中文版 | English
题名

全无机钙钛矿X射线光导体多晶厚膜制备工艺研究

其他题名
STUDY ON ALL-INORGANIC PEROVSKITE POLYCRYSTALLINE X-RAY PHOTOCONDUCTOR
姓名
姓名拼音
ZHAO Bo
学号
12132607
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李云龙
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-17
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

X射线探测器在医疗影像、工业检测、安全检查和材料分析等领域被广泛应用。近年来,金属卤化物钙钛矿由于具有高X射线吸收系数、高载流子迁移率寿命积、高电阻率和可低成本制备等优点,成为下一代X射线光导体(X-ray photoconductor)的研究热点。其中,有机-无机杂化钙钛矿突出的光电性能赋予其出色的X射线响应,但由于杂化钙钛矿中有机阳离子的吸湿性和挥发性,导致其在湿气、氧气、紫外线和加热等环境下易分解。不含有机成分的全无机钙钛矿拥有更高的光热稳定性和X射线吸收系数,有望突破钙钛矿材料在X射线探测领域的应用瓶颈,然而,目前全无机钙钛矿探测器的性能仍远低于有机-无机杂化钙钛矿。

因此,本文围绕以上问题,基于全无机铯铅溴(CsPbBr3)钙钛矿,提出稀土氧化物复合结构调控X射线光电导策略,获得媲美有机-无机杂化钙钛矿的器件性能,从而推动高性能全无机卤化物钙钛矿X射线探测器的发展;进一步以AgBi取代Pb合成非铅钙钛矿铯银铋溴(Cs2AgBiBr6),探索环境友好型全无机钙钛矿X射线探测器的应用潜力。主要内容如下:

本文选取了无机卤化物钙钛矿CsPbBr3作为X射线光导体材料,通过构建以稀土氧化物氧化钇(Y2O3)为骨架的二元高稳定无机复合体系提升CsPbBr3的稳定性的同时降低CsPbBr3的缺陷密度,提升载流子收集效率,调控其X射线光电导性能,通过冷压的方式制备X射线光导体厚膜,最终制备的X射线探测器的灵敏度高达2.5×107 μC·Gyair-1·cm-2,检测限低至3.3 nGyair·s-1

同时,本文选取了全无机非铅的双钙钛矿Cs2AgBiBr6作为X射线光导体材料。通过浆料刮涂的方法制备Cs2AgBiBr6厚膜,以苯乙基乙酸铵(PEAAc)钝化晶界,减少厚膜内部缺陷密度,降低外界环境中水氧的影响,同时提升厚膜的电阻率及离子迁移活化能,降低暗电流密度及基线漂移,构建的X射线探测器暗电流漂移低至8.5×10-9 nA·cm-1·s-1·V-1

总之,本工作为提高全无机卤化物钙钛矿X射线探测器的性能提供了一种有前景的方法,证明了CsPbBr3钙钛矿和非铅Cs2AgBiBr6钙钛矿作为X射线光导体的潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] KNOLL G F. Radiation detection and measurement[M]. John Wiley & Sons, 2010.
[2] NICHOLLS M. WILHELM C. Röntgen discoverer of X-rays: As part of our ongoing series of Nobel Prize winners that have contributed to cardiovascular medicine, Mark Nicholls looks at the work of Wilhelm Röntgen, discoverer of X-rays[J]. 2019,1584-1586.
[3] MORATAL D. Medical Imaging: Principles, Detectors, and Electronics (Iniewski, K., Ed.; 2009)[Book Reviews][J]. IEEE Pulse, 2011, 2(3): 76-77.
[4] BRAVIN A, COAN P, SUORTTI P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics[J]. Physics in Medicine & Biology, 2012, 58(1): R1.
[5] FRUSH D P. Pediatric CT and radiation: our responsibility[C]//Medical Imaging 2009: Physics of Medical Imaging. SPIE, 2009, 7258: 29-36.
