[1] Akabori S, Sakurai S, Izumi Y, et al. An Asymmetric Catalyst[J]. Nature, 1956, 178(4528): 323-324.
[2] Calvin M, Polanyi M. Homogeneous Catalytic Hydrogenation[J]. Transactions of the Faraday Society, 1938, 34(0): 1181-1191.
[3] Osborn J A, Jardine F H, Young J F, et al. The Preparation and Properties of Tris(Triphenylphosphine)Halogenorhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, (0): 1711-1732.
[4] Hallman P S, Evans D, Osborn J A, et al. Selective Catalytic Homogeneous Hydrogenation of Terminal Olefins Using Tris(Triphenylphosphine)Hydridochlororuthenium(Ii); Hydrogen Transfer in Exchange and Isomerisation Reactions of Olefins[J]. Chemical Communications (London), 1967, (7): 305-306.
[5] Knowles W S, Sabacky M J. Catalytic Asymmetric Hydrogenation Employing a Soluble, Optically Active, Rhodium Complex[J]. Chemical Communications (London), 1968, (22): 1445-1446.
[6] Horner L, Siegel H, Büthe H. Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution[J]. Angewandte Chemie International Edition in English, 1968, 7(12): 942-942.
[7] Dang T P, Kagan H B. The Asymmetric Synthesis of Hydratropic Acid and Amino-Acids by Homogeneous Catalytic Hydrogenation[J]. Journal of the Chemical Society D: Chemical Communications, 1971, (10): 481-481.
[8] Knowles W S, Sabacky M J, Vineyard B D, et al. Asymmetric Hydrogenation with a Complex of Rhodium and a Chiral Bisphosphine[J]. Journal of the American Chemical Society, 1975, 97(9): 2567-2568.
[9] Noyori R, Ohkuma T, Kitamura M, et al. Asymmetric Hydrogenation Of .Beta.-Keto Carboxylic Esters. A Practical, Purely Chemical Access To .Beta.-Hydroxy Esters in High Enantiomeric Purity[J]. Journal of the American Chemical Society, 1987, 109(19): 5856-5858.
[10] Berthod M, Mignani G, Woodward G, et al. Modified Binap: The How and the Why[J]. Chemical Reviews, 2005, 105(5): 1801-1836.
[11] Schrock R R, Osborn J A. Rhodium Catalysts for the Homogeneous Hydrogenation of Ketones[J]. Journal of the Chemical Society D: Chemical Communications, 1970, (9): 567-568.
[12] Bonvicini P, Levi A, Modena G, et al. Asymmetric Reduction of Ketones by Homogeneous Catalytic Hydrogenation[J]. Journal of the Chemical Society, Chemical Communications, 1972, (21): 1188-1189.
[13] Masato T, Yoshihisa W, Take-Aki M, et al. Asymmetric Reduction of Ketones with a Cationic Chiral Phosphine Rhodium Complex Catalyst[J]. Chemistry Letters, 1973, 2(3): 239-240.
[14] Hayashi T, Katsumura A, Konishi M, et al. Asymmetric Synthesis of 2-Amino-1-Arylethanols by Catalytic Asymmetric Hydrogenation[J]. Tetrahedron Letters, 1979, 20(5): 425-428.
[15] Togni A, Breutel C, Schnyder A, et al. A Novel Easily Accessible Chiral Ferrocenyldiphosphine for Highly Enantioselective Hydrogenation, Allylic Alkylation, and Hydroboration Reactions[J]. Journal of the American Chemical Society, 1994, 116(9): 4062-4066.
[16] Carpentier J-F, Mortreux A. Asymmetric Hydrogenation of Α-Keto Acid Derivatives by Rhodium-{Amidophosphine-Phosphinite} Catalysts[J]. Tetrahedron: Asymmetry, 1997, 8(7): 1083-1099.
[17] Devocelle M, Agbossou F, Mortreux A. Asymmetric Hydrogenation of Α, Β, and Γ-Aminoketones Catalyzed by Cationic Rhodium(I){AMPP} Complexes[J]. Synlett, 1997, 1997(11): 1306-1308.
[18] Pasquier C, Naili S, Pelinski L, et al. Synthesis and Application in Enantioselective Hydrogenation of New Free and Chromium Complexed Aminophosphine–Phosphinite Ligands[J]. Tetrahedron: Asymmetry, 1998, 9(2): 193-196.
[19] Nagy-Magos Z, Vastag S N, Heil B L, et al. Phosphinerhodium Complexes as Homogeneous Catalysts: Ix. Asymmetric Hydrogenation of an Olefin with Catalysts Formed from a Chiral Rhodium(I) Carboxylate and Non-Chiral Phosphines[J]. Journal of Organometallic Chemistry, 1979, 171(1): 97-102.
[20] Bakos J, Tóth I, Heil B, et al. A Facile Method for the Preparation of 2,4-Bis(Diphenylphosphino)Pentane (BDPP) Enantiomers and Their Application in Asymmetric Hydrogenation[J]. Journal of Organometallic Chemistry, 1985, 279(1): 23-29.
[21] Jiang Q, Xiao D, Zhang Z, et al. Highly Enantioselective Hydrogenation of Cyclic Enol Acetates Catalyzed by a Rh–Pennphos Complex[J]. Angewandte Chemie International Edition, 1999, 38(4): 516-518.
[22] Liu D, Zhang X. Practical P-Chiral Phosphane Ligand for Rh-Catalyzed Asymmetric Hydrogenation[J]. European Journal of Organic Chemistry, 2005, 2005(4): 646-649.
[23] Liu D, Gao W, Wang C, et al. Practical Synthesis of Enantiopure γ-Amino Alcohols by Rhodium-Catalyzed Asymmetric Hydrogenation of β-Secondary-Amino Ketones[J]. Angewandte Chemie International Edition, 2005, 44(11): 1687-1689.
