中文版 | English
题名

铂基多组分金属间化合物纳米盘的合成及电催化性能研究

其他题名
SYNTHESIS AND ELECTROCATALYSIS PERFORMANCE OF Pt BASED MULTICOMPONENT INTERMETALLIC NANOPLATES
姓名
姓名拼音
CHEN Wen
学号
11749251
学位类型
博士
学位专业
081701 化学工程
学科门类/专业学位类别
08 工学
导师
权泽卫
导师单位
化学系
论文答辩日期
2023-04-24
论文提交日期
2023-07-05
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

为了满足社会发展需求,开发高效清洁的新能源已迫在眉睫。燃料电池因其高效、清洁、可靠性高等优点,成为现阶段最有发展前景的能源转化技术之一,但受限于缓慢的动力学反应过程。因此,开发高效稳定且低成本的 Pt 基催化剂是燃料电池领域和纳米材料领域近二十年来的研究热点。 Pt 基催化剂的主要开发策略包括: 将 Pt 与其他金属合金化调控电子结构,构建不同形状 Pt 纳米晶优化原子的排列方式,以及表面修饰金属氧化物优化电化学反应过程等。 Pt 金属间化合物具有长程有序的原子排布、孤立活性位点和丰富的异原子键,通常表现出优异的催化活性、选择性和稳定性,是目前电催化剂的研究前沿。然而,原子有序化过程动力学能垒高,往往需要高温条件,限制了其结构和功能的调控,采用低温液相法且系统地制备 Pt 基金属间化合物十分困难,目前关于多组分 Pt 基金属间化合物的研究工作仍非常有限。本论文开发了一种简单通用的液相合成法,获得了一系列新颖且原子结构明确的 Pt 基金属间化合物纳米盘,进行了清晰的结构表征,对其生长机理、催化性能和催化机理进行了全面的探究,为多金属纳米催化剂的设计与合成提供了重要参考。主要研究内容概括如下:提出了组分可调的三元 PtSnBi 金属间化合物纳米盘的通用合成方法,获得了 Pt47Sn16Bi37、 Pt45Sn25Bi30 和 Pt45Sn34Bi21 纳米盘,证实了原子结构有序的 PtSnBi金属间化合物纳米盘的生长机理为“络合-还原-有序化”过程。三种元素协同作用促进甲酸氧化反应,三元PtSnBi金属间化合物的电催化性能明显优于二元PtSn和 PtBi。特别的, 特定组分的 Pt45Sn25Bi30 纳米盘表现出 4.39 A mg-1Pt 的高质量活性, 并在 4000 圈电位循环稳定性测试后良好地保持了其结构和 78%的初始活性。理论计算揭示 PtSnBi 金属间化合物的电子效应和几何效应抑制了 CO*的形成,优化了甲酸脱氢步骤,从而促进了甲酸直接氧化。基于 PtBi、 RhBi、 PtSn 和 PtSb 的相同 hcp 晶体结构,通过原子柱上异质元素选择性取代合成了 hcp 结构的 PtRhBiSnSb 高熵金属间化合物(HEI)纳米盘。结构明确的 PtRhBiSnSb HEI 纳米盘中具有本征孤立的 Pt、 Rh、 Bi、 Sn、 Sb 原子位点,五种金属的协同作用使其对碱性条件下的甲醇、乙醇和甘油氧化反应电催化分别表现出 19.53、 15.56 和 7.54 A mg-1Pt+Rh 的高质量活性。理论计算表明,金属 Rh 的引入提高了 PtRhBiSnSb HEI 纳米盘的电子转移效率,从而提高了醇氧化能力。同时, Bi、 Sn 和 Sb 位点的协同保护,使活性位点具备稳定的电子结构和催化性能。将具有孤立 Pt 原子位点的 PtBi 金属间化合物纳米盘作为基底,在其表面上可控生长 Pb 原子,探究多金属且原子结构明确的电催化剂对甲醇氧化反应的协同促进作用。结构明确的 PtBi@6.7%Pb 纳米盘表面镶嵌了 sub-羟基氧化铅原子层,三种元素协同作用使其在碱性甲醇氧化反应中催化质量活性达到 PtBi 纳米盘和商业 Pt/C 的 4.0 和 7.4 倍(30 ℃),并在直接甲醇燃料电池通常的运行温度下(60 ℃)达到 51.07 A mg-1Pt。理论计算显示,表面羟基氧化铅的引入不仅促进了有效电子转移,还抑制了 CO 毒化效应,有效的 p-d 耦合优化了 PtBi@6.7%Pb纳米盘的甲醇氧化反应过程,使其反应能垒降低。

关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2023-06
参考文献列表

[1] Steele B C, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414:345-352.
[2] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J].Chemical Reviews, 2004, 104: 4245-4269.
[3] 衣宝廉. 燃料电池现状与未来.[J]. 电源技术, 1998, 216-221.
[4] Reasearchers at northwestern university develop material to 3D print fuel cells[EB/OL]; http://3dprint.com/29454/3d-printed-fuel-cells/.
