中文版 | English
题名

基于有限元分析和光纤传感技术的工程复合材料可靠性研究

其他题名
RESEARCH ON MECHANICALPROPERTIESOF ENGINEERING COMPOSITEMATERIALSBASED ON FINITE ELEMENT SIMULATIONAND OPTICAL FIBER TECHNOLOGY
姓名
姓名拼音
CHEN Xing
学号
12132505
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
崔洪亮
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-12
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着城市化进程越来越快,地铁越来越成为城市和人们生活不可分离的一部分,其安全问题不可避免的成为重大话题。混凝土材料作为隧道的主要支撑结构,在不同温度、动荷载和静荷载条件下,它的力学性能差异很大。目前对于隧道工程应用中的混凝土材料的实时监测和力学性能研究缺失,事故频发。其实,隧道中等长度便可达数公里,是一种薄弱环节不明显的结构,且处于地下,受力状态复杂多变。光纤传感器由于其耐高温、耐腐蚀、抗电磁干扰、质量轻、可塑性强等的特性,另外,由于光在光纤中传播时互不干扰且频带宽、损耗低,这导致其能够在复杂工程条件下,较大程度的排除干扰,出色的完成混凝土材料力学参数的实时监测。有限元仿真是一种强大的工程分析工具,往往能提供高精度、高可靠性的分析结果。因此,将有限元仿真和光纤传感技术结合起来,能够达到相互验证,相辅相成的效果,更高效的对隧道结构薄弱环节进行实时监测,实时评估混凝土结构的力学性能。

本文依托苏州四号线支线红庄站至蠡墅站段地铁项目,进行了隧道结构静力场、动力场和温度场有限元仿真分析,并根据仿真结果和现场勘察结果,成功设计并布设了能够对隧道结构水平位移、裂缝、沉降、结构应力、结构表面应变、温度、振动等信息进行实时监测的光纤传感网络,实现了对隧道结构健康状态的实时监测,然后利用光纤传感网络反过来验证有限元模型可靠性,从而得到更准确的有限元仿真模型。本文最终结合两种技术,针对该地铁中的三种主要断面建立二维有限元模型,研究三种断面在隧道结构有损伤基础和无损伤基础下的两种情况下,受到地铁列车振动荷载影响产生的混凝土结构损伤分布规律,从而更好的保障地铁的安全运营。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-05
参考文献列表