[24] Hu Q, Zhang Z, Liu Y, et al. ZnCl2-Promoted Asymmetric Hydrogenation of β-Secondary-Amino Ketones Catalyzed by a P-Chiral Rh–Bisphosphine Complex[J]. Angewandte Chemie International Edition, 2015, 54(7): 2260-2264.
[25] Yang H, Huo N, Yang P, et al. Rhodium Catalyzed Asymmetric Hydrogenation of 2-Pyridine Ketones[J]. Organic Letters, 2015, 17(17): 4144-4147.
[26] Brüning F, Nagae H, Käch D, et al. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(Iii) Monohydride Complexes Bearing Josiphos Ligands[J]. Chemistry – A European Journal, 2019, 25(46): 10818-10822.
[27] Osakada K, Obana M, Ikariya T, et al. Catalytic Asymmetric Hydrogenation of Cyclic Anhydrides Using Ruthenium (Ii) Chiral Phosphine Complex[J]. Tetrahedron Letters, 1981, 22(43): 4297-4300.
[28] Mashima K, Kusano K-H, Sato N, et al. Cationic BINAP-Ru(II) Halide Complexes: Highly Efficient Catalysts for Stereoselective Asymmetric Hydrogenation Of .Alpha.- And .Beta.-Functionalized Ketones[J]. The Journal of Organic Chemistry, 1994, 59(11): 3064-3076.
[29] Ohta T, Tonomura Y, Nozaki K, et al. An Anionic Dinuclear Binap−Ruthenium(II) Complex: Crystal Structure of [NH2Et2][{RuCl((R)-P-MeO-Binap)}2(μ-Cl)3] and Its Use in Asymmetric Hydrogenation[J]. Organometallics, 1996, 15(6): 1521-1523.
[30] Lei A, Wu S, He M, et al. Highly Enantioselective Asymmetric Hydrogenation of Α-Phthalimide Ketone: An Efficient Entry to Enantiomerically Pure Amino Alcohols[J]. Journal of the American Chemical Society, 2004, 126(6): 1626-1627.
[31] Kitamura M, Ohkuma T, Inoue S, et al. Homogeneous Asymmetric Hydrogenation of Functionalized Ketones[J]. Journal of the American Chemical Society, 1988, 110(2): 629-631.
[32] Ohkuma T, Ooka H, Hashiguchi S, et al. Practical Enantioselective Hydrogenation of Aromatic Ketones[J]. Journal of the American Chemical Society, 1995, 117(9): 2675-2676.
[33] Zhu G, Cao P, Jiang Q, et al. Highly Enantioselective Rh-Catalyzed Hydrogenations with a New Chiral 1,4-Bisphosphine Containing a Cyclic Backbone[J]. Journal of the American Chemical Society, 1997, 119(7): 1799-1800.
[34] Cao P, Zhang X. Ru-BICP-Catalyzed Asymmetric Hydrogenation of Aromatic Ketones[J]. The Journal of Organic Chemistry, 1999, 64(6): 2127-2129.
[35] Li W, Sun X, Zhou L, et al. Highly Efficient and Highly Enantioselective Asymmetric Hydrogenation of Ketones with Tunesphos/1,2-Diamine−Ruthenium(II) Complexes[J]. The Journal of Organic Chemistry, 2009, 74(3): 1397-1399.
[36] Burk M J, Hems W, Herzberg D, et al. A Catalyst for Efficient and Highly Enantioselective Hydrogenation of Aromatic, Heteroaromatic, and α,β-Unsaturated Ketones[J]. Organic Letters, 2000, 2(26): 4173-4176.
[37] Xie J-H, Wang L-X, Fu Y, et al. Synthesis of Spiro Diphosphines and Their Application in Asymmetric Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 2003, 125(15): 4404-4405.
[38] Xie J-H, Liu S, Huo X-H, et al. Ruii-Sdp-Complex-Catalyzed Asymmetric Hydrogenation of Ketones. Effect of the Alkali Metal Cation in the Reaction[J]. The Journal of Organic Chemistry, 2005, 70(8): 2967-2973.
[39] Liu S, Xie J-H, Wang L-X, et al. Dynamic Kinetic Resolution Allows a Highly Enantioselective Synthesis of Cis-α-Aminocycloalkanols by Ruthenium-Catalyzed Asymmetric Hydrogenation[J]. Angewandte Chemie International Edition, 2007, 46(39): 7506-7508.
[40] Xie J-H, Zhou Z-T, Kong W-L, et al. Ru-Catalyzed Asymmetric Hydrogenation of Racemic Aldehydes via Dynamic Kinetic Resolution: Efficient Synthesis of Optically Active Primary Alcohols[J]. Journal of the American Chemical Society, 2007, 129(7): 1868-1869.
[41] Liu S, Xie J-H, Li W, et al. Highly Enantioselective Synthesis of Chiral Cyclic Amino Alcohols and Conhydrine by Ruthenium-Catalyzed Asymmetric Hydrogenation[J]. Organic Letters, 2009, 11(21): 4994-4997.
[42] Xie J-H, Liu S, Kong W-L, et al. Highly Enantioselective and Diastereoselective Synthesis of Chiral Amino Alcohols by Ruthenium-Catalyzed Asymmetric Hydrogenation of α-Amino Aliphatic Ketones[J]. Journal of the American Chemical Society, 2009, 131(12): 4222-4223.
[43] Bai W-J, Xie J-H, Li Y-L, et al. Enantioselective Synthesis of Chiral β-Aryloxy Alcohols by Ruthenium-Catalyzed Ketone Hydrogenation Via Dynamic Kinetic Resolution (DKR)[J]. Advanced Synthesis & Catalysis, 2010, 352(1): 81-84.
[44] Xie J-H, Guo L-C, Yang X-H, et al. Enantioselective Synthesis of 2,6-Cis-Disubstituted Tetrahydropyrans Via a Tandem Catalytic Asymmetric Hydrogenation/Oxa-Michael Cyclization: An Efficient Approach to (−)-Centrolobine[J]. Organic Letters, 2012, 14(18): 4758-4761.