[5] Yoshida T, Kojima K. Toyota MIRAI fuel cell vehicle and progress toward afuture hydrogen society[J]. Interface Magazine, 2015, 24: 45-49.
[6] Thomas J M. W.R. Grove and the fuel cell[J]. Philosophical Magazine, 2012, 92:3757-3765.
[7] Appleby A J. From Sir William Grove to today - fuel-cells and the future[J].Journal of Power Sources, 1990, 29: 3-11.
[8] Kakati N, Maiti J, Lee S H, et al. Anode catalysts for direct methanol fuel cells inacidic media: do we have any alternative for Pt or Pt-Ru?[J]. Chemical Reviews,2014, 114: 12397-12429.
[9] Gottesfeld S. Fuel cell techno-personal milestones 1984–2006[J]. Journal ofPower Sources, 2007, 171: 37-45.
[10] Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membranefuel cells: technology, applications, and needs on fundamental research[J].Applied Energy, 2011, 88: 981-1007.
[11] Vishnyakov V M. Proton exchange membrane fuel cells[J]. Vacuum, 2006, 80:1053-1065.
[12] 庄林. 完全不使用贵金属催化剂的聚合物电解质燃料电池[J]. 中国基础科学, 2009, 11: 28-29.
[13] Garraín D, Lechón Y, Rúa C d l. Polymer electrolyte membrane fuel cells (PEMFC)in automotive applications: environmental relevance of the manufacturingstage[J]. Smart Grid and Renewable Energy, 2011, 02: 68-74.
[14] Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J].参考文献105Nature, 2012, 486: 43-51.
[15] Bahrami H, Faghri A. Review and advances of direct methanol fuel cells: part II:modeling and numerical simulation[J]. Journal of Power Sources, 2013, 230: 303-320.
[16] Demirci U B. Direct liquid-feed fuel cells: thermodynamic and environmentalconcerns[J]. Journal of Power Sources, 2007, 169: 239-246.
[17] Hacquard A. Improving and understanding direct methanol fuel cell (DMFC)performance[J]. Master Theses, 2005.
[18] Li X L, Faghri A, Xu C. Water management of the DMFC passively fed with ahigh-concentration methanol solution[J]. International Journal of HydrogenEnergy, 2010, 35: 8690-8698.
[19] Barragán V M, Ruiz-Bauzá C, Villaluenga J P G, et al. Transport of methanol andwater through Nafion membranes[J]. Journal of Power Sources, 2004, 130: 22-29.
[20] Ma Z N, Legrand U, Pahija E, et al. From CO2 to formic acid fuel cells[J].Industrial & Engineering Chemistry Research, 2021, 60: 803-815.
[21] Sridhar P, Perumal R, Rajalakshmi N, et al. Humidification studies on polymerelectrolyte membrane fuel cell[J]. Journal of Power Sources, 2001, 101: 72-78.
[22] Yu X W, Pickup P G. Recent advances in direct formic acid fuel cells (DFAFC)[J].Journal of Power Sources, 2008, 182: 124-132.
[23] Jeong K J, Miesse C A, Choi J H, et al. Fuel crossover in direct formic acid fuelcells[J]. Journal of Power Sources, 2007, 168: 119-125.
[24] Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation inhalf cells and in direct alcohol fuel cells[J]. Chemical Reviews, 2009, 109: 4183-4206.
[25] An L, Zhao T S. Transport phenomena in alkaline direct ethanol fuel cells forsustainable energy production[J]. Journal of Power Sources, 2017, 341: 199-211.
[26] Mukerjee S 2011. Electrocatalysis in alkaline electrolytes-research overview[R].2011.
[27] Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygenreduction reaction[J]. Chemical Society Reviews, 2015, 44: 2168-2201.
[28] 査全性. 电极过程动力学导论(第三版) [M].北京:科学出版社,2002.哈尔滨工业大学工学博士学位论文106
[29] Han B H, Carlton C E, Kongkanand A, et al. Record activity and stability ofdealloyed bimetallic catalysts for proton exchange membrane fuel cells[J]. Energy& Environmental Science, 2015, 8: 258-266.
[30] Nørskov J K, Rossmeisl J, Logadottir A, et al. Origin of the overpotential foroxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004, 108: 17886-17892.
[31] Ahmad H, Kamarudin S K, Hasran U A, et al. A novel hybrid Nafion-PBI-ZPmembrane for direct methanol fuel cells[J]. International Journal of HydrogenEnergy, 2011, 36: 14668-14677.
[32] Tiwari J N, Tiwari R N, Singh G, et al. Recent progress in the development ofanode and cathode catalysts for direct methanol fuel cells[J]. Nano Energy, 2013,2: 553-578.
[33] Aricò A S, Srinivasan S, Antonucci V. DMFCs: from fundamental aspects totechnology development[J]. Fuel Cells, 2001, 1: 133-161.
[34] Carrette L, Friedrich K A, Stimming U. Fuel cells: principles, types, fuels, andapplications[J]. ChemPhysChem, 2000, 1: 162-193.
[35] Frelink T, Visscher W, van Veen J A R. On the role of Ru and Sn as promotors ofmethanol electro-oxidation over Pt[J]. Surface Science, 1995, 335: 353-360.
