中文版 | English
题名

碳纳米管的制备及其在场发射中的应用研究

其他题名
PREPARATION OF CARBON NANOTUBE AND THEIR APPLICATIONS IN FIELD EMISSION
姓名
姓名拼音
GUO Miao
学号
12132511
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
谢耀钦
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-15
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

碳纳米管阴极电子源在如 X 射线管类的真空电子器件中的有着重要的 应用。传统的场发射器电子源采用热阴极电子发射源,但其存在一些重大 缺陷。相比之下,碳纳米管冷阴极发射器具有低开启场、高稳定性、大发 射电流密度和长使用寿命等优点,因此被视为电子源发射极的理想选择, 并在微电子器件领域得到广泛应用。虽然碳纳米管冷阴极已经在一些领域 取得了重要进展,但是碳纳米管发射器的电流稳定性还需要进一步提高。 本论文对碳纳米管阵列的制备工艺与其场发射性能进行了探索,旨在研究 出更高场发射性能的电子材料。 将碳纳米管涂覆 sp3 键合碳涂层被认为是稳定场发射电流的一个优异的 解决方法。在本研究中对碳纳米管阵列的制备工艺进行了优化,还对碳纳 米管阵列表面进行沉积覆膜处理,最后还探索了类金刚石碳薄膜对场发射 性能的影响,具体研究内容包括: 碳纳米管阵列的生长及场发射性能研究。本文在低压条件下,通过热 解酞菁铁的方式,优化了碳纳米管阵列化学气相沉淀法的制备工艺。成功 制备了大面积方向一致的碳纳米管阵列。对其进行场发射测试,结果表明, 该方案制备的碳纳米管开启电场仅为 1.1 V/μm,当电场为 2.5 V/μm 时, 具 有的电流密度达 3.26 mA/cm2。 通过滤波阴极真空弧蒸发将高质量的超薄金刚石类碳薄膜作为 sp3 碳涂 层,均匀地沉积在碳纳米管阵列上,提高了其在场发射中的稳定性。随后 对类金刚石碳薄膜对场发射性能影响进行探索。由于空间电荷诱导能带弯 曲,在平衡状态下类金刚石碳膜层的耗尽区被最大化,碳纳米管阵列的场 发射增强因子会因为具有类金刚石碳膜而变化。