[45] Li G, Xie J-H, Hou J, et al. Catalytic Asymmetric Hydrogenation of Α-Arylcyclohexanones and Total Synthesis of (−)-α-Lycorane[J]. Advanced Synthesis & Catalysis, 2013, 355(8): 1597-1604.
[46] Liu C, Xie J-H, Li Y-L, et al. Asymmetric Hydrogenation of α,α′-Disubstituted Cycloketones through Dynamic Kinetic Resolution: An Efficient Construction of Chiral Diols with Three Contiguous Stereocenters[J]. Angewandte Chemie International Edition, 2013, 52(2): 593-596.
[47] Xie J-H, Bao D-H, Zhou Q-L. Recent Advances in the Development of Chiral Metal Catalysts for the Asymmetric Hydrogenation of Ketones[J]. Synthesis, 2015, 47(04): 460-471.
[48] Liu Y, Cheng L-J, Yue H-T, et al. Divergent Enantioselective Synthesis of Hapalindole-Type Alkaloids Using Catalytic Asymmetric Hydrogenation of a Ketone to Construct the Chiral Core Structure[J]. Chemical Science, 2016, 7(7): 4725-4729.
[49] Wu J, Chen H, Kwok W, et al. Air-Stable Catalysts for Highly Efficient and Enantioselective Hydrogenation of Aromatic Ketones[J]. The Journal of Organic Chemistry, 2002, 67(22): 7908-7910.
[50] Hu A, Ngo H L, Lin W. 4,4‘-Disubstituted Binaps for Highly Enantioselective Ru-Catalyzed Asymmetric Hydrogenation of Ketones[J]. Organic Letters, 2004, 6(17): 2937-2940.
[51] Burk S, Franciò G, Leitner W. Ruthenium-Catalysed Asymmetric Hydrogenation of Ketones Using Quinaphos as the Ligand[J]. Chemical Communications, 2005, (27): 3460-3462.
[52] Ngo H L, Lin W. Development of 4,4-Substituted-Xylbinap Ligands for Highly Enantioselective Hydrogenation of Ketones[J]. The Journal of Organic Chemistry, 2005, 70(4): 1177-1187.
[53] Mikami K, Wakabayashi K, Aikawa K. “Achiral” Benzophenone Ligand for Highly Enantioselective Ru Catalysts in Ketone Hydrogenation[J]. Organic Letters, 2006, 8(8): 1517-1519.
[54] Rodríguez S, Qu B, Fandrick K R, et al. Amine-Tunable Ruthenium Catalysts for Asymmetric Reduction of Ketones[J]. Advanced Synthesis & Catalysis, 2014, 356(2-3): 301-307.
[55] Ohkuma T, Hattori T, Ooka H, et al. Binap/1,4-Diamine−Ruthenium(II) Complexes for Efficient Asymmetric Hydrogenation of 1-Tetralones and Analogues[J]. Organic Letters, 2004, 6(16): 2681-2683.
[56] Arai N, Akashi M, Sugizaki S, et al. Asymmetric Hydrogenation of Bicyclic Ketones Catalyzed by BINAP/IPHAN−Ru(II) Complex[J]. Organic Letters, 2010, 12(15): 3380-3383.
[57] Grasa G A, Zanotti-Gerosa A, Medlock J A, et al. Asymmetric Hydrogenation of Isobutyrophenone Using a [(Diphosphine) RuCl2 (1,4-Diamine)] Catalyst[J]. Organic Letters, 2005, 7(8): 1449-1451.
[58] Arai N, Ooka H, Azuma K, et al. General Asymmetric Hydrogenation of Α-Branched Aromatic Ketones Catalyzed by Tolbinap/DMAPEN−Ruthenium(II) Complex[J]. Organic Letters, 2007, 9(5): 939-941.
[59] Li Y, Ding K, Sandoval C A. Hybrid NH2-Benzimidazole Ligands for Efficient Ru-Catalyzed Asymmetric Hydrogenation of Aryl Ketones[J]. Organic Letters, 2009, 11(4): 907-910.
[60] Li Y, Zhou Y, Shi Q, et al. An Efficient Diphosphine/Hybrid-Amine Combination for Ruthenium(II)-Catalyzed Asymmetric Hydrogenation of Aryl Ketones[J]. Advanced Synthesis & Catalysis, 2011, 353(2-3): 495-500.
[61] Zhu Q, Shi D, Xia C, et al. Ruthenium Catalysts Containing Rigid Chiral Diamines and Achiral Diphosphanes for Highly Enantioselective Hydrogenation of Aromatic Ketones[J]. Chemistry – A European Journal, 2011, 17(28): 7760-7763.
[62] Chen X, Zhou H, Zhang K, et al. Highly Enantioselective Hydrogenation of Steric Hindrance Enones Catalyzed by Ru Complexes with Chiral Diamine and Achiral Phosphane[J]. Organic Letters, 2014, 16(15): 3912-3915.
[63] Jiang Y, Jiang Q, Zhang X. A New Chiral Bis(Oxazolinylmethyl)Amine Ligand for Ru-Catalyzed Asymmetric Transfer Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 1998, 120(15): 3817-3818.
[64] Li W, Hou G, Wang C, et al. Asymmetric Hydrogenation of Ketones Catalyzed by a Ruthenium(II)-Indan–Ambox Complex[J]. Chemical Communications, 2010, 46(22): 3979-3981.
[65] Clarke M L, Díaz-Valenzuela M B, Slawin A M Z. Hydrogenation of Aldehydes, Esters, Imines, and Ketones Catalyzed by a Ruthenium Complex of a Chiral Tridentate Ligand[J]. Organometallics, 2007, 26(1): 16-19.
[66] Phillips S D, Fuentes J A, Clarke M L. On the NH Effect in Ruthenium-Catalysed Hydrogenation of Ketones: Rational Design of Phosphine-Amino-Alcohol Ligands for Asymmetric Hydrogenation of Ketones[J]. Chemistry – A European Journal, 2010, 16(27): 8002-8005.