[36] Chen Y X, Heinen M, Jusys Z, et al. Kinetics and mechanism of theelectrooxidation of formic acid-spectroelectrochemical studies in a flow cell[J].Angewandte Chemie International Edition, 2006, 45: 981-985.
[37] Wang J Y, Zhang H X, Jiang K, et al. From HCOOH to CO at Pd electrodes: asurface-enhanced infrared spectroscopy study[J]. Journal of the AmericanChemical Society, 2011, 133: 14876-14879.
[38] Lai S C S, Kleijn S E F, Ozturk F T Z, et al. Effects of electrolyte pH andcomposition on the ethanol electro-oxidation reaction[J]. Catalysis Today, 2010,154: 92-104.
[39] Wang H, Jusys Z, Behm R J. Ethanol electrooxidation on a carbon-supported Ptcatalyst:  reaction kinetics and product yields[J]. The Journal of PhysicalChemistry B, 2004, 108: 19413-19424.
[40] Luo S, Zhang L, Liao Y, et al. A tensile-strained Pt-Rh single-atom alloy参考文献107remarkably boosts ethanol oxidation[J]. Advanced Materials, 2021, 33: 2008508.
[41] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment inelectrocatalysis: insights into materials design[J]. Science, 2017, 355: eaad4998.
[42] Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activityon Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315: 493-497.
[43] Lu C, Rice C, Masel R I, et al. UHV, electrochemical NMR, and electrochemicalstudies of Platinum/Ruthenium fuel cell catalysts[J]. The Journal of PhysicalChemistry B, 2002, 106: 9581-9589.
[44] Zhang J, Ye J, Fan Q, et al. Cyclic penta-twinned rhodium nanobranches assuperior catalysts for ethanol electro-oxidation[J]. Journal of the AmericanChemical Society, 2018, 140: 11232-11240.
[45] Sen Gupta S, Datta J. A comparative study on ethanol oxidation behavior at Pt andPtRh electrodeposits[J]. Journal of Electroanalytical Chemistry, 2006, 594: 65-72.
[46] Zhu Y, Bu L, Shao Q, et al. Subnanometer PtRh nanowire with alleviatedpoisoning effect and enhanced C-C bond cleavage for ethanol oxidationelectrocatalysis[J]. ACS Catalysis, 2019, 9: 6607-6612.
[47] Zhou W J, Song S Q, Li W Z, et al. Direct ethanol fuel cells based on PtSn anodes:the effect of Sn content on the fuel cell performance[J]. Journal of Power Sources,2005, 140: 50-58.
[48] Neto A O, Dias R R, Tusi M M, et al. Electro-oxidation of methanol and ethanolusing PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcoholreduction process[J]. Journal of Power Sources, 2007, 166: 87-91.
[49] Lim B, Jiang M, Camargo P H, et al. Pd-Pt bimetallic nanodendrites with highactivity for oxygen reduction[J]. Science, 2009, 324: 1302-1305.
[50] Yang C L, Wang L N, Yin P, et al. Sulfur-anchoring synthesis of platinumintermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374: 459-464.
[51] Kong Z, Maswadeh Y, Vargas J A, et al. Origin of high activity and durability oftwisty nanowire alloy catalysts under oxygen reduction and fuel cell operatingconditions[J]. Journal of the American Chemical Society, 2020, 142: 1287-1299.
[52] Luo S, Shen P K. Concave platinum-copper octopod nanoframes bounded with哈尔滨工业大学工学博士学位论文108multiple high-index facets for efficient electrooxidation catalysis[J]. ACS Nano,2017, 11: 11946-11953.
[53] Feng Y, Shao Q, Lv F, et al. Intermetallic PtBi nanoplates boost oxygen reductioncatalysis with superior tolerance over chemical fuels[J]. Advanced Science, 2019,7: 1800178.
[54] Wang G, Huang B, Xiao L, et al. Pt skin on AuCu intermetallic substrate: astrategy to maximize Pt utilization for fuel cells[J]. Journal of the AmericanChemical Society, 2014, 136: 9643-9649.
[55] Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extendedand nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6: 241-247.
[56] Wang K, Du H, Sriphathoorat R, et al. Vertex-type engineering of Pt-Cu-Rhheterogeneous nanocages for highly efficient ethanol electrooxidation[J].Advanced Materials, 2018, 30: 1804074.
[57] Mao J, Chen W, He D, et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts forethanol electrooxidation[J]. Science Advances, 2017, 3: 1603068.
[58] Ma S Y, Li H H, Hu B C, et al. Synthesis of low Pt-based quaternary PtPdRuTenanotubes with optimized incorporation of Pd for enhanced electrocatalyticactivity[J]. Journal of the American Chemical Society, 2017, 139: 5890-5895.
[59] Li H, Han Y, Zhao H, et al. Fast site-to-site electron transfer of high-entropy alloynanocatalyst driving redox electrocatalysis[J]. Nature Communications, 2020, 11:5437.
[60] Wu D, Kusada K, Yamamoto T, et al. Platinum-group-metal high-entropy-alloynanoparticles[J]. Journal of the American Chemical Society, 2020, 142: 13833-13838.
