D, France M B, et al. Enantioselective Hydrogenation and Transfer Hydrogenation of Bulky Ketones Catalysed by a Ruthenium Complex of a Chiral Tridentate Ligand[J]. Chemistry – A European Journal, 2009, 15(5): 1227-1232.

[178] Noyori R, Ikeda T, Ohkuma T, et al. Stereoselective Hydrogenation Via Dynamic Kinetic Resolution[J]. Journal of the American Chemical Society, 1989, 111(25): 9134-9135.

[179] Noyori R, Kitamura M, Ohkuma T. Toward Efficient Asymmetric Hydrogenation: Architectural and Functional Engineering of Chiral Molecular Catalysts[J]. Proceedings of the National Academy of Sciences, 2004, 101(15): 5356-5362.

[180] Ohkuma T, Koizumi M, Muñiz K, et al. Trans-RuH(Η-BH4)(Binap)(1,2-Diamine):  A Catalyst for Asymmetric Hydrogenation of Simple Ketones under Base-Free Conditions[J]. Journal of the American Chemical Society, 2002, 124(23): 6508-6509.

[181] Ohkuma T, Koizumi M, Yoshida M, et al. General Asymmetric Hydrogenation of Hetero-Aromatic Ketones[J]. Organic Letters, 2000, 2(12): 1749-1751.

[182] Ohkuma T, Sandoval C A, Srinivasan R, et al. Asymmetric Hydrogenation of Tert-Alkyl Ketones[J]. Journal of the American Chemical Society, 2005, 127(23): 8288-8289.

[183] Lennon I C, Ramsden J A. An Efficient Catalytic Asymmetric Route to 1-Aryl-2-Imidazol-1-Yl-Ethanols[J]. Organic Process Research & Development, 2005, 9(1): 110-112.

[184] Xin Lin F G, Jialin Wen, Pan-Lin Shao, Xumu Zhang. Synthesis of Chiral Tridentate Ligands with a Ferrocene Framework and Their Applications in Ir-Catalyzed Asymmetric Hydrogenation[J]. Progress in Chemistry, 2020, 32(11): 1680-1696.

[185] 林鑫,管凡夫,温佳琳,等. 二茂铁骨架系列三齿配体的合成及其在铱催化不对称氢化中的应用[J]. 化学进展, 2020, 32(11): 1680-1696.

[186] Zhang Z, Xie F, Jia J, et al. Chiral Bicycle Imidazole Nucleophilic Catalysts: Rational Design, Facile Synthesis, and Successful Application in Asymmetric Steglich Rearrangement[J]. Journal of the American Chemical Society, 2010, 132(45): 15939-15941.

所在学位评定分委会
化学
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545071
专题理学院_化学系
推荐引用方式
GB/T 7714
吴超. 用于药物合成的酮和酰亚胺选择性氢化反应研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11949015-吴超-化学系.pdf(12500KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴超]的文章
百度学术
百度学术中相似的文章
[吴超]的文章
必应学术
必应学术中相似的文章
[吴超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。