[67] Yamamura T, Nakatsuka H, Tanaka S, et al. Asymmetric Hydrogenation of Tert-Alkyl Ketones: DMSO Effect in Unification of Stereoisomeric Ruthenium Complexes[J]. Angewandte Chemie International Edition, 2013, 52(35): 9313-9315.
[68] Patchett R, Magpantay I, Saudan L, et al. Asymmetric Hydrogenation of Ketones with H2 and Ruthenium Catalysts Containing Chiral Tetradentate S2N2 Ligands[J]. Angewandte Chemie International Edition, 2013, 52(39): 10352-10355.
[69] Huang H, Okuno T, Tsuda K, et al. Enantioselective Hydrogenation of Aromatic Ketones Catalyzed by Ru Complexes of Goodwin−Lions-Type Sp2n/Sp3n Hybrid Ligands R-Binan-r-Py[J]. Journal of the American Chemical Society, 2006, 128(27): 8716-8717.
[70] Naud F, Malan C, Spindler F, et al. Ru-(Phosphine-Oxazoline) Complexes as Effective, Industrially Viable Catalysts for the Enantioselective Hydrogenation of Aryl Ketones[J]. Advanced Synthesis & Catalysis, 2006, 348(1-2): 47-50.
[71] Schuecker R, Zirakzadeh A, Mereiter K, et al. Synthesis, Coordination Behavior, and Structural Features of Chiral Amino-, Pyrazolyl-, and Phosphino-Substituted Ferrocenyloxazolines and Their Application in Asymmetric Hydrogenations[J]. Organometallics, 2011, 30(17): 4711-4719.
[72] Baratta W, Fanfoni L, Magnolia S, et al. Benzo[H]Quinoline Pincer Ruthenium and Osmium Catalysts for Hydrogenation of Ketones[J]. European Journal of Inorganic Chemistry, 2010, 2010(9): 1419-1423.
[73] Wang J, Liu D, Liu Y, et al. Asymmetric Hydrogenation of β-Amino Ketones with the Bimetallic Complex Ruphox-Ru as the Chiral Catalyst[J]. Organic & Biomolecular Chemistry, 2013, 11(23): 3855-3861.
[74] Ito J-I, Ujiie S, Nishiyama H. New Bis(Oxazolinyl)Phenyl−Ruthenium(Ii) Complexes and Their Catalytic Activity for Enantioselective Hydrogenation and Transfer Hydrogenation of Ketones[J]. Organometallics, 2009, 28(2): 630-638.
[75] Baratta W, Chelucci G, Herdtweck E, et al. Highly Diastereoselective Formation of Ruthenium Complexes for Efficient Catalytic Asymmetric Transfer Hydrogenation[J]. Angewandte Chemie International Edition, 2007, 46(40): 7651-7654.
[76] Baratta W, Chelucci G, Magnolia S, et al. Highly Productive CNN Pincer Ruthenium Catalysts for the Asymmetric Reduction of Alkyl Aryl Ketones[J]. Chemistry – A European Journal, 2009, 15(3): 726-732.
[77] Mashima K, Akutagawa T, Zhang X, et al. Chemoselective Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds to Allylic Alcohols Catalysed by [Ir(BINAP)(COD)]BF4-Aminophosphine[J]. Journal of Organometallic Chemistry, 1992, 428(1): 213-222.
[78] Zhang X, Taketomi T, Yoshizumi T, et al. Asymmetric Hydrogenation of Cycloalkanones Catalyzed by BINAP-Iridium(I)-Aminophosphine Systems[J]. Journal of the American Chemical Society, 1993, 115(8): 3318-3319.
[79] Xie J-B, Xie J-H, Liu X-Y, et al. Highly Enantioselective Hydrogenation of α-Arylmethylene Cycloalkanones Catalyzed by Iridium Complexes of Chiral Spiro Aminophosphine Ligands[J]. Journal of the American Chemical Society, 2010, 132(13): 4538-4539.
[80] Xie J-B, Xie J-H, Liu X-Y, et al. Chiral Iridium Spiro Aminophosphine Complexes: Asymmetric Hydrogenation of Simple Ketones, Structure, and Plausible Mechanism[J]. Chemistry – An Asian Journal, 2011, 6(3): 899-908.
[81] 许聪, 胡文浩. 手性螺环配体及催化剂在不对称催化反应中的应用研究进展[J]. 高等学校化学学报, 2020, 41(10): 2153-2173.
[82] Xie J-H, Liu X-Y, Xie J-B, et al. An Additional Coordination Group Leads to Extremely Efficient Chiral Iridium Catalysts for Asymmetric Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2011, 50(32): 7329-7332.
[83] Xie J-H, Liu X-Y, Yang X-H, et al. Chiral Iridium Catalysts Bearing Spiro Pyridine-Aminophosphine Ligands Enable Highly Efficient Asymmetric Hydrogenation of Β-Aryl Β-Ketoesters[J]. Angewandte Chemie International Edition, 2012, 51(1): 201-203.
[84] Yang X-H, Xie J-H, Liu W-P, et al. Catalytic Asymmetric Hydrogenation of δ-Ketoesters: Highly Efficient Approach to Chiral 1,5-Diols[J]. Angewandte Chemie International Edition, 2013, 52(30): 7833-7836.
[85] Yan P-C, Xie J-H, Zhang X-D, et al. Direct Asymmetric Hydrogenation of α-Keto Acids by Using the Highly Efficient Chiral Spiro Iridium Catalysts[J]. Chemical Communications, 2014, 50(100): 15987-15990.
[86] Liu Y-T, Chen J-Q, Li L-P, et al. Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enones to Chiral Cycloalkanols with Three Contiguous Stereocenters[J]. Organic Letters, 2017, 19(12): 3231-3234.
[87] Hua Y-Y, Bin H-Y, Wei T, et al. Iridium-Catalyzed Asymmetric Hydrogenation of γ- and δ-Ketoacids for Enantioselective Synthesis of γ- and δ-Lactones[J]. Organic Letters, 2020, 22(3): 818-822.