[1] 赵海涛. 基于光纤传感技术的复合材料结构全寿命健康监测研究[D]. 哈尔滨工业大学, 2008.
[2] KASPER T, GUNTHER M. A 3D finite element simulation model for TBM tunnelling in soft ground[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(14):1441-1460.
[3] LIU X, CHEN X, ZHANG Y, et al. Finite element analysis of tunnel support structure based on FLAC3D[J]. Procedia Engineering, 2011, 26, 1853-1858.
[4] ZHANG Y, LIU X, CHEN X, et al. Study on the application of finite element method in tunnel engineering[J]. Procedia Engineering, 2013, 57:120-127.
[5] WANG J, WANG W, HUANG H. Research on dynamic response of a metro station structure based on finite element method[J]. Advances in Civil Engineering, 2014, 1-10.
[6] ZOU Y, WU X, LIU D. Finite element analysis of the dynamic response of tunnel structure under train load. Shock and Vibration, 2015, 1-11.
[7] LIU Y, ZHAO L, HAN F. Three-dimensional finite element analysis of tunnel deformation under the action of subway vibration[J]. Journal of Vibration and Shock, 2016, 35(17), 119-123.
[8] ZHANG Y, WANG J, LIU X. Study on the mechanical behavior of reinforced concrete lining of shallow tunnel under earthquake load based on finite element method[J]. Advances in Civil Engineering, 2017, 1-14.
[9] JIA X, LI G, LI H. Finite element analysis of tunnel support structure based on ANSYS[J]. Advances in Mechanical Engineering, 2018, 10(2), 1-10.
[10] SCHRETER M , NEUNER M, UNTEREGGER D, et al. On the importance of advanced constitutive models in finite element simulations of deep tunnel advance[J]. Tunnelling and Underground Space Technology, 2018, 80(OCT.):103-113.
[11] WU Y, WANG, W, ZHANG J. The effect of bolt support on the mechanical behavior of tunnel based on finite element method[J]. Advances in Civil Engineering, 2019, 1-12.
[12] ZHU J, YAO S, Wu, H. Analysis on the stability of shallow buried tunnels under different foundation treatments based on finite element method[J]. Journal of Civil, Construction and Environmental Engineering, 2020, 5(3), 65-70.
[13] KANEKO T, SHIMIZU T. Three-dimensional numerical modeling of jointed rock masses using the combined finite-discrete element method[J]. Computers and Geotechnics, 2008, 35(3), 447-456.
[14] ORESTE M, PISABO F, VIZZINI A. Three-dimensional numerical simulation of a tunnel in a layered rock mass using a meshfree method[J]. Tunnelling and Underground Space Technology, 2016, 58, 1-11.
[15] LIU W, WANG J, LIU H. Numerical analysis of ground movements induced by EPB tunnelling in sand with the consideration of arching effect[J]. Tunnelling and Underground Space Technology, 2017, 68, 19-32.
[16] GAO Y, HUANG Y, YANG H. Finite element analysis of tunnel support systems in squeezing ground[J]. Tunnelling and Underground Space Technology, 2015, 47, 168-179.
[17] LI J, LI Z, WANG S. Numerical investigation of the interaction between a segmental tunnel lining and surrounding rock mass under seismic[J] loading. Engineering Structures, 2019, 192, 384-396.
[18] THAI D K , TRAN M T , PHAN Q M, et al. Local damage of the RC tunnels under ballistic missile impact investigated by finite element simulations[J]. Structures, 2021, 31:316-329.
[19] ZAID M, SHAH A I. Numerical analysis of himalayan rock tunnels under static and blast loading[J]. Geotechnical and geological engineering, 2022, 40: 809-832.
[20] ZAID M, MISHRA S. Numerical Analysis of Shallow Tunnels Under Static Loading: A Finite Element Approach[J/OL]. Geotechnical and geological engineering, 2021, 39(3): 2581-2607. https://doi.org/10.1007/s10706-020-01647-1.
[21] 叶少敏. 基于多参量光纤传感技术的京雄城际隧道形位感测系统应用研究[J]. 隧道建设(中英文), 2021, 41(7): 1141.
[22] 朱鸿鹄, 施斌, 张诚成.地质和岩土工程光电传感监测研究新进展——第六届 OSMG国际论坛综述[J]. 工程地质学报, 2020, 28(1): 178-188.
[23] MATTHEW D, NEIL A, ALLAN S. Distributed strain sensing to determine the impact of corrosion on bond performance in reinforced concrete[J]. Construction and Building Materials, 2016, 114: 481-491.