[6] MATHIEU K B, MCNITT-GRAY M F, Cody D D. The impact of x-ray tube stabilization on localized radiation dose in axial CT scans: initial results in CTDI phantoms[J]. Physics in Medicine & Biology, 2016, 61(20): 7363.
[7] CHRISTIANSON O, LI X, FRUSH D, et al. Automated size‐specific CT dose monitoring program: assessing variability in CT dose[J]. Medical Physics, 2012, 39(11): 7131-7139.
[8] 王晏.工业 X 射线图像目标自动检测方法研究 [D].大连:大连理工大学, 2014.
[9] LEE A Y, PARK D Y, JEONG M S. Correlational study of halogen tuning effect in hybrid perovskite single crystals with Raman scattering, X-ray diffraction, and absorption spectroscopy[J]. Journal of Alloys and Compounds, 2018, 738: 239-245.
[10] KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se[J]. Journal of Physics D: Applied Physics, 2000, 33(21): 2853.
[11] RICHTER M, SIFFERT P. High resolution gamma ray spectroscopy with CdTe detector systems[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 322(3): 529-537.
[12] SZELES C. CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications[J]. Physica Status Solidi (b), 2004, 241(3): 783-790.
[13] STREET R A, READY S E, LEMMI F, et al. Electronic transport in polycrystalline PbI2 films[J]. Journal of Applied Physics, 1999, 86(5): 2660-2667.
[14] SCHIEBER M, HERMON H, ZUCK A, et al. Thick films of X-ray polycrystalline mercuric iodide detectors[J]. Journal of Crystal Growth, 2001, 225(2-4): 118-123.
[15] ZENTAI G, SCHIEBER M, PARTAIN L, et al. Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging[J]. Journal of Crystal Growth, 2005, 275(1-2): e1327-e1331.
[16] LIU Y, ZHANG Y, ZHU X, et al. Triple‐Cation and Mixed‐Halide Perovskite Single Crystal for High‐Performance X‐ray Imaging[J]. Advanced Materials, 2021, 33(8): 2006010.
[17] ZHANG P, ZHANG G, LIU L, et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5040-5046.
[18] ZHUANG R, WANG X, MA W, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response[J]. Nature Photonics, 2019, 13(9): 602-608.
[19] GUO W, LIU X, HAN S, et al. Room‐temperature ferroelectric material composed of a two‐dimensional metal halide double perovskite for x‐ray detection[J]. Angewandte Chemie International Edition, 2020, 59(33): 13879-13884.
[20] ZHANG J, JIN Z, LIANG L, et al. Iodine‐optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14%[J]. Advanced Science, 2018, 5(12): 1801123.
[21] XU X, QIAN W, XIAO S, et al. Halide perovskites: A dark horse for direct X‐ray imaging[J]. EcoMat, 2020, 2(4): e12064.
[22] 潘伟程. 基于全无机钙钛矿的 X 射线探测器制备与性能调控研究[D]. 武汉:华中科技大学, 2021.
[23] PODGORŠAK E B. Radiation physics for medical physicists[M]. Berlin: Springer, 2006.
[24] WU H, GE Y, NIU G, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144-163.
[25] R. D. EVANS, A. BEISER. The atomic nucleus. Physics Today, 1956, 9(12): 33.
[26] WEISS A, MAYER R, JIBALY M, et al. Auger-electron emission resulting from the annihilation of core electrons with low-energy positrons[J]. Physical Review Letters, 1988, 61(19): 2245.
[27] SHRESTHA S. Methylammonium Lead Iodide Perovskite for Direct X-ray Detection[M]. Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany), 2018.
[28] TAVERNIER S, GEKTIN A, GRINYOV B, et al. Radiation detectors for medical applications[M]. Springer Science & Business Media, 2006.
[29] LEMPICKI A, WOJTOWICZ A J, BERMAN E. Fundamental limits of scintillator performance[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 333(2-3): 304-311.