[88] Bao D-H, Wu H-L, Liu C-L, et al. Development of Chiral Spiro P-N-S Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of β-Alkyl-β-Ketoesters[J]. Angewandte Chemie International Edition, 2015, 54(30): 8791-8794.
[89] Bao D-H, Gu X-S, Xie J-H, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Racemic β-Keto Lactams Via Dynamic Kinetic Resolution[J]. Organic Letters, 2017, 19(1): 118-121.
[90] Chen G-Q, Lin B-J, Huang J-M, et al. Design and Synthesis of Chiral Oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann’s Lactones with Molecular H2[J]. Journal of the American Chemical Society, 2018, 140(26): 8064-8068.
[91] Zheng Z, Cao Y, Chong Q, et al. Chiral Cyclohexyl-Fused SpirobIIndanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis[J]. Journal of the American Chemical Society, 2018, 140(32): 10374-10381.
[92] Zhang F-H, Wang C, Xie J-H, et al. Synthesis of Tridentate Chiral Spiro Aminophosphine−Oxazoline Ligands and Application to Asymmetric Hydrogenation of Α-Keto Amides[J]. Advanced Synthesis & Catalysis, 2019, 361(12): 2832-2835.
[93] Zhang F-H, Zhang F-J, Li M-L, et al. Enantioselective Hydrogenation of Dialkyl Ketones[J]. Nature Catalysis, 2020, 3(8): 621-627.
[94] Le Roux E, Malacea R, Manoury E, et al. Highly Efficient Asymmetric Hydrogenation of Alkyl Aryl Ketones Catalyzed by Iridium Complexes with Chiral Planar Ferrocenyl Phosphino-Thioether Ligands[J]. Advanced Synthesis & Catalysis, 2007, 349(3): 309-313.
[95] Nie H, Zhou G, Wang Q, et al. Asymmetric Hydrogenation of Aromatic Ketones Using an Iridium(I) Catalyst Containing Ferrocene-Based P–N–N Tridentate Ligands[J]. Tetrahedron: Asymmetry, 2013, 24(24): 1567-1571.
[96] Wang H, Wen J, Zhang X. Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation[J]. Chemical Reviews, 2021, 121(13): 7530-7567.
[97] Wu W, Liu S, Duan M, et al. Iridium Catalysts with F-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones[J]. Organic Letters, 2016, 18(12): 2938-2941.
[98] Gu G, Yang T, Yu O, et al. Enantioselective Iridium-Catalyzed Hydrogenation of α-Keto Amides to α-Hydroxy Amides[J]. Organic Letters, 2017, 19(21): 5920-5923.
[99] Hu Y, Wu W, Dong X-Q, et al. Efficient Access to Chiral 1,2-Amino Alcohols Via Ir/f-Amphox-Catalyzed Asymmetric Hydrogenation of α-Amino Ketones[J]. Organic Chemistry Frontiers, 2017, 4(8): 1499-1502.
[100] Wu W, Xie Y, Li P, et al. Asymmetric Hydrogenation of Α-Hydroxy Ketones with an Iridium/F-Amphox Catalyst: Efficient Access to Chiral 1,2-Diols[J]. Organic Chemistry Frontiers, 2017, 4(4): 555-559.
[101] Wang S, Yu Y, Wen J, et al. Iridium/F-Amphox-Catalyzed Asymmetric Hydrogenation of Styrylglyoxylamides[J]. Synlett, 2018, 29(16): 2203-2207.
[102] Yin C, Wu W, Hu Y, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins[J]. Advanced Synthesis & Catalysis, 2018, 360(11): 2119-2124.
[103] Wang J, Shao P-L, Lin X, et al. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined[J]. Angewandte Chemie International Edition, 2020, 59(41): 18166-18171.
[104] Yu J, Duan M, Wu W, et al. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones[J]. Chemistry – A European Journal, 2017, 23(4): 970-975.
[105] Hou C-J, Hu X-P. Sterically Hindered Chiral Ferrocenyl P,N,N-Ligands for Highly Diastereo-/Enantioselective Ir-Catalyzed Hydrogenation of α-Alkyl-β-Ketoesters Via Dynamic Kinetic Resolution[J]. Organic Letters, 2016, 18(21): 5592-5595.
[106] Qin C, Hou C-J, Liu H, et al. Ir-Catalyzed Asymmetric Hydrogenation of Simple Ketones with Chiral Ferrocenyl P,N,N-Ligands[J]. Tetrahedron Letters, 2018, 59(8): 719-722.
[107] Liang Z, Yang T, Gu G, et al. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones[J]. Chinese Journal of Chemistry, 2018, 36(9): 851-856.
[108] Ling F, Nian S, Chen J, et al. Development of Ferrocene-Based Diamine-Phosphine-Sulfonamide Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones[J]. The Journal of Organic Chemistry, 2018, 83(18): 10749-10761.
[109] Wang Y, Yang G, Xie F, et al. A Ferrocene-Based NH-Free Phosphine-Oxazoline Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones[J]. Organic Letters, 2018, 20(19): 6135-6139.
[110] 郭娜,朱守非. 铁催化氢化反应研究进展[J]. 有机化学, 2015, 35(7): 1383-1398.
[111] Morris R H. Asymmetric Hydrogenation, Transfer Hydrogenation and Hydrosilylation of Ketones Catalyzed by Iron Complexes[J]. Chemical Society Reviews, 2009, 38(8): 2282-2291.
[112] Yu S, Shen W, Li Y, et al. Iron-Catalyzed Highly Enantioselective Reduction of Aromatic Ketones with Chiral P2N4-Type Macrocycles[J]. Advanced Synthesis & Catalysis, 2012, 354(5): 818-822.
[113] 陈建珊,陈玲玲,邢雁,等. 手性羰基铁体系催化酮的不对称氢转移氢化[J]. 化学学报, 2004, 62(18): 1745-1750.
[114] Casey C P, Guan H. An Efficient and Chemoselective Iron Catalyst for the Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 2007, 129(18): 5816-5817.
