[1] OHTA S, BUKOWSKI-WILLS J C, SANCHEZ-PULIDO L, et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics[J]. Cell, 2010, 142(5): 810-821.
[2] OHTA S, WOOD L, TORAMOTO I, et al. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly[J]. Mol Biol Cell, 2015, 26(7): 1225-1237.
[3] GOLDBERG A D, ALLIS C D, BERNSTEIN E. Epigenetics: a landscape takes shape[J]. Cell, 2007, 128(4): 635-638.
[4] WEINHOLD B. Epigenetics: the science of change[J]. Environ Health Perspect, 2006, 114(3): A160-167.
[5] DAWSON M A, KOUZARIDES T. Cancer epigenetics: from mechanism to therapy[J]. Cell, 2012, 150(1): 12-27.
[6] ACHINGER-KAWECKA J, CLARK S J. Disruption of the 3D cancer genome blueprint[J]. Epigenomics, 2017, 9(1): 47-55.
[7] LUCO R F, ALLO M, SCHOR I E, et al. Epigenetics in alternative pre-mRNA splicing[J]. Cell, 2011, 144(1): 16-26.
[8] KOBAYASHI W, KURUMIZAKA H. Structural transition of the nucleosome during chromatin remodeling and transcription[J]. Curr Opin Struct Biol, 2019, 59: 107-114.
[9] LI X, FU X D. Chromatin-associated RNAs as facilitators of functional genomic interactions[J]. Nat Rev Genet, 2019, 20(9): 503-519.
[10] HEARD E, MARTIENSSEN R A. Transgenerational epigenetic inheritance: myths and mechanisms[J]. Cell, 2014, 157(1): 95-109.
[11] COHN W E. Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: isolation, structure, and chemical characteristics[J]. J Biol Chem, 1960, 235: 1488-1498.
[12] HOLLEY R W, EVERETT G A, MADISON J T, et al. Nucleotide Sequences in the Yeast Alanine Transfer Ribonucleic Acid[J]. J Biol Chem, 1965, 240: 2122-2128.
[13] DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974, 71(10): 3971-3975.
[14] ADAMS J M, CORY S. Modified nucleosides and bizarre 5'-termini in mouse myeloma mRNA[J]. Nature, 1975, 255(5503): 28-33.
[15] FINKEL D, GRONER Y. Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs[J]. Virology, 1983, 131(2): 409-425.
[16] CAMPER S A, ALBERS R J, COWARD J K, et al. Effect of undermethylation on mRNA cytoplasmic appearance and half-life[J]. Mol Cell Biol, 1984, 4(3): 538-543.
[17] ROUNDTREE I A, EVANS M E, PAN T, et al. Dynamic RNA Modifications in Gene Expression Regulation[J]. Cell, 2017, 169(7): 1187-1200.
[18] HELM M, MOTORIN Y. Detecting RNA modifications in the epitranscriptome: predict and validate[J]. Nat Rev Genet, 2017, 18(5): 275-291.
[19] MATTHEWS H K, BERTOLI C, DE BRUIN R A M. Cell cycle control in cancer[J]. Nat Rev Mol Cell Biol, 2022, 23(1): 74-88.
[20] SIMMONS KOVACS L A, ORLANDO D A, HAASE S B. Transcription networks and cyclin/CDKs: the yin and yang of cell cycle oscillators[J]. Cell Cycle, 2008, 7(17): 2626-2629.
[21] FISHER R P. The CDK Network: Linking Cycles of Cell Division and Gene Expression[J]. Genes Cancer, 2012, 3(11-12): 731-738.
[22] BASU S, GREENWOOD J, JONES A W, et al. Core control principles of the eukaryotic cell cycle[J]. Nature, 2022, 607(7918): 381-386.
[23] HAYWARD D, ALFONSO-PEREZ T, GRUNEBERG U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1[J]. FEBS Lett, 2019, 593(20): 2889-2907.
[24] SERPICO A F, GRIECO D. Recent advances in understanding the role of Cdk1 in the Spindle Assembly Checkpoint[J]. F1000Res, 2020, 9
[25] SUDAKIN V, CHAN G K, YEN T J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2[J]. J Cell Biol, 2001, 154(5): 925-936.
[26] ALFIERI C, CHANG L, ZHANG Z, et al. Molecular basis of APC/C regulation by the spindle assembly checkpoint[J]. Nature, 2016, 536(7617): 431-436.
[27] YAMAGUCHI M, VANDERLINDEN R, WEISSMANN F, et al. Cryo-EM of Mitotic Checkpoint Complex-Bound APC/C Reveals Reciprocal and Conformational Regulation of Ubiquitin Ligation[J]. Mol Cell, 2016, 63(4): 593-607.