[61] Tao L, Sun M, Zhou Y, et al. A general synthetic method for high-entropy alloysubnanometer ribbons[J]. Journal of the American Chemical Society, 2022, 144:10582-10590.
[62] Sun Y, Zhang W, Zhang Q, et al. A general approach to high-entropy metallicnanowire electrocatalysts[J]. Matter, 2023, 6: 193-205.
[63] Nakaya Y, Hayashida E, Asakura H, et al. High-entropy intermetallics serveultrastable single-Atom Pt for propane dehydrogenation[J]. Journal of the参考文献109American Chemical Society, 2022, 144: 15944-15953.
[64] Antolini E. Structural parameters of supported fuel cell catalysts: the effect ofparticle size, inter-particle distance and metal loading on catalytic activity and fuelcell performance[J]. Applied Catalysis B: Environmental, 2016, 181: 298-313.
[65] Qi Z, Xiao C, Liu C, et al. Sub-4 nm PtZn intermetallic nanoparticles for enhancedmass and specific activities in catalytic electrooxidation reaction[J]. Journal of theAmerican Chemical Society, 2017, 139: 4762-4768.
[66] Feng G, Ning F, Song J, et al. Sub-2 nm ultrasmall high-entropy alloynanoparticles for extremely superior electrocatalytic hydrogen evolution[J].Journal of the American Chemical Society, 2021, 143: 17117-17127.
[67] Minamihara H, Kusada K, Wu D, et al. Continuous-flow reactor synthesis forhomogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles[J].Journal of the American Chemical Society, 2022, 144: 11525-11529.
[68] Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation usingPt1/FeOx[J]. Nature Chemistry, 2011, 3: 634-641.
[69] Ye S H, Luo F Y, Zhang Q L, et al. Highly stable single Pt atomic sites anchoredon aniline-stacked graphene for hydrogen evolution reaction[J]. Energy &Environmental Science, 2019, 12: 1000-1007.
[70] Liu J, Jiao M, Lu L, et al. High performance platinum single atom electrocatalystfor oxygen reduction reaction[J]. Nature Communications, 2017, 8: 15938.
[71] Shen T, Wang S, Zhao T H, et al. Recent advances of single-atom-alloy for energyelectrocatalysis[J]. Advanced Energy Materials, 2022, 12: 2201823.
[72] Duchesne P N, Li Z Y, Deming C P, et al. Golden single-atomic-site platinumelectrocatalysts[J]. Nature Materials, 2018, 17: 1033-1039.
[73] Poerwoprajitno A R, Gloag L, Watt J, et al. A single-Pt-atom-on-Ru-nanoparticleelectrocatalyst for CO-resilient methanol oxidation[J]. Nature Catalysis, 2022, 5:231-237.
[74] Li M F, Duanmu K N, Wan C Z, et al. Single-atom tailoring of platinumnanocatalysts for high-performance multifunctional electrocatalysis[J]. NatureCatalysis, 2019, 2: 495-503.
[75] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum哈尔滨工业大学工学博士学位论文110nanocrystals with high-index facets and high electro-oxidation activity[J]. Science,2007, 316: 732-735.
[76] Huang X, Zhao Z, Fan J, et al. Amine-assisted synthesis of concave polyhedralplatinum nanocrystals having {411} high-index facets[J]. Journal of the AmericanChemical Society, 2011, 133: 4718-4721.
[77] Shao Q, Lu K Y, Huang X Q. Platinum group nanowires for efficientelectrocatalysis[J]. Small Methods, 2019, 3: 1800545.
[78] Li M, Zhao Z, Cheng T, et al. Ultrafine jagged platinum nanowires enableultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354:1414-1419.
[79] Gu G H, Lim J, Wan C, et al. Autobifunctional mechanism of Jagged Pt nanowiresfor hydrogen evolution kinetics via end-to-end simulation[J]. Journal of theAmerican Chemical Society, 2021, 143: 5355-5363.
[80] Zeb Gul Sial M A, Ud Din M A, Wang X. Multimetallic nanosheets: synthesis andapplications in fuel cells[J]. Chemical Society Reviews, 2018, 47: 6175-6200.
[81] Saleem F, Xu B, Ni B, et al. Atomically thick Pt-Cu nanosheets: self-assembledsandwich and nanoring-like structures[J]. Advanced Materials, 2015, 27: 2013-2018.
[82] Ud Din M A, Saleem F, Ni B, et al. Porous tetrametallic PtCuBiMn nanosheetswith a high catalytic activity and methanol tolerance limit for oxygen reductionreactions[J]. Advanced Materials, 2017, 29: 1604994.
[83] Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boostsoxygen reduction catalysis[J]. Science, 2016, 354: 1410-1414.
[84] Sun Y, Zhang X, Luo M, et al. Ultrathin PtPd-based nanorings with abundant stepatoms enhance oxygen catalysis[J]. Advanced Materials, 2018, 30: 1802136.
[85] Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes withthree-dimensional electrocatalytic surfaces[J]. Science, 2014, 343: 1339-1343.