关键词:碳纳米管;场发射;类金刚石碳膜;能带弯曲

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-07
参考文献列表

[1] 杜小飞,张晓兵,狄云松,等. 碳纳米管冷阴极电子枪栅网电子通过率的仿真及实验[J]. 电子器件, 2017, 40(03): 530-534.
[2] 孙利民. 场致发射电子光学系统理论与实验研究[D]. 成都:电子科技大学光学工程学科博士论文, 2013.
[3] 杜小飞. 冷阴极电子枪的设计及应用研究[D]. 南京:东南大学电子科学与技术学科博士论文, 2017
[4] 李禧强. 阵列式碳纳米管冷阴极电子枪的研究[D]. 成都:电子科技大学电子科学与技术学科博士论文, 2016.
[5] 成会明,纳米碳管制备、结构、物性及应用[M]. 北京:化学工业出版社,2002.
[6] KOENIGSFELD N, PHILOSOPH B, KALISH R. Field emission controlled by the substrate/CVD diamond interface [J], Diamond and Related Materials, 2000, 9(3-6): 1218-1221.
[7] LEI W, ZHU Z, LIU C, et al. High-current field emission of carbon nanotubes and its application as a fast-imaging X-ray source[J]. Carbon, 2015, 94: 687-693.
[8] BIXON M, JORTNER J. The dynamics of predissociating high Rydberg states of NO[J]. Journal of Chemical Physics, 1996, 105: 1363-1382.
[9] SHESHIN E P, KOLODYAZHNYJ A Y, CHADAEV N N, et al. Prototype of cathodoluminescent lamp for general lighting using carbon fiber field emission cathode[J]. Journal of Vacuum Science & Technology B, 2019, 37: 031213-1-5.
[10] KIM W J, LEE J S, LEE S M, et al. Better than 10mA field emission from an isolated structure emitter of a metal oxide/CNT composite[J]. ACS Nano, 2011, 5(1): 429-435.
[11] WANG Q, LI X, DI Y, et al. High brightness field emission from printed carbon nanotubes in an S-band microwave gun[J]. Journal of Applied Physics, 2016,119: 084504-1-6.
[12] Ijima S. Helical microtubules of graphitic carbon [J]. nature, 1991, 354(6348); 56-58.
[13] 齐艳芳,碳纳米管的分散及其器件的制备[D],北京:北京交通大学材料科学与工程学科博士论文,2010.
[14] KROTO H W, HEATH J, O’Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318:162-163.
[15] 朱亚波,王万录,孔春阳[J],重庆大学学报(自然科学版).2002,25(4):39.
[16] WONG E W, SHEEHAN P E, LIEBER C M. Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277:1971-1975.
[17] YUM F, LOURIE O, DYER M J, et al. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science, 2000, 287:637-640.
[18] 王程伟.碳纳米管薄膜的制备及其场发射特性研究[D]. 郑州:郑州大学材料科学与工程学科博士论文,2015,6-12.
[19] 樊志琴.碳纳米管膜的制备及场发射特性研究[D]. 郑州:郑州大学材料科学与工程学科博士论文,2004,30-40.
[20] FOWLER R H, NORDHEIM L W. Electron emission in intense electric fields[J].proc. R.Soc. London,Ser. A, 1928, 119:173
[21] 李振华,姜源,赵沛.电弧放电法制备大面积高纯单壁碳纳米管薄膜[J]. 物理化学学报, 2009, 25(11): 2395-2398.
[22] CHHOWALLA, M. et al.Growth Process Conditions of V ertically Aligned Carbon Nanotubes using Plasma Enhanced Chemical V apor Deposition[J]. 2001, 90:5308.
[23] VANDER W, BERGER, HALL, Single-Walled Carbon NanotubeSynthesis via a Multi-stage Flame Configuration[J], J Phys Chem B, 2002,3564–3567.
[24] PIRIO G, LEGAGNEUX P, PRIBAT G, et al, Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode, Nanotechnology[J], 2001. 13: 457-458
[25] CRUDEN B A, CASSELL A M, Vertically oriented carbon nanofiber based nano-electromechanical switch, IEEE Transactions On Nanotechnology[J],2015. 1657-1659.
[26] BHOWMICK R, Kinetics of carbon nanotube growth with application in hydrogen storage[J], Stanford University, 2011. 15: 245-246
[27] KIM S M, PINT C L, AMAMA P B, et al, Evolution in Catalyst Morphology Leads to Carbon Nanotube Growth Termination[J], The Journal of Physical Chemistry Letters, 2010. 24: 822-834.
[28] LIU X, BIGIONI T P, XU Y, et al, Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates, The Journal of Physical Chemistry[J], 2006.
