[1] TSENG C-F, LIU C-S, WU C-H, et al. InFO (Wafer Level Integrated Fan-Out) Technology [Z]. 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). 2016: 1-6.10.1109/ectc.2016.65
[2] FAN X. Wafer level packaging (WLP): fan-in, fan-out and three-dimensional integration; proceedings of the 2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), F, 2010 [C]. IEEE.
[3] LAU J H. Semiconductor advanced packaging [M]. Springer Nature, 2021.
[4] RAO V S, CHONG C T, HO D, et al. Development of high density fan out wafer level package (HD FOWLP) with multi-layer fine pitch RDL for mobile applications; proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), F, 2016 [C]. IEEE.
[5] YU C, YEN L, HSIEH C, et al. High performance, high density rdl for advanced packaging; proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), F, 2018 [C]. IEEE.
[6] LAU J H. Recent Advances and Trends in Advanced Packaging [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 228-52.
[7] 周晓阳. 先进封装技术综述 [J]. 集成电路应用, 2018, 35(6): 1-7.
[8] 曹立强, 侯峰泽, 王启东,等. 先进封装技术的发展与机遇 [J]. 前瞻科技, 2022, 1(3): 101-14.
[9] CHEN N-C, HSIEH T-H, JINN J, et al. A Novel System in Package with Fan-out WLP for high speed SERDES application; proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), F, 2016 [C]. IEEE.
[10] LAU J H, LEE S-W R, CHANG C. Solder joint reliability of wafer level chip scale packages (WLCSP): A time-temperature-dependent creep analysis [J]. J Electron Packag, 2000, 122(4): 311-6.
[11] LAU J H. Recent Advances and Trends in Fan-Out Wafer/Panel-Level Packaging [J]. Journal of Electronic Packaging, 2019, 141(4).
[12] LAU J H. Fan-out wafer-level packaging [M]. Springer, 2018.
[13] LAU J H, LAU J H. FOWLP: Chip-First and Die Face-Down [J]. Fan-Out Wafer-Level Packaging, 2018: 127-143.
[14] HUA X, XU H, ZHANG L, et al. Development of chip-first and die-up fan-out wafer level packaging; proceedings of the 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), F, 2017 [C]. IEEE.
[15] LAU J H, LAU J H. FOWLP: Chip-Last or RDL-First [J]. Fan-Out Wafer-Level Packaging, 2018: 195-206.
[16] OOIDA M, TANIGUCHI F, IWASAKI T, et al. Advanced Packaging Technologies supporting new semiconductor application; proceedings of the 2016 IEEE CPMT Symposium Japan (ICSJ), F, 2016 [C]. IEEE.
[17] LAU J, TZENG P, LEE C, et al. Redistribution layers (RDLs) for 2.5 D/3D IC integration; proceedings of the International Symposium on Microelectronics, F, 2013 [C]. International Microelectronics Assembly and Packaging Society.
[18] LAU J, TZENG P, LEE C, et al. Redistribution layers (RDLs) for 2.5 D/3D IC integration [J]. Journal of Microelectronics and Electronic Packaging, 2014, 11(1): 16-24.
[19] BOGERT M T, RENSHAW R R. 4-Amino-0-Phalitic acid and some of its derivatives [J]. J Am Chem Soc, 1908, 30(7): 1135-1144.
[20] 丁孟贤. 聚酰亚胺:化学、结构与性能的关系及材料 [M]. 聚酰亚胺:化学、结构与性能的关系及材料, 2006.
[21] XU Z, CROFT Z L, GUO D, et al. Recent development of polyimides: Synthesis, processing, and application in gas separation [J]. Journal of Polymer Science, 2021, 59(11): 943-962.
[22] FINK J K. High performance polymers [M]. William Andrew, 2014.
[23] HOU S, XIE J, KUANG Y, et al. Fabrication, Mechanical and Dielectric Characterization of 3D Orthogonal Woven Basalt Reinforced Thermoplastic Polyimide Composites [J]. Journal of Textile Science and Technology, 2015, 1(01): 35.
[24] SNYDER R, THOMSON B, BARTGES B, et al. FTIR studies of polyimides: thermal curing [J]. Macromolecules, 1989, 22(11): 4166-4172.
[25] VINOGRADOVA S, VYGODSKII Y S, VOROB’EV V, et al. Investigation of the formation of polyamido-acids [J]. Polym Sci USSR, 1974, 16: 584.
[26] PRAVEDNIKOV A, KARDASH I Y, GLUKHOYEDOV N, et al. Some features of the synthesis of heat-resistant heterocyclic polymers [J]. Polymer Science USSR, 1973, 15(2): 399-410.
[27] MEYERS R. The polymerization of pyromellitic dianhydride with diphenylmethane diisocyanate [J]. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1969, 7(10): 2757-2762.
[28] CARLETON P S, FARRISSEY JR W J, ROSE J S. The formation of polyimides from anhydrides and isocyanates [J]. Journal of Applied Polymer Science, 1972, 16(11): 2983-2989.