[86] Luo S, Tang M, Shen P K, et al. Atomic-scale preparation of octopod nanoframeswith high ‐ index facets as highly active and stable catalysts[J]. AdvancedMaterials, 2016, 29: 0935-9648.
[87] Zhang N, Shao Q, Xiao X, et al. Advanced catalysts derived from composition‐参考文献111segregated platinum-nickel nanostructures: new opportunities and challenges[J].Advanced Functional Materials, 2019, 29: 1808161.
[88] Yan Y, Du J S, Gilroy K D, et al. Intermetallic nanocrystals: syntheses andcatalytic applications[J]. Advanced Materials, 2017, 29: 1605997.
[89] Chung D Y, Jun S W, Yoon G, et al. Highly durable and active PtFe nanocatalystfor electrochemical oxygen reduction reaction[J]. Journal of the AmericanChemical Society, 2015, 137: 15478-15485.
[90] Abe H, Matsumoto F, Alden L R, et al. Electrocatalytic performance of fueloxidation by Pt3Ti nanoparticles[J]. Journal of the American Chemical Society,2008, 130: 5452-5458.
[91] Yoo T Y, Yoo J M, Sinha A K, et al. Direct synthesis of intermetallic platinumalloy nanoparticles highly loaded on carbon supports for efficientelectrocatalysis[J]. Journal of the American Chemical Society, 2020, 142: 14190-14200.
[92] Cheng H G R, Yu H, et al. Subsize Pt-based intermetallic compound enables longterm cyclic mass activity for fuel-cell oxygen reduction[J]. Proceedings of theNational Academy of Sciences, 2021, 118: 2104026118.
[93] Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reductionelectrocatalysts using gold clusters[J]. Science, 2007, 315: 220-222.
[94] Huang X, Zhao Z, Cao L, et al. High-performance transition metal-doped Pt3Nioctahedra for oxygen reduction reaction[J]. Science, 2015, 348: 1230-1234.
[95] Snyder J, Fujita T, Chen M W, et al. Oxygen reduction in nanoporous metal-ionicliquid composite electrocatalysts[J]. Nature Materials, 2010, 9: 904-907.
[96] Lai Y Q, Zhang Z T, Zhang Z Y, et al. Electronic modulation of Pt nanoclustersthrough tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolutioncatalysis[J]. Chemical Engineering Journal, 2022, 435: 135102.
[97] Kowal A, Li M, Shao M, et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizingethanol to CO2[J]. Nature Materials, 2009, 8: 325-330.
[98] Yuan X L, Jiang B, Cao M H, et al. Porous Pt nanoframes decorated with Bi(OH)3as highly efficient and stable electrocatalyst for ethanol oxidation reaction[J].Nano Research, 2020, 13: 265-272.哈尔滨工业大学工学博士学位论文112
[99] Xing Z C, Han C, Wang D W, et al. Ultrafine Pt nanoparticle-decorated Co(OH)2nanosheet arrays with enhanced catalytic activity toward hydrogen evolution[J].ACS Catalysis, 2017, 7: 7131-7135.
[100] van Deelen T W, Hernández Mejía C, de Jong K P. Control of metal-supportinteractions in heterogeneous catalysts to enhance activity and selectivity[J].Nature Catalysis, 2019, 2: 955-970.
[101] Martindale B. Carbon caution [J]. Nature Catalysis, 2020, 3: 773-773.
[102] Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination assuperior oxygen reduction reaction catalysts[J]. Angewandte ChemieInternational Edition, 2016, 55: 10800-10805.
[103] Xiao F, Wang Q, Xu G-L, et al. Atomically dispersed Pt and Fe sites and Pt–Fenanoparticles for durable proton exchange membrane fuel cells[J]. NatureCatalysis, 2022, 5: 503-512.
[104] Ong B C, Kamarudin S K, Basri S. Direct liquid fuel cells: a review[J].International Journal of Hydrogen Energy, 2017, 42: 10142-10157.
[105] Jiang K, Zhang H X, Zou S, et al. Electrocatalysis of formic acid on palladiumand platinum surfaces: from fundamental mechanisms to fuel cell applications[J].Physical Chemistry Chemical Physics, 2014, 16: 20360-20376.
[106] Li C, Yuan Q, Ni B, et al. Dendritic defect-rich palladium-copper-cobaltnanoalloys as robust multifunctional non-platinum electrocatalysts for fuelcells[J]. Nature Communications, 2018, 9: 3702.
[107] Ji X, Lee K T, Holden R, et al. Nanocrystalline intermetallics on mesoporouscarbon for direct formic acid fuel cell anodes[J]. Nature Chemistry, 2010, 2: 286-293.
[108] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinumcobalt core-shell nanoparticles with enhanced activity and stability as oxygenreduction electrocatalysts[J]. Nature Materials, 2013, 12: 81-87.
[109] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation madesimple[J]. Physical Review Letters, 1996, 77: 3865-3868.
[110] VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations onmolecular systems in gas and condensed phases[J]. The Journal of Chemical参考文献113Physics, 2007, 127: 114105.