[30] LUTZ G. Semiconductor radiation detectors[M]. Heidelberg: Springer, 2007.
[31] TSOULFANIDIS N, LANDSBERGER S. Measurement & detection of radiation[M]. CRC press, 2021.
[32] BEUTEL J, KUNDEL H L, KIM Y, et al. Handbook of medical imaging[M]. Spie Press, 2000.
[33] MESCHER H, SCHACKMAr F, EGGERS H, et al. Flexible inkjet-printed triple cation perovskite X-ray detectors[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15774-15784.
[34] KASAP S, FREY J B, BELEV G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors[J]. Sensors, 2011, 11: 5112-5157.
[35] PRIMAK A N, MCCOLLOUGH C H, BRUESEWITZ M R, et al. Relationship between noise, dose, and pitch in cardiac multi–detector row CT[J]. Radiographics, 2006, 26(6): 1785-1794.
[36] KARA E, MILLER J M, REYNOLDS C, et al. Relativistic reverberation in the accretion flow of a tidal disruption event[J]. Nature, 2016, 535(7612): 388-390.
[37] WEI H, FANG Y, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339.
[38] BASIRICÒ L, CIAVATTI A, FRABONI B. Solution‐Grown Organic and Perovskite X‐Ray Detectors: A New Paradigm for the Direct Detection of Ionizing Radiation[J]. Advanced Materials Technologies, 2021, 6(1): 2000475.
[39] PODZOROV V, MENARD E, BORISSOV A, et al. Intrinsic charge transport on the surface of organic semiconductors[J]. Physical Review Letters, 2004, 93(8): 086602.
[40] RUSSO P. Handbook of X-ray imaging: physics and technology[M]. CRC press, 2017.
[41] GIGER M L, DOI K. Investigation of basic imaging properties in digital radiography. I. Modulation transfer function[J]. Medical Physics, 1984, 11(3): 287-295.
[42] HWANG H, CHOI Y W, KWAK S, et al. MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method[C].Image and Signal Processing for Remote Sensing XIV. SPIE, 2008, 7109: 34-42.
[43] HOGG P, MILLINGTON S, MANNING D, et al. Observer studies in mammography[M].Digital Mammography. Springer, Cham, 2015: 291-302.
[44] WENK H R, BULAKH A. Minerals: their constitution and origin[M]. Cambridge University Press, 2016.
[45] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of The American Chemical Society, 2009, 131(17): 6050-6051.
[46] GRÄTZEL M. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13(9): 838-842.
[47] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.
[48] TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chemical Science, 2016, 7(7): 4548-4556.
[49] HOWARD C J, STOKES H T. Group-theoretical analysis of octahedral tilting in perovskites[J]. Acta Crystallographica Section B: Structural Science, 1998, 54(6): 782-789.
[50] STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727.
[51] WEI H, FANG Y, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339.
[52] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11(5): 315-321.
[53] XU Q, SHAO W, LI Y, et al. High-sensitivity X-ray imaging of a lead halide perovskite single-crystal scintillator[J]. Optics Letters, 2020, 45(2): 355-358.
[54] SONG Y, LI L, HAO M, et al. Elimination of Interfacial‐Electrochemical‐Reaction‐Induced Polarization in Perovskite Single Crystals for Ultrasensitive and Stable X‐Ray Detector Arrays[J]. Advanced Materials, 2021, 33(52): 2103078.
[55] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982-988.
[56] LEE J W, SEOL D J, CHO A N, et al. High‐efficiency perovskite solar cells based on the black polymorph of HC (NH2) 2PbI3[J]. Advanced Materials, 2014, 26(29): 4991-4998.
[57] HAN Q, BAE S H, SUN P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties[J]. Advanced Materials, 2016, 28(11): 2253-2258.