[29] JIANG Z, DU Z, XUE J, et al. Hierarchical structure and properties of rigid PVC foam crosslinked by the reaction between anhydride and diisocyanate [J]. Journal of Applied Polymer Science, 2018, 135(16): 46141.
[30] CHIEFARI J, DAO B, GROTH A M, et al. Water as solvent in polyimide synthesis II: Processable aromatic polyimides [J]. High Performance Polymers, 2006, 18(1): 31-44.
[31] BENDER T P, WANG Z Y. Synthesis of polyimides and segmented block copolyimides by transimidization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(21): 3991-3996.
[32] EASTMOND G, PAPROTNY J. Scope in the synthesis and properties of poly (ether imide) s [J]. Reactive and Functional Polymers, 1996, 30(1-3): 27-41.
[33] KORSHAK V, RUSANOV A, KAZAKOVA G, et al. Reactions of aromatic nucleophilic nitro displacement in the synthesis of polyimides. Review [J]. Polymer Science USSR, 1988, 30(9): 1899-1921.
[34] TAKEKOSHI T. Synthesis of high performance aromatic polymers via nucleophilic nitro displacement reaction [J]. Polymer journal, 1987, 19(1): 191-202.
[35] BESSONOV M I, ZUBKOV V. Polyamic acids and polyimides [J]. Synthesis, Transformations and Structure, CRC Press, 1993.
[36] 王海平, 王标兵, 胡国胜, 等. 聚酰亚胺的研究进展及应用 [J]. 塑料制造, 2007, (11): 4.
[37] 长崎幸夫, 古性均, 宫本久惠, 等. 聚酰亚胺前体以及聚酰亚胺及其应用 [Z]. CN
[38] 刘金刚, 何民辉, 范琳, 等. 先进电子封装中的聚酰亚胺树脂 [J]. 半导体技术, 2003, 28(10): 5.
[39] 刘金刚, 杨海霞, 范琳, et al. 先进封装用聚合物层间介质材料研究进展; proceedings of the 2010年全国半导体器件技术研讨会, F, 2010 [C].
[40] MILLER A, REBIBIS K J, DUVAL F D, et al. The increasing role of polymers in advanced packaging-from stress buffer layers to wafer level underfills and Beyond [J]. Journal of Photopolymer Science and Technology, 2017, 30(1): 17-24.
[41] BUCHWALTER L. Adhesion of polyimides to metal and ceramic surfaces: an overview [J]. Journal of adhesion science and technology, 1990, 4(1): 697-721.
[42] AWAJA F, GILBERT M, KELLY G, et al. Adhesion of polymers [J]. Progress in polymer science, 2009, 34(9): 948-968.
[43] 庄永兵, 顾宜. 改善无胶型挠性覆铜板粘接性能的研究进展 [J]. 绝缘材料, 2012, (1): 5.
[44] LEE C-Y, MOON W-C, JUNG S-B. Surface finishes of rolled copper foil for flexible printed circuit board [J]. Materials Science and Engineering: A, 2008, 483: 723-726.
[45] NOH B-I, JUNG S-B. Effect of Ni-Cr layer on adhesion strength of flexible copper clad laminate [J]. J Electron Mater, 2009, 38: 46-53.
[46] WANG C, XIANG L, CHEN Y, et al. Study on brown oxidation process with imidazole group, mercapto group and heterocyclic compounds in printed circuit board industry [J]. Journal of Adhesion Science and Technology, 2015, 29(12): 1178-1189.
[47] KIM Y H, WALKER G F, KIM J, et al. Adhesion and interface studies between copper and polyimide [J]. Journal of Adhesion Science and Technology, 1987, 1(1): 331-339.
[48] METWALLI E, HAINES D, BECKER O, et al. Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates[J]. Journal of colloid and interface science, 2006, 298(2): 825-831.
[49] LIU T-J, CHEN C-H, WU P-Y, et al. Efficient and adhesiveless metallization of flexible polyimide by functional grafting of carboxylic acid groups [J]. Langmuir, 2019, 35(22): 7212-7221.
[50] INAGAKI N, TASAKA S, BABA T. Surface modification of polyimide film surface by silane coupling reactions for copper metallization [J]. Journal of Adhesion Science and Technology, 2001, 15(7): 749-762.
[51] ZHAO Z, HE Y, YANG H, et al. Aminosilanization nanoadhesive layer for nanoelectric circuits with porous ultralow dielectric film [J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6097-6107.
[52] WAGNER-JAUREGG T, HACKLEY JR B E, LIES T, et al. Model Reactions of Phosphorus-containing Enzyme Inactivators. IV. 1a The Catalytic Activity of Certain Metal Salts and Chelates in the Hydrolysis of Diisopropyl Fluorophosphate1b [J]. J Am Chem Soc, 1955, 77(4): 922-929.