[111] Qin Y N, Luo M C, Sun Y J, et al. Intermetallic hcp-PtBi/fcc-Pt core/shellnanoplates enable efficient bifunctional oxygen reduction and methanol oxidationelectrocatalysis[J]. ACS Catalysis, 2018, 8: 5581-5590.
[112] Rong H, Mao J, Xin P, et al. Kinetically controlling surface structure to constructdefect-rich intermetallic nanocrystals: effective and stable catalysts[J]. AdvancedMaterials, 2016, 28: 2540-2546.
[113] Zhang D, Wu F, Peng M, et al. One-step, facile and ultrafast synthesis of phaseand size-controlled Pt-Bi intermetallic nanocatalysts through continuous-flowmicrofluidics[J]. Journal of the American Chemical Society, 2015, 137: 6263-6269.
[114] Du Y, Yin Z, Zhu J, et al. A general method for the large-scale synthesis of uniformultrathin metal sulphide nanocrystals[J]. Nature Communications, 2012, 3: 1177.
[115] Mourdikoudis S, Liz-Marzan L M. Oleylamine in nanoparticle synthesis[J].Chemistry of Materials, 2013, 25: 1465-1476.
[116] Wu L, Fournier A P, Willis J J, et al. In situ X-ray scattering guides the synthesisof uniform PtSn nanocrystals[J]. Nano Letters, 2018, 18: 4053-4057.
[117] Wu Z, Bukowski B C, Li Z, et al. Changes in catalytic and adsorptive propertiesof 2 nm Pt3Mn nanoparticles by subsurface atoms[J]. Journal of the AmericanChemical Society, 2018, 140: 14870-14877.
[118] Kang S, Lee J, Lee J K, et al. Influence of Bi modification of Pt anode catalyst indirect formic acid fuel cells[J]. The Journal of Physical Chemistry B, 2006, 110:7270-7274.
[119] Ciapina E G, Santos S F, Gonzalez E R. Electrochemical CO stripping onnanosized Pt surfaces in acid media: a review on the issue of peak multiplicity[J].Journal of Electroanalytical Chemistry, 2018, 815: 47-60.
[120] Yao Y C, Hu S L, Chen W X, et al. Engineering the electronic structure of singleatom Ru sites via compressive strain boosts acidic water oxidationelectrocatalysis[J]. Nature Catalysis, 2019, 2: 304-313.
[121] Fan H S, Cheng M, Wang L, et al. Extraordinary electrocatalytic performance forformic acid oxidation by the synergistic effect of Pt and Au on carbon black[J].哈尔滨工业大学工学博士学位论文114Nano Energy, 2018, 48: 1-9.
[122] Li Q, Fu J, Zhu W, et al. Tuning Sn-catalysis for electrochemical reduction of CO2to CO via the core/shell Cu/SnO2 structure[J]. Journal of the American ChemicalSociety, 2017, 139: 4290-4293.
[123] Kulkarni A, Siahrostami S, Patel A, et al. Understanding catalytic activity trendsin the oxygen reduction reaction[J]. Chemical Reviews, 2018, 118: 2302-2312.
[124] Zheng X, Ji Y, Tang J, et al. RETRACTED ARTICLE: Theory-guided Sn/Cualloying for efficient CO2 electroreduction at low overpotentials[J]. NatureCatalysis, 2019, 2: 55-61.
[125] Luc W, Fu X B, Shi J J, et al. Two-dimensional copper nanosheets forelectrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis,2019, 2: 423-430.
[126] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment inelectrocatalysis: Insights into materials design[J]. Science, 2017, 355.
[127] Li M, Zhao Z, Zhang W, et al. Sub-monolayer YOx /MoOx on ultrathin Ptnanowires boosts alcohol oxidation electrocatalysis[J]. Advanced Materials, 2021,33: 2103762.
[128] Zhang W, Yang Y, Huang B, et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowiresas efficient fuel oxidation electrocatalytic materials[J]. Advanced Materials, 2019,31: 1805833.
[129] Wang X, Xi S, Lee W S V, et al. Materializing efficient methanol oxidation viaelectron delocalization in nickel hydroxide nanoribbon[J]. NatureCommunications, 2020, 11: 4647.
[130] Liu H L, Nosheen F, Wang X. Noble metal alloy complex nanostructures:controllable synthesis and their electrochemical property[J]. Chemical SocietyReviews, 2015, 44: 3056-3078.
[131] Luo S, Shen P K. Concave platinum–copper octopod nanoframes bounded withmultiple high-index facets for efficient electrooxidation catalysis[J]. ACS Nano,2016.
[132] Yao Y, Dong Q, Brozena A, et al. High-entropy nanoparticles: synthesis-structureproperty relationships and data-driven discovery[J]. Science, 2022, 376:参考文献115eabn3103.
[133] Liao Y, Li Y, Zhao R, et al. High-entropy-alloy nanoparticles with 21 ultra-mixedelements for efficient photothermal conversion[J]. National Science Review, 2022,9: nwac041.
[134] Yao Y, Huang Z, Xie P, et al. Carbothermal shock synthesis of high-entropy-alloynanoparticles[J]. Science, 2018, 359: 1489-1494.