[58] ZHANG B B, LIU X, XIAO B, et al. High-performance x-ray detection based on one-dimensional inorganic halide perovskite CsPbI3[J]. The Journal of Physical Chemistry Letters, 2019, 11(2): 432-437.
[59] LEYDEN M R, LEE M V, RAGA S R, et al. Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations[J]. Journal of Materials Chemistry A, 2015, 3(31): 16097-16103.
[60] MIN H, KIM M, LEE S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide[J]. Science, 2019, 366(6466): 749-753.
[61] LIU Y, ZHANG Y, ZHU X, et al. Triple‐Cation and Mixed‐Halide Perovskite Single Crystal for High‐Performance X‐ray Imaging[J]. Advanced Materials, 2021, 33(8): 2006010.
[62] HU H, NIU G, ZHENG Z, et al. Perovskite semiconductors for ionizing radiation detection[J]. EcoMat, 2022: e12258.
[63] LI H, SONG J, PAN W, et al. Sensitive and stable 2D perovskite single‐crystal x‐ray detectors enabled by a supramolecular anchor[J]. Advanced Materials, 2020, 32(40): 2003790.
[64] SHEN Y, LIU Y, YE H, et al. Centimeter‐Sized Single Crystal of Two‐Dimensional Halide Perovskites Incorporating Straight‐Chain Symmetric Diammonium Ion for X‐Ray Detection[J]. Angewandte Chemie International Edition, 2020, 59(35): 14896-14902.
[65] PAN W, WU H, LUO J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 2017, 11(11): 726-732.
[66] YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature photonics, 2015, 9(7): 444-449.
[67] BASIRICÒ L, CIAVATTI A, FRABONI B. Solution‐Grown Organic and Perovskite X‐Ray Detectors: A New Paradigm for the Direct Detection of Ionizing Radiation[J]. Advanced Materials Technologies, 2021, 6(1): 2000475.
[68] DIAO Y, SHAW L, BAO Z, et al. Morphology control strategies for solution-processed organic semiconductor thin films[J]. Energy & Environmental Science, 2014, 7(7): 2145-2159.
[69] HARUTA Y, IKENOUE T, MIYAKE M, et al. Fabrication of (101)-oriented CsPbBr3 thick films with high carrier mobility using a mist deposition method[J]. Applied Physics Express, 2019, 12(8): 085505.
[70] HARUTA Y, IKENOUE T, MIYAKE M, et al. Fabrication of CsPbBr3 thick films by using a mist deposition method for highly sensitive X-ray detection[J]. MRS Advances, 2020, 5(8-9): 395-401.
[71] MATT G J, LEVCHUK I, KNÜTTEL J, et al. Sensitive Direct Converting X‐Ray Detectors Utilizing Crystalline CsPbBr3 Perovskite Films Fabricated via Scalable Melt Processing[J]. Advanced Materials Interfaces, 2020, 7(4): 1901575.
[72] QIAN W, XU X, WANG J, et al. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors[J]. Matter, 2021, 4(3): 942-954.
[73] BASIRICÒ L, CIAVATTI A, FRATELLI I, et al. Medical applications of tissue-equivalent, organic-based flexible direct X-ray detectors[J]. Frontiers in Physics, 2020, 8: 13.
[74] LI H, SHAN X, NEU J N, et al. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging[J]. Journal of Materials Chemistry C, 2018, 6(44): 11961-11967.
[75] BRUZZI M, TALAMONTI C, Calisi N, et al. First proof-of-principle of inorganic perovskites clinical radiotherapy dosimeters[J]. APL Materials, 2019, 7(5): 051101.
[76] GOU Z, HUANGLONG S, KE W, et al. Self‐Powered X‐Ray Detector Based on All‐Inorganic Perovskite Thick Film with High Sensitivity Under Low Dose Rate[J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2019, 13(8): 1900094.
[77] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91.
[78] HE X, XIA M, WU H, et al. Quasi‐2D Perovskite Thick Film for X‐Ray Detection with Low Detection Limit[J]. Advanced Functional Materials, 2022, 32(7): 2109458.
