[1] HARISINGHANI M G, O'SHEA A, WEISSLEDER R. Advances in clinical MRI technology[J]. Science Translational Medicine, 2019, 11(523): eaba2591.
[2] WEISKOPF N, EDWARDS L J, HELMS G, et al. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology[J]. Nature Reviews Physics, 2021, 3(8): 570-588.
[3] ROEMER F W, KWOH C K, HAYASHI D, et al. The role of radiography and MRI for eligibility assessment in DMOAD trials of knee OA[J]. Nature Reviews Rheumatology, 2018, 14(6): 372-380.
[4] 辛学刚. 术中磁共振射频线圈设计[D]. 广州: 南方医科大学, 2011.
[5] ZHANG X, UGURBIL K, CHEN W. A microstrip transmission line volume coil for human head MR imaging at 4 T[J]. Journal of Magnetic Resonance, 2003, 161(2): 242-251.
[6] ZHANG X, UGURBIL K, SAINATI R, et al. An inverted-microstrip resonator for human head proton MR imaging at 7 tesla[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(3): 495-504.
[7] OHLIGER M A, SODICKSON D K. An introduction to coil array design for parallel MRI[J]. NMR in Biomedicine, 2006, 19(3): 300-315.
[8] ZHANG X, UGURBIL K, CHEN W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy[J]. Magnetic Resonance in Medicine, 2001, 46(3): 443-450.
[9] WU B, WANG C, KELLEY D A , et al. Shielded microstrip array for 7 T human MR imaging[J]. IEEE transactions on medical imaging, 2010, 29(1): 179-184.
[10] WIGGINS G C, TRIANTAFYLLOU C, POTTHAST A, et al. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry[J]. Magnetic Resonance in Medicine, 2006, 56(1): 216-223.
[11] LI Y, CHEN Q, WEI Z, et al. One-Stop MR neurovascular vessel wall imaging with a 48-channel coil system at 3 T[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(8): 2317-2327.
[12] LI Y, LEE J, ZHANG L, et al. Design and testing of a 24-channel head coil for MR imaging at 3 T[J]. Magnetic Resonance in Medicine, 2019, 58: 162-173.
[13] HU X, ZHANG L, ZHANG X, et al. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T[J]. Medical Physics, 2016, 43(4): 1897-1906.
[14] NNEWIHE A N, GRAFENDORFER T, DANIEL B L, et al. Custom-fitted 16-channel bilateral breast coil for bidirectional parallel imaging[J]. Magnetic Resonance in Medicine, 2011, 66(1): 281-289.
[15] HANCU I, FIVELAND E, PARK K, et al. Flexible, 31-channel breast coil for enhanced parallel imaging performance at 3T[J]. Magnetic Resonance in Medicine, 2016, 75(2): 897-905.
[16] FENCHEL M, DESHPANDE V S, NAEL K, et al. Cardiac cine imaging at 3 tesla: initial experience with a 32-element body-array coil[J]. Investigative Radiology, 2006, 41(8): 601-608.
[17] ETZEL R, MEKKAOUI C, IVSHINA E S, et al. Optimized 64-channel array configurations for accelerated simultaneous multislice acquisitions in 3T cardiac MRI[J]. Magnetic Resonance in Medicine, 2021, 86(4): 2276-2289.
[18] CHEN Q, XIE G, LUO C, et al. A dedicated 36-channel receive array for fetal MRI at 3T[J]. IEEE Transactions on Medical Imaging, 2018, 37(10): 2290-2297.
[19] ASHER K A, BANGERTER N K, WATKINS R D, et al. Radiofrequency coils for musculoskeletal magnetic resonance imaging[J]. Topics in Magnetic Resonance Imaging, 2010, 21(5): 315-323.
[20] ZHANG T, GRAFENDORFER T, CHENG J Y, et al. A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T[J]. Magnetic Resonance in Medicine, 2016, 76(3): 1015-1021.
[21] LI N, ZHENG H, XU G, et al. Simultaneous head and spine MR imaging in children using a dedicated multichannel receiver system at 3T[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(12): 3659-3670.
[22] NOWOGRODZKI A. The world's strongest MRI machines are pushing human imaging to new limits[J]. Nature, 2018, 563(7729): 24-26.
[23] VAN DE MOORTELE P F, AKGUN C, ADRIANY G, et al. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil[J]. Magnetic Resonance in Medicine, 2005, 54(6): 1503-1518.
[24] ZHANG B, SODICKSON D K, LATTANZI R, et al. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms[J]. Magnetic Resonance in Medicine, 2012, 67(4): 1183-1193.