[135] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygenreduction electrocatalysts[J]. Nature Materials, 2013, 12: 81-87.
[136] Dasgupta A, He H, Gong R, et al. Atomic control of active-site ensembles inordered alloys to enhance hydrogenation selectivity[J]. Nature Chemistry, 2022,14: 523-529.
[137] Ma J, Xing F, Nakaya Y, et al. Nickel-based high-entropy intermetallic as a highlyactive and selective catalyst for acetylene semihydrogenation[J]. AngewandteChemie International Edition, 2022, 61: 202200889.
[138] Clark S J, Segall M D, Pickard C J, et al. First principles methods usingCASTEP[J]. Zeitschrift Fur Kristallographie, 2005, 220: 567-570.
[139] Head J D, Zerner M C. A Broyden—Fletcher—Goldfarb—Shanno optimizationprocedure for molecular geometries[J]. Chemical Physics Letters, 1985, 122: 264-290.
[140] Liu G, Robertson A W, Li M M, et al. MoS2 monolayer catalyst doped withisolated Co atoms for the hydrodeoxygenation reaction[J]. Nature Chemistry,2017, 9: 810-816.
[141] Xu K, Zhang L, Godfrey A, et al. Atomic-scale insights into quantum-orderparameters in bismuth-doped iron garnet[J]. Proceedings of the NationalAcademy of Sciences, 2021, 118.
[142] Hammer B, Norskov J K. Electronic factors determining the reactivity of metalsurfaces[J]. Surface Science, 1995, 343: 211-220.
[143] Sun D, Wang Y, Livi K J T, et al. Ordered intermetallic Pd3Bi prepared by anelectrochemically induced phase transformation for oxygen reductionelectrocatalysis[J]. ACS Nano, 2019, 13: 10818-10825.哈尔滨工业大学工学博士学位论文116
[144] Wu X, Jiang Y, Yan Y, et al. Tuning surface structure of Pd3Pb/PtnPb nanocrystalsfor boosting the methanol oxidation reaction[J]. Advanced Science, 2019, 6:1902249.
[145] Zhang S, Zeng Z C, Li Q Q, et al. Lanthanide electronic perturbation in Pt-Ln (La,Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity[J].Energy & Environmental Science, 2021, 14: 5911-5918.
[146] Chen L G, Liang X, Li X T, et al. Promoting electrocatalytic methanol oxidationof platinum nanoparticles by cerium modification[J]. Nano Energy, 2020, 73:104784.
[147] Huang J, Liu Y, Xu M, et al. PtCuNi tetrahedra catalysts with tailored surfaces forefficient alcohol oxidation[J]. Nano Letters, 2019, 19: 5431-5436.
[148] Zhang Z, Liu J, Wang J, et al. Single-atom catalyst for high-performance methanoloxidation[J]. Nature Communications, 2021, 12: 5235.
[149] Chen W, Luo S, Sun M, et al. Hexagonal PtBi intermetallic inlaid with submonolayer Pb oxyhydroxide boosts methanol oxidation[J]. Small, 2022, 18:2107803.
[150] Han S H, Liu H M, Chen P, et al. Porous trimetallic PtRhCu cubic nanoboxes forethanol electrooxidation[J]. Advanced Energy Materials, 2018, 8: 1801326.
[151] Liang Z, Song L, Deng S, et al. Direct 12-electron oxidation of ethanol on aternary Au(core)-PtIr(shell) electrocatalyst[J]. Journal of the American ChemicalSociety, 2019, 141: 9629-9636.
[152] Wang W, Zhang X, Zhang Y, et al. Edge enrichment of ultrathin 2D PdPtCutrimetallic nanostructures effectuates top-ranked ethanol electrooxidation[J].Nano Letters, 2020, 20: 5458-5464.
[153] Yuan X L, Jiang X J, Cao M H, et al. Intermetallic PtBi core/ultrathin Pt shellnanoplates for efficient and stable methanol and ethanol electro-oxidization[J].Nano Research, 2019, 12: 429-436.
[154] Chen Z, Liu C, Zhao X, et al. Promoted glycerol oxidation reaction in an interfaceconfined hierarchically structured catalyst[J]. Advanced Materials, 2019, 31:1804763.
[155] Lima C C, Rodrigues M V F, Neto A F M, et al. Highly active Ag/C nanoparticles参考文献117containing ultra-low quantities of sub-surface Pt for the electrooxidation ofglycerol in alkaline media[J]. Applied Catalysis B: Environmental, 2020, 279:119369.
[156] Sun Q, Gao F, Zhang Y, et al. Ultrathin one-dimensional platinum-cobaltnanowires as efficient catalysts for the glycerol oxidation reaction[J]. Journal ofColloid and Interface Science, 2019, 556: 441-448.
[157] Zhang Y P, Gao F, Song P P, et al. Superior liquid fuel oxidation electrocatalysisenabled by novel bimetallic PtNi nanorods[J]. Journal of Power Sources, 2019,425: 179-185.
[158] Xu H, Song P, Gao F, et al. Hierarchical branched platinum-copper tripods ashighly active and stable catalysts[J]. Nanoscale, 2018, 10: 8246-8252.