[115] Sui-Seng C, Freutel F, Lough A J, et al. Highly Efficient Catalyst Systems Using Iron Complexes with a Tetradentate Pnnp Ligand for the Asymmetric Hydrogenation of Polar Bonds[J]. Angewandte Chemie International Edition, 2008, 47(5): 940-943.
[116] Zuo W, Lough A J, Li Y F, et al. Amine(Imine)Diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines[J]. Science, 2013, 342(6162): 1080-1083.
[117] Berkessel A, Reichau S, Von Der Höh A, et al. Light-Induced Enantioselective Hydrogenation Using Chiral Derivatives of Casey’s Iron–Cyclopentadienone Catalyst[J]. Organometallics, 2011, 30(14): 3880-3887.
[118] Li Y, Yu S, Wu X, et al. Iron Catalyzed Asymmetric Hydrogenation of Ketones[J]. Journal of the American Chemical Society, 2014, 136(10): 4031-4039.
[119] Lagaditis P O, Sues P E, Sonnenberg J F, et al. Iron(II) Complexes Containing Unsymmetrical P–N–P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines[J]. Journal of the American Chemical Society, 2014, 136(4): 1367-1380.
[120] Smith S M, Lagaditis P O, Lüpke A, et al. Unsymmetrical Iron P-NH-P′ Catalysts for the Asymmetric Pressure Hydrogenation of Aryl Ketones[J]. Chemistry – A European Journal, 2017, 23(30): 7212-7216.
[121] Zirakzadeh A, Kirchner K, Roller A, et al. Iron(II) Complexes Containing Chiral Unsymmetrical Pnp′ Pincer Ligands: Synthesis and Application in Asymmetric Hydrogenations[J]. Organometallics, 2016, 35(21): 3781-3787.
[122] Elangovan S, Topf C, Fischer S, et al. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes[J]. Journal of the American Chemical Society, 2016, 138(28): 8809-8814.
[123] Widegren M B, Harkness G J, Slawin A M Z, et al. A Highly Active Manganese Catalyst for Enantioselective Ketone and Ester Hydrogenation[J]. Angewandte Chemie International Edition, 2017, 56(21): 5825-5828.
[124] Widegren M B, Clarke M L. Towards Practical Earth Abundant Reduction Catalysis: Design of Improved Catalysts for Manganese Catalysed Hydrogenation[J]. Catalysis Science & Technology, 2019, 9(21): 6047-6058.
[125] Garbe M, Junge K, Walker S, et al. Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand[J]. Angewandte Chemie International Edition, 2017, 56(37): 11237-11241.
[126] Zhang L, Tang Y, Han Z, et al. Lutidine-Based Chiral Pincer Manganese Catalysts for Enantioselective Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2019, 58(15): 4973-4977.
[127] Zhang L, Wang Z, Han Z, et al. Manganese-Catalyzed Anti-Selective Asymmetric Hydrogenation of α-Substituted Β-Ketoamides[J]. Angewandte Chemie International Edition, 2020, 59(36): 15565-15569.
[128] Ling F, Hou H, Chen J, et al. Highly Enantioselective Synthesis of Chiral Benzhydrols via Manganese Catalyzed Asymmetric Hydrogenation of Unsymmetrical Benzophenones Using an Imidazole-Based Chiral Pnn Tridentate Ligand[J]. Organic Letters, 2019, 21(11): 3937-3941.
[129] Zeng L, Yang H, Zhao M, et al. C1-Symmetric Pnp Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model[J]. ACS Catalysis, 2020, 10(23): 13794-13799.
[130] Shmidt F K, Levkovskii Y S, Ryutina N M, et al. Isoprene Hydrogenation in the Presence of Cobalt Pohosphine Complexes[J]. Reaction Kinetics and Catalysis Letters, 1979, 12(4): 475-478.
[131] Zhong H, Friedfeld M R, Chirik P J. Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(Phosphine) Cobalt(I) Diene and Arene Compounds[J]. Angewandte Chemie International Edition, 2019, 58(27): 9194-9198.
[132] Zhang G, Scott B L, Hanson S K. Mild and Homogeneous Cobalt-Catalyzed Hydrogenation of C=C, C=O, and C=N Bonds[J]. Angewandte Chemie International Edition, 2012, 51(48): 12102-12106.
[133] Hu Y, Zhang Z, Zhang J, et al. Cobalt-Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions[J]. Angewandte Chemie International Edition, 2019, 58(44): 15767-15771.
[134] Zhang G, Scott B L, Hanson S K. Mild and Homogeneous Cobalt-Catalyzed Hydrogenation of C=C, C=O, and C=N Bonds[J]. Angewandte Chemie International Edition, 2012, 51(48): 12102-12106.
[135] Gärtner D, Welther A, Rad B R, et al. Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations[J]. Angewandte Chemie International Edition, 2014, 53(14): 3722-3726.
[136] Rösler S, Obenauf J, Kempe R. A Highly Active and Easily Accessible Cobalt Catalyst for Selective Hydrogenation of C=O Bonds[J]. Journal of the American Chemical Society, 2015, 137(25): 7998-8001.
[137] Zhong R, Wei Z, Zhang W, et al. A Practical and Stereoselective in Situ NHC-Cobalt Catalytic System for Hydrogenation of Ketones and Aldehydes[J]. Chem, 2019, 5(6): 1552-1566.
[138] Zhang D, Zhu E-Z, Lin Z-W, et al. Enantioselective Hydrogenation of Ketones Catalyzed by Chiral Cobalt Complexes Containing Pnnp Ligand[J]. Asian Journal of Organic Chemistry, 2016, 5(11): 1323-1326.
[139] Du T, Wang B, Wang C, et al. Cobalt-Catalyzed Asymmetric Hydrogenation of Ketones: A Remarkable Additive Effect on Enantioselectivity[J]. Chinese Chemical Letters, 2021, 32(3): 1241-1244.