[29] DELZEIT L, MCANINCH I, CRUDEN B A, et al, Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor, Journal of Applied Physics[J],2002. 24: 822-834.
[30] YI W, JEONG T, YU S, et al. Field-Emission Characteristics from Wide-BandgapMaterial-Coated Carbon Nanotubes[J]. Adv. Mater. 2002, 14, 1464−1468.
[31] YU K, ZHANG Y, S Xu, et al. Significant improvement of field emission by depositing zinc oxide nanostructures on screen-printed carbon nanotube films[J]. Appl. Phys.Lett. 2006, 88, 153123.
[32] XU J,XU P, OU YANG, at al. Outstanding field emission properties of wet processed titanium dioxide coated carbon nanotube based field emission devices[J]. Appl. Phys. Lett. 2015, 106, 073501.
[33] CHEN W E, CHEN C, YEH C J, et al. Evolution of Granular Structure and the Enhancement of Electron Field Emission Properties of Nanocrystalline and Ultrananocrystalline Diamond Films Due to Plasma Treatment Process[J]. ACS Appl. Mater. Interfaces 2018, 10, 28726−28735.
[34] SARAVANAN A, HUANG B R, et al. High-Performance Electron Field Emitters and Microplasma Cathodes Based on Conductive Hybrid Granular Structured Diamond Materials[J]. ACS Appl. Mater. Interfaces 2017, 9, 4916−4925.
[35] CHANG T H, HSIEH P Y, KUNUKU S, et al. High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N2-Plasma Grown Ultrananocrystalline Diamond Films[J]. ACS Appl. Mater. Interfaces 2015, 7, 27526−27538.
[36] TERRANOVA M L,ORLANDUCCI S,ROSSI M. Nanodiamonds for field emission: state of the art[J]. Nanoscale 2015, 7,5094.
[37] CHANG T H,PANDA K,PANIGRAHI B K,et al. Electrophoresis of Nanodiamond on the Growth of Ultrananocrystalline Diamond Films on Silicon Nanowires and the Enhancement of the Electron Field Emission Properties. [J]. Phys. Chem. C 2012, 116, 19867−19876.
[38] VETTER J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf[J]. Coat.Technol. 2014, 257, 213−240.
[39] ROBERTSON J. Diamond-like amorphous carbon. Mater. Sci. Eng.,R 2002, 37, 129−281.
[40] DIMITRIJEVIC S,WITHERS J C,MAMMANA V P,et al. Electron emission from films of carbon nanotubes and ta-C coated nanotubes[J]. Appl. Phys. Lett. 1999, 75,2680−2682.
[41] GUGLIELMOTTI V,CHIEPPA S,ORLANDUCCI S,et al. Carbon nanotube/nano-diamond structures: An innovative concept for stable and ready-to-start electron emitters[J]. Appl. Phys. Lett. 2009, 95, 222113.
[42] YU J,FOONG Y M, KOH A T T, et al. C.Hydrogenation and Its Effects on the Field Emission Characteristics of Tetrahedral Amorphous Carbon Coated Carbon Nanotubes[J].Phys. Chem. C 2011, 115, 11336−11341.
[43] YU J,ANETAB P,KOH A T T,et al. Enhanced electron emission from tetrahedral amorphous carbon capped carbon nanotube core-shelled structure[J]. Diamond Relat. Mater.2012, 21, 3 7−41.
[44] VARSHNEY D,SUMANT A V,RESTO O, et al. Single-step route to hierarchical flower-like carbon nanotube clusters decorated with ultrananocrystalline diamond[J]. Carbon 2013, 63, 253−262.
[45] ZANIN H,MAY P W,HAMANAKA M H,et al. Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures[J]. ACS Appl. Mater. Interfaces 2013, 5,12238−12243.
[46] CHANG T,KUNUKU S,SANKARAN K J,et al. Enhancing the stability of microplasma device utilizing diamond coated carbon nanotubes as cathode materials[J]. Appl. Phys. Lett. 2014, 104, 223106.