[25] RIETSCH S H G, ORZADA S, MADERWALD S, et al. 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array[J]. Medical Physics, 2018, 45(7): 2978-2990.
[26] YOUNG G S, KIMBRELL V, SEETHAMRAJU R, et al. Clinical 7T MRI for epilepsy care: value, patient selection, technical issues, and outlook[J]. Journal of Neuroimaging, 2022, 32(3): 377-388.
[27] LATTANZI R, GRANT A K, POLIMENI J R, et al. Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR[J]. NMR in Biomedicine, 2010, 23(2): 142-151.
[28] WIGGINS G C, POLIMENI J R, POTTHAST A, et al. 96-channel receive-only head coil for 3 tesla: design optimization and evaluation[J]. Magnetic Resonance in Medicine, 2009, 62(3): 754-762.
[29] LAISTLER E, POIRIER-QUINOT M, LAMBERT S A, et al. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 tesla[J]. Journal of Magnetic Resonance Imaging, 2015, 41(2): 496-504.
[30] DARNELL D, TRUONG T-K, SONG A W. Recent advances in radio-frequency coil technologies: flexible, wireless, and integrated coil arrays[J]. Journal of Magnetic Resonance Imaging, 2022, 55(4): 1026-1042.
[31] HOSSEINNEZHADIAN S, FRASS-KRIEGL R, GOLUCH-ROAT S, et al. A flexible 12-channel transceiver array of transmission line resonators for 7 T MRI[J]. Journal of Magnetic Resonance, 2018, 296: 47-59.
[32] FRASS-KRIEGL R, LAISTLER E, HOSSEINNEZHADIAN S, et al. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T[J]. Journal of Magnetic Resonance, 2016, 273: 65-72.
[33] COREA J R, FLYNN A M, LECHêNE B, et al. Screen-printed flexible MRI receive coils[J]. Nature Communications 2016, 7(1): 10839.
[34] WINKLER S A, COREA J, LECHêNE B, et al. Evaluation of a flexible 12-channel screen-printed pediatric MRI coil[J]. Radiology, 2019, 291(1): 180-185.
[35] ZHANG B, SODICKSON D K, CLOOS M A. A high-impedance detector-array glove for magnetic resonance imaging of the hand[J]. Nature Biomedical Engineering, 2018, 2(8): 570-577.
[36] ZHANG B, CLOOS M A, YANG J, et al. Ultra-flexible 3T HIC receive array for carotid imaging[C]. 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA) 2019: 0459-0464.
[37] MCGEE K P, STORMONT R S, LINDSAY S A, et al. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits[J]. Physics in Medicine & Biology, 2018, 63(8): 08nt02.
[38] COLLICK B D, BEHZADNEZHAD B, HURLEY S A, et al. Rapid development of application-specific flexible MRI receive coils[J]. Physics in Medicine & Biology, 2020, 65(19): 19NT01.
[39] ZHANG D, RAHMAT-SAMII Y. A novel flexible electrotextile 3T MRI RF coil array for carotid artery imaging: design, characterization, and prototyping[J]. IEEE Transactions on Antennas and Propagation, 2019, 67: 5115-5125.
[40] VINCENT J M, RISPOLI J V. Conductive Thread-Based Stretchable and Flexible Radiofrequency Coils for Magnetic Resonance Imaging[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(8): 2187-2193.
[41] PORT A, LUECHINGER R, ALBISETTI L, et al. Detector clothes for MRI: A wearable array receiver based on liquid metal in elastic tubes[J]. Sci Rep, 2020, 10(1): 8844.
[42] ROEMER P B, EDELSTEIN W A, HAYES C E, et al. The NMR phased array[J]. Magnetic Resonance in Medicine, 1990, 16(2): 192-225.
[43] KOO H J, SO J H, DICKEY M D, et al. Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics[J]. Advanced Materials, 2011, 23(31): 3559-3564.
[44] JIN C, ZHANG J, LI X, et al. Injectable 3-d fabrication of medical electronics at the target biological tissues[J]. Scientific Reports, 2013, 3(1): 3442.
[45] GAO Y, LI H, LIU J. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics[J]. PLOS ONE, 2013, 8(8): e69761.
[46] SILVERMAN I, ARENSHTAM A, KIJEL D, et al. High heat flux accelerator targets cooling with liquid-metal jet impingement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1): 1009-1013.
[47] GAO Y, LI H, LIU J. Direct writing of flexible electronics through room temperature liquid metal ink[J]. PLOS ONE, 2012, 7(9): e45485.