[140] Shimizu H, Igarashi D, Kuriyama W, et al. Asymmetric Hydrogenation of Aryl Ketones Mediated by a Copper Catalyst[J]. Organic Letters, 2007, 9(9): 1655-1657.
[141] Junge K, Wendt B, Addis D, et al. Copper-Catalyzed Enantioselective Hydrogenation of Ketones[J]. Chemistry – A European Journal, 2011, 17(1): 101-105.
[142] Krabbe S W, Hatcher M A, Bowman R K, et al. Copper-Catalyzed Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones[J]. Organic Letters, 2013, 15(17): 4560-4563.
[143] Zatolochnaya Olga v, Rodríguez S, Zhang Y, et al. Copper-Catalyzed Asymmetric Hydrogenation of 2-Substituted Ketones Via Dynamic Kinetic Resolution[J]. Chemical Science, 2018, 9(19): 4505-4510.
[144] 刘元华,董秀琴,张绪穆. 镍催化均相不对称氢化反应研究进展[J]. 有机化学, 2020, 40(5): 1096-1104.
[145] Liu Yuanhua D X-Q, Zhang Xumu. Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1096-1104.
[146] Hamada Y, Koseki Y, Fujii T, et al. Catalytic Asymmetric Hydrogenation of α-Amino-β-Keto Ester Hydrochlorides Using Homogeneous Chiral Nickel-Bisphosphine Complexes through DKR[J]. Chemical Communications, 2008, (46): 6206-6208.
[147] Hibino T, Makino K, Sugiyama T, et al. Homogeneous Chiral Nickel-Catalyzed Asymmetric Hydrogenation of Substituted Aromatic α-Aminoketone Hydrochlorides through Dynamic Kinetic Resolution[J]. ChemCatChem, 2009, 1(2): 237-240.
[148] Chen F, Zhang Y, Yu L, et al. Enantioselective NiH/Pmrox-Catalyzed 1,2-Reduction of α,β-Unsaturated Ketones[J]. Angewandte Chemie International Edition, 2017, 56(8): 2022-2025.
[149] Wang F, Tan X, Wu T, et al. Ni-Catalyzed Asymmetric Reduction of α-Keto-β-Lactams Via DKR Enabled by Proton Shuttling[J]. Chemical Communications, 2020, 56(99): 15557-15560.
[150] Bollikonda S, Mohanarangam S, Jinna R R, et al. An Enantioselective Formal Synthesis of Montelukast Sodium[J]. The Journal of Organic Chemistry, 2015, 80(8): 3891-3901.
[151] Zhao M M, Zhang H, Iimura S, et al. Process Development of Tryptophan Hydroxylase Inhibitor LX1031, a Drug Candidate for the Treatment of Irritable Bowel Syndrome[J]. Organic Process Research & Development, 2020, 24(2): 261-273.
[152] Smith A G, Bio M M, Colyer J T, et al. Development of a Robust and Highly Selective Ru(II)-Catalyzed Dynamic Kinetic Resolution Used to Manufacture Amg 232[J]. Organic Process Research & Development, 2020, 24(6): 1164-1174.
[153] Noyori R, Ohkuma T. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2001, 40(1): 40-73.
[154] Noyori R, Koizumi M, Ishii D, et al. Asymmetric Hydrogenation Via Architectural and Functional Molecular Engineering[J]. Pure and Applied Chemistry, 2001, 73(2): 227-232.
[155] Dub P A, Gordon J C. The Mechanism of Enantioselective Ketone Reduction with Noyori and Noyori–Ikariya Bifunctional Catalysts[J]. Dalton Transactions, 2016, 45(16): 6756-6781.
[156] Aoun R, Renaud J-L, Dixneuf P H, et al. Concomitant Monoreduction and Hydrogenation of Unsaturated Cyclic Imides to Lactams Catalyzed by Ruthenium Compounds[J]. Angewandte Chemie International Edition, 2005, 44(13): 2021-2023.
[157] Ito M, Sakaguchi A, Kobayashi C, et al. Chemoselective Hydrogenation of Imides Catalyzed by Cp*Ru(PN) Complexes and Its Application to the Asymmetric Synthesis of Paroxetine[J]. Journal of the American Chemical Society, 2007, 129(2): 290-291.
[158] Takebayashi S, John J M, Bergens S H. Desymmetrization of Meso-Cyclic Imides Via Enantioselective Monohydrogenation[J]. Journal of the American Chemical Society, 2010, 132(37): 12832-12834.
[159] Li Y, Pasunooti K K, Li R-J, et al. Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3a4 Inhibition[J]. Journal of Medicinal Chemistry, 2018, 61(24): 11158-11168.
[160] Das U K, Janes T, Kumar A, et al. Manganese Catalyzed Selective Hydrogenation of Cyclic Imides to Diols and Amines[J]. Green Chemistry, 2020, 22(10): 3079-3082.
[161] Ito M, Kobayashi C, Himizu A, et al. Highly Enantioselective Hydrogenative Desymmetrization of Bicyclic Imides Leading to Multiply Functionalized Chiral Cyclic Compounds[J]. Journal of the American Chemical Society, 2010, 132(33): 11414-11415.
[162] 黄家欣,王宏毅,吴泽农,等. Cenobamate的合成工艺研究[J]. 中国药物化学杂志, 2021, 31(6): 4.
[163] Venkateswarlu Rayudu S, Kumar P. An Easy, Efficient and Improved Synthesis of Sertaconazole Nitrate[J]. Russian Journal of Organic Chemistry, 2019, 55(8): 1212-1216.
[164] La Regina G, D’auria F D, Tafi A, et al. 1-[(3-Aryloxy-3-Aryl)Propyl]-1H-Imidazoles, New Imidazoles with Potent Activity against Candida Albicans and Dermatophytes. Synthesis, Structure−Activity Relationship, and Molecular Modeling Studies[J]. Journal of Medicinal Chemistry, 2008, 51(13): 3841-3855.
[165] Casas M E, Kretschmann A C, Andernach L, et al. Separation, Isolation and Stereochemical Assignment of Imazalil Enantiomers and Their Quantitation in an in Vitro Toxicity Test[J]. Journal of Chromatography A, 2016, 1452: 116-120.