[79] KARTHIEKA R R, VENKATASUBBU G D, Prakash T. Nanocomposite thick films of CsPbI3: PVDF-HFP on plastics for direct conversion low-dose X-ray sensor[J]. Materials Science in Semiconductor Processing, 2020, 120: 105289.
[80] LI Y , ADEAGBO E, KOUGHIA C, et al. Direct conversion X-ray detectors with 70 pA cm−2 dark currents coated from an alcohol-based perovskite ink[J]. Journal of Materials Chemistry C, 2022, 10(4): 1228-1235.
[81] SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11(7): 436-440.
[82] ZHAO J, ZHAO L, DENG Y, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays[J]. Nature Photonics, 2020, 14(10): 612-617.
[83] PAN W, YANG B, NIU G, et al. Hot‐Pressed CsPbBr3 Quasi‐Monocrystalline Film for Sensitive Direct X‐ray Detection[J]. Advanced Materials, 2019, 31(44): 1904405.
[84] DIAO Y, SHAW L, BAO Z, et al. Morphology control strategies for solution-processed organic semiconductor thin films[J]. Energy & Environmental Science, 2014, 7(7): 2145-2159.
[85] XIA M, SONG Z, Wu H, et al. Compact and Large‐Area Perovskite Films Achieved via Soft‐Pressing and Multi‐Functional Polymerizable Binder for Flat‐Panel X‐Ray Imager[J]. Advanced Functional Materials, 2022: 2110729.
[86] SONG J, QIAN J, LIU L, et al. Theoretical study on defect properties of two-dimensional multilayer Ruddlesden-Popper lead iodine perovskite[J]. Computational Materials Science, 2021, 194: 110457.
[87] Zhang B, Xu Z, Ma C, et al. First‐Principles Calculation Design for 2D Perovskite to Suppress Ion Migration for High‐Performance X‐ray Detection[J]. Advanced Functional Materials, 2022, 32(15): 2110392.
[88] WANG Q, CHEN B, LIU Y, et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films[J]. Energy & Environmental Science, 2017, 10(2): 516-522.
[89] LIU Y, PALOTAS K, YUAN X, et al. Atomistic origins of surface defects in CH3NH3PbBr3 perovskite and their electronic structures[J]. Acs Nano, 2017, 11(2): 2060-2065.
[90] KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192.
[91] WEI D, MA F, WANG R, et al. Ion‐migration inhibition by the cation–π interaction in perovskite materials for efficient and stable perovskite solar cells[J]. Advanced Materials, 2018, 30(31): 1707583.
[92] GHARIBZADEH S, FASSL P, HOSSAIN I M, et al. Two birds with one stone: dual grain-boundary and interface passivation enables> 22% efficient inverted methylammonium-free perovskite solar cells[J]. Energy & Environmental Science, 2021, 14(11): 5875-5893.
[93] WEI Y, XIN D, TIE S, et al. Additive-Induced Synergies of Ion Migration Inhibition and Defect Passivation toward Sensitive Perovskite X-ray Detectors[J]. The Journal of Physical Chemistry Letters, 2023, 14: 3313-3319.
[94] DONG S, XIN D, ZHANG M, et al. Green solvent blade-coated MA3Bi2I9 for direct-conversion X-ray detectors[J]. Journal of Materials Chemistry C, 2022, 10(16): 6236-6242.
[95] LIU W, SHI T, ZHU J, et al. PbI2‐DMSO Assisted In Situ Growth of Perovskite Wafers for Sensitive Direct X‐Ray Detection[J]. Advanced Science, 2023, 10(1): 2204512.
[96] SHI T, LIU W, ZHU J, et al. CsPbBr3-DMSO merged perovskite micro-bricks for efficient X-ray detection[J]. Nano Research, 2023.