[159] Yu X, Dos Santos E C, White J, et al. Electrocatalytic glycerol oxidation withconcurrent hydrogen evolution utilizing an efficient MoOx /Pt catalyst[J]. Small,2021, 17: 2104288.
[160] Casado-Rivera E, Gal Z, Angelo A C, et al. Electrocatalytic oxidation of formicacid at an ordered intermetallic PtBi surface[J]. ChemPhysChem, 2003, 4: 193-199.
[161] Xing F, Nakaya Y, Yasumura S, et al. Ternary platinum–cobalt–indium nanoalloyon ceria as a highly efficient catalyst for the oxidative dehydrogenation of propaneusing CO2[J]. Nature Catalysis, 2022, 5: 55-65.
[162] Zhang J M, Qu X M, Han Y, et al. Engineering PtRu bimetallic nanoparticles withadjustable alloying degree for methanol electrooxidation: enhanced catalyticperformance[J]. Applied Catalysis B: Environmental, 2020, 263: 118345.
[163] Zhao F, Zheng L, Yuan Q, et al. Ultrathin PdAuBiTe nanosheets as highperformance oxygen reduction catalysts for a direct methanol fuel cell device[J].Advanced Materials, 2021, 33: 2103383.
[164] Zhu J, Yang Y, Chen L, et al. Copper-induced formation of structurally orderedPt–Fe–Cu ternary intermetallic electrocatalysts with tunable phase structure andimproved stability[J]. Chemistry of Materials, 2018, 30: 5987-5995.
[165] Liang J, Li N, Zhao Z, et al. Tungsten-doped L10-PtCo ultrasmall nanoparticles asa high-performance fuel cell cathode[J]. Angewandte Chemie International哈尔滨工业大学工学博士学位论文118Edition, 2019, 58: 15471-15477.
[166] Luo M, Zhao Z, Zhang Y, et al. PdMo bimetallene for oxygen reductioncatalysis[J]. Nature, 2019, 574: 81-85.
[167] Wang Q, Xia G J, Zhao Z L, et al. Atomic origin of CO-interaction effect ofPtPb@Pt catalyst revealed by in situ environmental transmission electronmicroscopy[J]. Nano Energy, 2020, 76: 105099.
[168] Chen L, Zhou L, Lu H, et al. Shape-controlled synthesis of planar PtPb nanoplatesfor highly efficient methanol electro-oxidation reaction[J]. ChemicalCommunications, 2020, 56: 9138-9141.
[169] Chen Y, Cai W, Dang C, et al. A facile sol–gel synthesis of chitosan–boehmitefilm with excellent acid resistance and adsorption performance for Pb(II)[J].Chemical Engineering Research and Design, 2020, 161: 332-339.
[170] Yuan X, Zhang Y, Cao M, et al. Bi(OH)3/PdBi composite nanochains as highlyactive and durable electrocatalysts for ethanol oxidation[J]. Nano Letters, 2019,19: 4752-4759.
[171] Wang X, Xie M, Lyu F, et al. Bismuth oxyhydroxide-Pt inverse interface forenhanced methanol electrooxidation performance[J]. Nano Letters, 2020, 20:7751-7759.
[172] Zhang S, Zeng Z, Li Q, et al. Lanthanide electronic perturbation in Pt–Ln (La, Ce,Pr and Nd) alloys for enhanced methanol oxidation reaction activity[J]. Energy &Environmental Science, 2021, 14: 5911-5918.
[173] Wang C Y, Yu Z Y, Li G, et al. Intermetallic PtBi nanoplates with high catalyticactivity towards electro-oxidation of formic acid and glycerol[J].ChemElectroChem, 2020, 7: 239-245.
[174] Zhao F L, Ye J Y, Yuan Q, et al. Realizing a CO-free pathway and enhanceddurability in highly dispersed Cu-doped PtBi nanoalloys towards methanol fullelectrooxidation[J]. Journal of Materials Chemistry A, 2020, 8: 11564-11572.
[175] Yuda A, Ashok A, Kumar A. A comprehensive and critical review on recentprogress in anode catalyst for methanol oxidation reaction[J]. Catalysis Reviews:Science and Engineering, 2022, 64: 126-228.
[176] Ye J Y, Jiang Y X, Sheng T, et al. In-situ FTIR spectroscopic studies of参考文献119electrocatalytic reactions and processes[J]. Nano Energy, 2016, 29: 414-427.
[177] Yang F, Ye J Y, Yuan Q, et al. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedronsboost the electrocatalytic performance of glycerol oxidation at the operatingtemperature of fuel cells[J]. Advanced Functional Materials, 2020, 30: 1908235

所在学位评定分委会
化学
国内图书分类号
O643.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545093
专题理学院_化学系
推荐引用方式
GB/T 7714
陈雯. 铂基多组分金属间化合物纳米盘的合成及电催化性能研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749251-陈雯-化学系.pdf(14297KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈雯]的文章
百度学术
百度学术中相似的文章
[陈雯]的文章
必应学术
必应学术中相似的文章
[陈雯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。