[166] Strzelczyk A, Mann C, Willems L M, et al. Cenobamate for the Treatment of Focal Epilepsies[J]. Expert Opinion on Pharmacotherapy, 2020, 21(18): 2215-2223.
[167] Carrillo-Muñoz A J, Giusiano G, Ezkurra P A, et al. Sertaconazole: Updated Review of a Topical Antifungal Agent[J]. Expert Rev Anti Infect Ther, 2005, 3(3): 333-42.
[168] Busto E, Gotor-Fernández V, Ríos-Lombardía N, et al. Simple and Straightforward Synthesis of Novel Enantiopure Ionic Liquids Via Efficient Enzymatic Resolution of (±)-2-(1H-Imidazol-1-yl)Cyclohexanol[J]. Tetrahedron Letters, 2007, 48(30): 5251-5254.
[169] Aher N G, Pore V S, Mishra N N, et al. Synthesis and Antifungal Activity of 1,2,3-Triazole Containing Fluconazole Analogues[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(3): 759-763.
[170] Porretta G C, Fioravanti R, Biava M, et al. Research on Antibacterial and Antifungal Agents. X. Synthesis and Antimicrobial Activities of 1-Phenyl-2-(1H-Azol-1-yl) Ethane Derivatives. Anticonvulsant Activity of 1-(4-Methylphenyl)-2-(1H-Imidazol-1-yl) Ethanol[J]. European Journal of Medicinal Chemistry, 1993, 28(10): 749-760.
[171] Wahbi Y, Caujolle R, Tournaire C, et al. Aromatic Ethers of 1-Aryl 2-(1H-Azolyl)Ethanol: Study of Antifungal Activity[J]. European Journal of Medicinal Chemistry, 1995, 30(12): 955-962.
[172] Tripathi R P, Yadav A K, Ajay A, et al. Application of Huisgen (3+2) Cycloaddition Reaction: Synthesis of 1-(2,3-Dihydrobenzofuran-2-yl-Methyl
[1,2,3]-Triazoles and Their Antitubercular Evaluations[J]. European Journal of Medicinal Chemistry, 2010, 45(1): 142-148.
[173] Vyas V K, Bhanage B M. Kinetic Resolution Driven Diastereo- and Enantioselective Synthesis of Cis-β-Heteroaryl Amino Cycloalkanols by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2016, 18(24): 6436-6439.
[174] Lennon I C, Ramsden J A. An Efficient Catalytic Asymmetric Route to 1-Aryl-2-Imidazol-1-yl-Ethanols[J]. Org Process Res Dev, 2005, 9(1): 110-112.
[175] Vyas V K, Bhanage B M. Catalytic Asymmetric Synthesis of Β-Triazolyl Amino Alcohols by Asymmetric Transfer Hydrogenation of Α-Triazolyl Amino Alkanones[J]. Tetrahedron: Asymmetry, 2017, 28(7): 974-982.
[176] Barrios-Rivera J, Xu Y, Clarkson G J, et al. Asymmetric Transfer Hydrogenation of Heterocycle-Containing Acetophenone Derivatives Using N-Functionalised [(Benzene)Ru(II)(Tsdpen)] Complexes[J]. Tetrahedron, 2022, 103: 132562.
[177] Díaz-Valenzuela M B, Phillips S D, France M B, et al. Enantioselective Hydrogenation and Transfer Hydrogenation of Bulky Ketones Catalysed by a Ruthenium Complex of a Chiral Tridentate Ligand[J]. Chemistry – A European Journal, 2009, 15(5): 1227-1232.
[178] Noyori R, Ikeda T, Ohkuma T, et al. Stereoselective Hydrogenation Via Dynamic Kinetic Resolution[J]. Journal of the American Chemical Society, 1989, 111(25): 9134-9135.
[179] Noyori R, Kitamura M, Ohkuma T. Toward Efficient Asymmetric Hydrogenation: Architectural and Functional Engineering of Chiral Molecular Catalysts[J]. Proceedings of the National Academy of Sciences, 2004, 101(15): 5356-5362.
[180] Ohkuma T, Koizumi M, Muñiz K, et al. Trans-RuH(Η-BH4)(Binap)(1,2-Diamine): A Catalyst for Asymmetric Hydrogenation of Simple Ketones under Base-Free Conditions[J]. Journal of the American Chemical Society, 2002, 124(23): 6508-6509.
[181] Ohkuma T, Koizumi M, Yoshida M, et al. General Asymmetric Hydrogenation of Hetero-Aromatic Ketones[J]. Organic Letters, 2000, 2(12): 1749-1751.
[182] Ohkuma T, Sandoval C A, Srinivasan R, et al. Asymmetric Hydrogenation of Tert-Alkyl Ketones[J]. Journal of the American Chemical Society, 2005, 127(23): 8288-8289.
[183] Lennon I C, Ramsden J A. An Efficient Catalytic Asymmetric Route to 1-Aryl-2-Imidazol-1-Yl-Ethanols[J]. Organic Process Research & Development, 2005, 9(1): 110-112.
[184] Xin Lin F G, Jialin Wen, Pan-Lin Shao, Xumu Zhang. Synthesis of Chiral Tridentate Ligands with a Ferrocene Framework and Their Applications in Ir-Catalyzed Asymmetric Hydrogenation[J]. Progress in Chemistry, 2020, 32(11): 1680-1696.
[185] 林鑫,管凡夫,温佳琳,等. 二茂铁骨架系列三齿配体的合成及其在铱催化不对称氢化中的应用[J]. 化学进展, 2020, 32(11): 1680-1696.
[186] Zhang Z, Xie F, Jia J, et al. Chiral Bicycle Imidazole Nucleophilic Catalysts: Rational Design, Facile Synthesis, and Successful Application in Asymmetric Steglich Rearrangement[J]. Journal of the American Chemical Society, 2010, 132(45): 15939-15941.
修改评论