[97] KACZMAREK A M, VAN HECKE K, VAN DEUN R. Nano-and micro-sized rare-earth carbonates and their use as precursors and sacrificial templates for the synthesis of new innovative materials[J]. Chemical Society Reviews, 2015, 44(8): 2032-2059.
[98] WEI S, TIE S, SHEN K, et al. Enhanced Carrier Transport in X‐Ray Detector Based on Cs3Bi2I9/MXene Composite Wafers[J]. Advanced Optical Materials, 2022, 10(23): 2201585.
[99] 江文杰.光电技术(第二版)[M].北京:科学出版社, 2014.
[100] BROTHERTON S D. Introduction to thin film transistors: Physics and Technology of TFTs[M]. Springer Science & Business Media, 2013.
[101] VERWEIJ J F, KLOOTWIJK J H. Dielectric breakdown I: A review of oxide breakdown[J]. Microelectronics Journal, 1996, 27(7): 611-622.
[102] JIN H, DONG S, MIAO M, et al. Breakdown voltage of ultrathin dielectric film subject to electrostatic discharge stress[J]. Journal of Applied Physics, 2011, 110(5): 054516.
[103] SARKAR S L, AIMIN X, JANA D. Scanning electron microscopy, X-ray microanalysis of concretes[M].Handbook of Analytical Techniques in Concrete Science and Technology. William Andrew Publishing, 2001: 231-274.
[104] ABOU-RAS D, KIRCHARTZ T, RAU U. Advanced characterization techniques for thin film solar cells[M]. Weinheim, Germany: Wiley-Vch, 2011.
[105] ELAND J H D. Photoelectron spectroscopy: an introduction to ultraviolet photoelectron spectroscopy in the gas phase[M]. Elsevier, 2013.
[106] YAJI K, HARASAWA A, Kuroda K, et al. High-resolution three-dimensional spin-and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light[J]. Review of Scientific Instruments, 2016, 87(5): 053111.
[107] HENNING S, ADHIKARI R. Scanning electron microscopy, ESEM, and X-ray microanalysis[M]Microscopy Methods in Nanomaterials Characterization. Elsevier, 2017: 1-30.
[108] ALS-NIELSEN J, MCMORROW D, ROBINSON I. DEPARTMENTS-Books-Elements of Modern X-Ray Physics[J]. Physics Today, 2002, 55(3): 63.
[109] BRYDSON R. Electron energy loss spectroscopy[M]. Garland Science, 2020.
[110] 沈兴. 差热, 热重分析与非等温固相反应动力学[M]. 冶金工业出版社, 1995.
[111] BLASSE G, GRABMAIER B C, BLASSE G, et al. A general introduction to luminescent materials[M]. Springer Berlin Heidelberg, 1994.
[112] COMELLI D, ARTESANI A, NEVIN A, et al. Time-resolved photoluminescence microscopy for the analysis of semiconductor-based paint layers[J]. Materials, 2017, 10(11): 1335.
[113] ZHANG T, CHEN H, BAI Y, et al. Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution[J]. Nano Energy, 2016, 26: 620-630.
[114] ZHOU Y, ZHAO L, NI Z, et al. Heterojunction structures for reduced noise in large-area and sensitive perovskite x-ray detectors[J]. Science Advances, 2021, 7(36): 6716.
[115] ANDROULAKIS J, PETER S C, LI H, et al. Dimensional reduction: a design tool for new radiation detection materials[J]. Advanced Materials, 2011, 23(36): 4163-4167.
[116] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970.
[117] MOTT N F, GURNEY R W. Electronic processes in ionic crystals[M]. Clarendon Press, 1948.
[118] BUBE R H. Trap density determination by space‐charge‐limited currents[J]. Journal of Applied Physics, 1962, 33(5): 1733-1737.
[119] PAN W, WU H, LUO J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 2017, 11(11): 726-732.