[48] ZHAO Z, SONI S, LEE T, et al. Smart eutectic gallium–indium: from properties to applications[J]. Advanced Materials, 2023, 35(1): 2203391.
[49] KRAMER R K, BOLEY J W, STONE H A, et al. Effect of microtextured surface topography on the wetting behavior of eutectic gallium–1ndium alloys[J]. Langmuir, 2014, 30(2): 533-539.
[50] BOLEY J W, WHITE E L, CHIU G T C, et al. Direct writing of gallium-1ndium alloy for stretchable electronics[J]. Advanced Functional Materials, 2014, 24(23): 3501-3507.
[51] KIM D, THISSEN P, VINER G, et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor[J]. ACS Applied Materials & Interfaces, 2013, 5(1): 179-185.
[52] CADEMARTIRI L, THUO M M, NIJHUIS C A, et al. Electrical resistance of AgTS-S(CH2)n-1CH3//Ga2O3/EGaIn tunneling junctions[J]. The Journal of Physical Chemistry C, 2012, 116(20): 10848-10860.
[53] TABATABAI A, FASSLER A, USIAK C, et al. Liquid-phase gallium-indium alloy electronics with microcontact printing[J]. Langmuir, 2013, 29(20): 6194-6200.
[54] GOZEN B A, TABATABAI A, OZDOGANLAR O B, et al. High-density soft-matter electronics with micron-scale line width[J]. Advanced Materials, 2014, 26(30): 5211-5216.
[55] YALCINTAS E P, OZUTEMIZ K B, CETINKAYA T, et al. Soft electronics manufacturing using microcontact printing[J]. Advanced Functional Materials, 2019, 29(51): 1906551.
[56] MORRIS N J, FARRELL Z J, TABOR C E. Chemically modifying the mechanical properties of core-shell liquid metal nanoparticles[J]. Nanoscale, 2019, 11(37): 17308-17318.
[57] BOLEY J W, WHITE E L, KRAMER R K. Mechanically sintered gallium–indium nanoparticles[J]. Advanced Materials, 2015, 27(14): 2355-2360.
[58] UPPAL A, RALPHS M, KONG W, et al. Pressure-Activated thermal transport via oxide shell rupture in liquid metal capsule beds[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2625-2633.
[59] CHEN S, WANG H Z, ZHAO R Q, et al. Liquid metal composites[J]. Matter, 2020, 2(6): 1446-1480.
[60] MALKO J A, MCCLEES E C, BRAUN I F, et al. A flexible mercury-filled surface coil for MR imaging[J]. American Journal of Neuroradiology, 1986, 7(2): 246-247.
[61] VARGA M, MEHMANN A, MARJANOVIC J, et al. Adsorbed eutectic GaIn structures on a neoprene foam for stretchable MRI coils[J]. Advanced Materials, 2017, 29(44) 1703744.
[62] MEHMANN A, VARGA M, VOGT C, et al. On the bending and stretching of liquid metal receive coils for magnetic resonance imaging[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(6): 1542-1548.
[63] MOTOVILOVA E, TAN E T, TARACILA V, et al. Stretchable self-tuning MRI receive coils based on liquid metal technology (liquitune)[J]. Scientific Reports, 2021, 11(1): 16228.
[64] XIE J, YOU X, HUANG Y, et al. 3D-printed integrative probeheads for magnetic resonance[J]. Nature Communications, 2020, 11(1): 5793.
[65] WANG Q, YU Y, LIU J. Preparations, characteristics and applications of the functional liquid metal materials[J]. Advanced Engineering Materials, 2018, 20(5): 1700781.
[66] GRUBER B, FROELING M, LEINER T, et al. RF coils: a practical guide for nonphysicists[J]. Journal of Magnetic Resonance Imaging, 2018, 48(3): 590-604.
[67] KUMAR A, EDELSTEIN W A, BOTTOMLEY P A. Noise figure limits for circular loop MR coils[J]. Magnetic Resonance in Medicine, 2009, 61(5): 1201-1209.
[68] CHEN C N, HOULT D I. Biomedical magnetic resonance technology.Bristol[M]. Taylor & Francis, 1989, 160-161,143P
[69] WALLIS DE VRIES B M, VAN DAM G M, TIO R A, et al. Current imaging modalities to visualize vulnerability within the atherosclerotic carotid plaque[J]. Journal of Vascular Surgery, 2008, 48(6): 1620-1629.
[70] LU M, GORE J C, YAN X. Over-overlapped loop arrays: a numerical study[J]. Magnetic Resonance Imaging, 2020, 72: 135-142.
[71] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: Sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962.
修改评论