[53] CHAN-PARK M B, TAN S S. Thermal graft copolymerization of 4-vinyl pyridine on polyimide to improve adhesion to copper [J]. International Journal of Adhesion and Adhesives, 2002, 22(6): 471-475.
[54] XUE G, DAI Q P, JIANG S G. CHEMICAL-REACTIONS OF IMIDAZOLE WITH METALLIC SILVER STUDIED BY THE USE OF SERS AND XPS TECHNIQUES [J]. J Am Chem Soc, 1988, 110(8): 2393-2395.
[55] LIU T-J, SIL M C, CHEN C-M. Well-organized organosilane composites for adhesion enhancement of heterojunctions [J]. Composites Science and Technology, 2020, 193.
[56] CAMPOS M A, TRILLING A K, YANG M, et al. Self-assembled functional organic monolayers on oxide-free copper [J]. Langmuir, 2011, 27(13): 8126-8133.
[57] CAIPA CAMPOS M A, TRILLING A K, YANG M, et al. Self-assembled functional organic monolayers on oxide-free copper [J]. Langmuir, 2011, 27(13): 8126-8133.
[58] SU Y, DE ROOIJ M, GROUVE W, et al. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints [J]. International Journal of Adhesion and Adhesives, 2017, 72: 98-108.
[59] SATORU IWAMORI T M, SHIN FUKUDA, SHOUHEI NOZAKI, KAZUFUYU SUDOH AND NOBUHIRO FUKUDA, . Effect of an interfacial layer on adhesion strength deterioration between a copper thin film and polyimide substrates [J]. 1998, 51: 615-618.
[60] ZHONG A, LI J, ZHANG G, et al. Adhesion and Interface Studies of the Structure‐Controlled Polyimide with Smooth Copper for High‐Frequency Communication [J]. Advanced Materials Interfaces, 2022.
[61] 尤肖虎, 潘志文, 高西奇, 等. 5G移动通信发展趋势与若干关键技术 [J]. 中国科学:信息科学, 2014, 44(5): 551-563.
[62] 石东平, 唐祖义, 陈武. 趋肤效应的理论研究与解析计算 [J]. 重庆文理学院学报(自然科学版), 2009.
[63] 江涛. 趋肤效应的物理诠释 [J]. 广州师院学报:自然科学版, 1999, 20(9): 6.
[64] 郭昌宏, 李习周. 扇出型晶圆级封装技术及其在移动设备中的应用 [J]. 2022, (5).
[65] ANG A, KANG E, NEOH K, et al. Low-temperature graft copolymerization of 1-vinyl imidazole on polyimide films with simultaneous lamination to copper foils—effect of crosslinking agents [J]. Polymer, 2000, 41(2): 489-498.
[66] JANG J, JANG I, KIM H. Adhesion promotion of the polyimide–copper interface using silane‐modified polyvinylimidazoles [J]. Journal of applied polymer science, 1998, 68(8): 1343-1351.
[67] JEONGHOONSEO J, CHO K, PARK C E. Synthesis of polyimides containing triazole to improve their adhesion to copper substrate [J].
[68] 徐群杰,李春香,周国定,朱律均,林昌健. 3-氨基-1,2,4-三氮唑对铜的缓蚀性能和吸附行为 [J]. 物理化学学报, 2009, (25(1)): 86-90.
[69] 何曼君, 陈维孝, 董西侠. 高分子物理.修订版 [M]. 高分子物理.修订版, 2000.
[70] SEO J, KANG J, CHO K, et al. Synthesis of polyimides containing triazole to improve their adhesion to copper substrate [J]. Journal of Adhesion Science and Technology, 2002, 16(13): 1839-1851.
[71] LEE K-W. Adhesion of Dielectric Materials [J].
[72] LEE K W, WALKER G F, VIEHBECK A. Formation of polyimide- Cu complexes: improvement of direct Cu-on-PI and PI-on-Cu adhesion [J]. Journal of Adhesion Science and Technology, 1995, 9(8): 1125-1141.
[73] LIU J, LI J, WANG T, et al. Organosoluble thermoplastic polyimide with improved thermal stability and UV absorption for temporary bonding and debonding in ultra-thin chip package [J]. Polymer, 2022, 244.
[74] DANIELS T M, SREEARUNOTHIAL P, Phokharatkul D, et al. Flexible, graphene protected Ag nanoparticles–polyimide tape for use as a transparent Surface-Enhanced Raman Scattering (SERS) substrate and its application in pesticide detection[J]. Nano-Structures & Nano-Objects, 2023, 33: 100930.
[75] CHIU J M, WAHDINI I, SHEN Y N, et al. Highly Stable Copper Nanowire-Based Transparent Conducting Electrode Utilizing Polyimide as a Protective Layer[J]. ACS Applied Energy Materials, 2023.
[76] KHAIRULLIIINA E M, RATAUTAS K, Panov M S, et al. Laser-assisted surface activation for fabrication of flexible non-enzymatic Cu-based sensors[J]. Microchimica Acta, 2022, 189(7): 259.
修改评论