[120] LI D, WU H, CHENG H C, et al. Electronic and ionic transport dynamics in organolead halide perovskites[J]. ACS Nano, 2016, 10(7): 6933-6941.
[121] YANG T Y, GREGORI G, Pellet N, et al. The significance of ion conduction in a hybrid organic–inorganic lead‐iodide‐based perovskite photosensitizer[J]. Angewandte Chemie, 2015, 127(27): 8016-8021.
[122] MAIER J. Physical chemistry of ionic materials: ions and electrons in solids[M]. John Wiley & Sons, 2023,444-460.
[123] BRUCE P G. Solid state electrochemistry[M]. Cambridge University Press, 1997.
[124] PUNNOOSE J, XU J, SISNIEGA A, et al. Technical Note: spektr 3.0—A computational tool for x-ray spectrum[J]. Medical Physics, 2016, 43(8): 4711-4717.
[125] LIU M, ZHAO J, LUO Z, et al. Unveiling solvent-related effect on phase transformations in CsBr–PbBr2 system: coordination and ratio of precursors[J]. Chemistry of Materials, 2018, 30(17): 5846-5852.
[126] FU W, RICCIARDULLI A G, AKKERMAN Q A, et al. Stability of perovskite materials and devices[J]. Materials Today, 2022.
[127] LIN J, LAI M, DOU L, et al. Thermochromic halide perovskite solar cells[J]. Nature Materials, 2018, 17(3): 261-267.
[128] BERGER M J. XCOM: photon cross sections database[J]. http://physics. nist. gov/PhysRefData/Xcom/Text/XCOM.
[129] XU Q, WANG X, ZHANG H, et al. CsPbBr3 single crystal X-ray detector with Schottky barrier for X-ray imaging application[J]. ACS Applied Electronic Materials, 2020, 2(4): 879-884.
[130] CLAIRAND I, BORDY J M, CARINOU E, et al. Use of active personal dosemeters in interventional radiology and cardiology: Tests in laboratory conditions and recommendations-ORAMED project[J]. Radiation Measurements, 2011, 46(11): 1252-1257.
[131] SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. Journal of the American Chemical Society, 2016, 138(7): 2138-2141.
[132] MCCLURE E T, BALL M R, WINDL W, et al. Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors[J]. Chemistry of Materials, 2016, 28(5): 1348-1354.
[133] RICQ S, GLASSER F, GARCIN M. Study of CdTe and CdZnTe detectors for X-ray computed tomography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1-2): 534-543.
[134] LI C, GUERRERO A, HUETTNER S, et al. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence[J]. Nature Communications, 2018, 9(1): 5113.
[135] CHEN J, WANG D, CHEN S, et al. Dually Modified Wide-Bandgap Perovskites by Phenylethylammonium Acetate toward Highly Efficient Solar Cells with Low Photovoltage Loss[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43246-43256.
[136] XIAO M, XIANG T, KIM D, et al. Superior External Quantum Efficiency of LEDs via Quasi-2D Perovskite Crystals Implanted with Phenethylammonium Acetate[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45352-45363.
[137] 张小根. 高效稳定二维钙钛矿太阳能电池的研究[D].北京:华北电力大学, 2021.
[138] YANG B, PAN W, WU H, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 2019, 10(1): 1989.
[139] HE Y, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9(1): 1609.
[140] YAKUNIN S, DIRIN D N, SHYNKARENKO Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites[J]. Nature Photonics, 2016, 10(9): 585-589.
[141] 巫皓迪. 铯银铋溴X射线探测器性能研究和成像初探[D]. 武汉:华中科技大学, 2021.

所在学位评定分委会
材料与化工
国内图书分类号
TL816+.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545078
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
赵波. 全无机钙钛矿X射线光导体多晶厚膜制备工艺研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132607-赵波-中国科学院深圳理(7312KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵波]的文章
百度学术
百度学术中相似的文章
[赵波]的文章
必应学术
必应学术中相似的文章
[赵波]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。