[47] CHANG T H, KUNUKU S, HONG Y J, et al. Enhancement of the Stability of Electron Field Emission Behavior and the Related Microplasma Devices of Carbon Nanotubes by Coating Diamond Films[J]. ACS Appl. Mater. Interfaces 2014, 6, 11589−11597.
[48] FEDOSEEVA Y V,BULUSHEVA L G,OKOTRUB A V,et al. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array[J]. Sci. Rep. 2015, 5,09379.
[49] SARAVANAN A,HUANG B R,YEH C J,et al. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties[J]. Appl. Phys. Lett.2015, 106, 231602.
[50] 薛敏骅,高荣生,李同锁,等.彩色显像管用黑底石墨乳研究[J].非金属矿,2003(05):14-16.
[51] 郑新亮.用于FED阴极的碳纳米管薄膜改性及其场发射性能研究[D]. 西安: 西北大学材料科学与工程学科博士论文,2009,13-45.
[52] 阎志华,赵斌,程起林,彩色显象管用黑底石墨乳的研究进展[J].化学世界,2001,42(8):438-440.
[53] 蒋军.微波管中抑制电子发射及其冷阴极的探索[D]. 北京:中国科学院材料科学与工程学科博士论文,2006,1-119.
[54] ZHU W, Vacuum Microelectronics[M].New York: John Wiley&Sons, 2001:176,54-78.
[55] TALIN A A, PAN L S, MCCARTY K F, et al.The relationship between the spatially resolved field emission characteristics and the raman spectra of a nanocrystalline diamond cold cathode[J]. Appl.Phys. Lett.1996:69-842.
[56] 佟钰,张婷,王琳,等.大电流碳纳米管场发射体及其长期稳定性研究[J]. 电子元件与材 料, 2014, 33(8):56-58.
[57] 朱攀,桑梅,王晓龙,等.旋转涂覆法制备碳纳米管薄膜[J].功能材料与学 报,2012,18(04):337-340.54-62.
[58] 王小菊. 单晶六硼化镧场发射阵列阴极及特性研究[D].成都:电子科技大学材料科学与工程学科博士论文, 2009.
[59] 陈泽祥, 曹贵川, 张强, 等 .大电流密度碳纳米管场致发射阴极阵列的研制[J]. 强激光与粒子束, 2006(12):2070-2073.
[60] 廖庆亮,张跃,夏连胜,等.丝网印刷制备碳纳米管阴极的强流脉冲发射特性研究[J].物理学报,2008,57(4):2328-2333.
[61] 于洪涛, 陈硕, 赵慧敏,等. 钛基底上碳纳米管束阵列的制备与电化学性质[J]. 功能材料与器件学报, 2008, 14(1): 55-58.
[62] 刘元震, 王仲春, 董亚强. 电子发射与光电阴极[M]. 北京理工大学出版社,1995.
[63] 姜芮芮, 场发射冷阴极电子枪研究[D]. 成都:电子科技大学电子科学与技术学科博士论文, 2017.
[64] WANG W,ZHANG G,YU L,et al. Fieldemission properties of zinc oxide nanowires fabricated by thermal evaporation[J]. Phys. E 2007, 36, 86-91.
[65] YUE S,PAN H,NING Z,et al. Amazing ageing property and in situ comparative study of field emission from tungsten oxide nanowires[J]. Nanotechnology 2011, 22, 115703.
[66] ZANIN H,MAY P W,HAMANAKA M H. et al. Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures[J]. ACS Appl. Mater. Interfaces 2013, 5,12238−12243.
[67] BINH V T,ADESSI C. New Mechanism for Electron Emission from Planar Cold Cathodes: The Solid-State Field-Controlled Electron Emitter[J]. Phys. Rev. Lett. 2000, 85, 864−867.
[68] WANG R Z; WANG B,WANG H,et al.et al. Band bending mechanism for field emission in wide-band gap semiconductors[J]. Appl. Phys. Lett. 2002, 81,2782−2784.
[69] GOULET T,KESZEI E,JAYGERIN J P. Probabilistic description of particle transport. I. General theory of quasielastic scattering in plane-parallel media. Phys. Rev. A: At., Mol,Opt. Phys. 1988, 37,2176−2182.
[70] Lüth H. Solid Surfaces, Interfaces and Thin Films[J], 6th ed,Springer-Verlag: Berlin/Heidelberg, 2015; p398.
[71] LI YUNHUI, Dependence of Optimum Thickness of Ultrathin Diamond-like Carbon Coatings over Carbon Nanotubes on Geometric Field Enhancement Factor[J]. ACS Appl. Electron. Mater. 2020, 2, 84−92.

所在学位评定分委会
材料与化工
国内图书分类号
TB383.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545073
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
郭淼. 碳纳米管的制备及其在场发射中的应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132511-郭淼-中国科学院深圳理(2756KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭淼]的文章
百度学术
百度学术中相似的文章
[郭淼]的文章
必应学术
必应学术中相似的文章
[郭淼]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。