[24] MENDEZ A, MORSE T F, MENDEZ F. Applications of Embedded Optical Fiber Sensors in Reinforced Concrete Buildings and Structures[J]. Proc. SPIE, Fiber Optic Smart Structures and SkinsⅡ, 1990(1170): 60-69.
[25] MOHAMAD H, SOGA K, BENNETT P J, et al. Monitoring twin tunnel interaction using distributed optical fiber strain measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 957.
[26] 白清, 王云才, 刘昕等.基于分布式光纤的温度、振动、声音、应变的监测技术与实现[J]. 激光杂志, 2018, Vol. 39, No.3.
[27] HENDRIK W, PATHMANATHAN R, EMAD G, et al. Distributed optical fibre sensor for infrastructure monitoring field applications[J]. Optical Fiber Technology, Volume 64, 2021, 102577, ISSN 1068-520.
[28] 韩永温, 郝文杰, 张林行, 等. 基于拉曼散射原理的分布式光纤测温系统研究[J]. 半导体电光电, 2013(2): 342-345.
[29] 赵杰. 盾构管片受力特性及耐久性分析[D]. 北京: 北京交通大学, 2011.
[30] VAN DER K, HOULT N A, HOAT L. Monitoring an in-service railway bridge with a distributed fiber optic strain sensing system[J]. Bridge Eng, 2018, 23(10): 05018007.
[31] BARRIAS A, JOAN R C, VILLALBA S. Application study of embedded Rayleigh based Distributed Optical Fiber Sensors in concrete beams[J]. Procedia Engineering, 2017, 199: 2014-2019.
[32] MIAO, S J, ZHANG W T, HUANG W Z, et al. High-resolution static strain sensor based on random fiber laser and beat frequency interrogation[J]. IEEE photonics technology letters, 2019, 31(18), pp.1530-1533.
[33] LIU H, ZHANG S, COULIBALY A A S, et al. Monitoring reinforced concrete cracking behavior under uniaxial tension using distributed fiber-optic sensing technology[J/OL]. Journal of structural engineering (New York, N.Y.), 2021, 147(12). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003191.
[34] 王飞, 黄宏伟, 张冬梅, 等. 基于BOTDA 光纤传感技术的盾构隧道变形感知方法[J]. 岩石力学与工程学报, 2013, 32(9): 1901.
[35] CHEUNG L, SOGA K, BENNETT P J, et al. Optical fiber strain measurement for tunnel lining monitoring[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 2010, 163(3): 119.
[36] SCHENATO L, PASUTO A, GALTAROSSA A, et al. An optical fiber distributed pressure sensing cable with pa-sensitivity and enhanced spatial resolution[J]. IEEE Sensors Journal, 2020, Vol.20, No.11.
[37] ZHANG C, Ni Y Q, ZHOU L, et al. A new railway tunnel deformation monitoring system using FBG bending gauges[C]. Proceedings of 2017 World Congress on Advances in Structural Engineering and Mechanics. Seoul,Korea: W5C-05.
[38] ZHOU X X, LI J, XU Y, et al. Chaos raman optical time-domain reflectometry for millimeter-level spatial resolution temperature Sensing[J]. Journal of Lightwave Technology, 2021, VOL. 39, NO. 23.
[39] 郭嘉伟, 徐彬. 混凝土损伤塑性模型损伤因子的取值及应用研究[J]. 甘肃科学学报, 2019, 31(06): 88-92. DOI: 10.16468/j.cnki.issn1004-0366.2019.06.016.
[40] 黄庆祥. 地铁列车振动荷载引起的隧道动力响应分析[J]. 路基工程, 2018(04): 161-165.
[41] 费康. ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社. 2017: 352.
[42] 崔洪亮, 张洪, 罗正纯, 等. 一种改进型双光纤光栅封装的液位传感器: 中国, CN207636149[P]. 2018-07-20.
[43] 崔洪亮, 程立耀, 于淼, 等. 一种光纤光栅位移传感器: 中国, CN211504028[P]. 2020-09-15.
[44] 崔洪亮, 于淼, 吴崇坚, 等. 静力水准仪: 中国, CN307059246[P]. 2022-01-11.
[45] 混凝土结构设计规范: GB50010-2010[S]. 北京: 中国建筑工业出版社, 2010.
[46] 郭嘉伟, 徐彬.混凝土损伤塑性模型损伤因子的取值及应用研究[J].甘肃科学学报, 2019, 31(6): 88-92.
[47] 费康. ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社. 2017: 383-387.
[48] ZAID M, SADIQUE R, ALAM M. Blast resistant analysis of rock tunnel using Abaqus: effect of weathering[J]. Geotechnical and geological engineering. 2022, 40: 809-832.
[49] Standards S. Eurocode 2: design of concrete structures - Part 1-2: general rules- structural fire Design[J]. 2004.
[50] 潘昌实, PANDE G N. 黄土隧道列车动荷载响应有限元初步数定分析研究[J]. 土木工程学报, 1984(04): 19-28+18.

所在学位评定分委会
材料与化工
国内图书分类号
TB33
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545092
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
陈星. 基于有限元分析和光纤传感技术的工程复合材料可靠性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132505-陈星-中国科学院深圳理(4707KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈星]的文章
百度学术
百度学术中相似的文章
[陈星]的文章
必应学术
必应学术中相似的文章
[陈星]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。