[28] KAPANIDOU M, CURTIS N L, BOLANOS-GARCIA V M. Cdc20: At the Crossroads between Chromosome Segregation and Mitotic Exit[J]. Trends Biochem Sci, 2017, 42(3): 193-205.
[29] LIU D, VADER G, VROMANS M J, et al. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates[J]. Science, 2009, 323(5919): 1350-1353.
[30] RIEDER C L, COLE R W, KHODJAKOV A, et al. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores[J]. J Cell Biol, 1995, 130(4): 941-948.
[31] VITALE I, MANIC G, CASTEDO M, et al. Caspase 2 in mitotic catastrophe: The terminator of aneuploid and tetraploid cells[J]. Mol Cell Oncol, 2017, 4(3): e1299274.
[32] CHENG B, CRASTA K. Consequences of mitotic slippage for antimicrotubule drug therapy[J]. Endocr Relat Cancer, 2017, 24(9): T97-T106.
[33] BRITO D A, RIEDER C L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint[J]. Curr Biol, 2006, 16(12): 1194-1200.
[34] FUJIWARA T, BANDI M, NITTA M, et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells[J]. Nature, 2005, 437(7061): 1043-1047.
[35] THOMPSON S L, COMPTON D A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism[J]. J Cell Biol, 2010, 188(3): 369-381.
[36] PEDERSON T. The plurifunctional nucleolus[J]. Nucleic Acids Res, 1998, 26(17): 3871-3876.
[37] BOISVERT F M, VAN KONINGSBRUGGEN S, NAVASCUES J, et al. The multifunctional nucleolus[J]. Nat Rev Mol Cell Biol, 2007, 8(7): 574-585.
[38] LAFONTAINE D L. Noncoding RNAs in eukaryotic ribosome biogenesis and function[J]. Nat Struct Mol Biol, 2015, 22(1): 11-19.
[39] CARAGINE C M, HALEY S C, ZIDOVSKA A. Nucleolar dynamics and interactions with nucleoplasm in living cells[J]. Elife, 2019, 8
[40] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732.
[41] BRANGWYNNE C P, MITCHISON T J, HYMAN A A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes[J]. Proc Natl Acad Sci U S A, 2011, 108(11): 4334-4339.
[42] FERIC M, VAIDYA N, HARMON T S, et al. Coexisting Liquid Phases Underlie Nucleolar Subcompartments[J]. Cell, 2016, 165(7): 1686-1697.
[43] ALLINNE J, PICHUGIN A, IAROVAIA O, et al. Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma[J]. Blood, 2014, 123(13): 2044-2053.
[44] PADEKEN J, HEUN P. Nucleolus and nuclear periphery: velcro for heterochromatin[J]. Curr Opin Cell Biol, 2014, 28: 54-60.
[45] MATHESON T D, KAUFMAN P D. Grabbing the genome by the NADs[J]. Chromosoma, 2016, 125(3): 361-371.
[46] PICHUGIN A, IAROVAIA O V, GAVRILOV A, et al. The IGH locus relocalizes to a "recombination compartment" in the perinucleolar region of differentiating B-lymphocytes[J]. Oncotarget, 2017, 8(25): 40079-40089.
[47] OGAWA L M, BASERGA S J. Crosstalk between the nucleolus and the DNA damage response[J]. Mol Biosyst, 2017, 13(3): 443-455.
[48] SCOTT D D, OEFFINGER M. Nucleolin and nucleophosmin: nucleolar proteins with multiple functions in DNA repair[J]. Biochem Cell Biol, 2016, 94(5): 419-432.
[49] BOULON S, WESTMAN B J, HUTTEN S, et al. The nucleolus under stress[J]. Mol Cell, 2010, 40(2): 216-227.
[50] SHARMA S, LAFONTAINE D L J. 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification[J]. Trends Biochem Sci, 2015, 40(10): 560-575.
[51] SLOAN K E, WARDA A S, SHARMA S, et al. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function[J]. RNA Biol, 2017, 14(9): 1138-1152.
[52] WATKINS N J, BOHNSACK M T. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA[J]. Wiley Interdiscip Rev RNA, 2012, 3(3): 397-414.
[53] KOS M, TOLLERVEY D. Yeast pre-rRNA processing and modification occur cotranscriptionally[J]. Mol Cell, 2010, 37(6): 809-820.
[54] TUROWSKI T W, TOLLERVEY D. Cotranscriptional events in eukaryotic ribosome synthesis[J]. Wiley Interdiscip Rev RNA, 2015, 6(1): 129-139.
[55] BASSLER J, HURT E. Eukaryotic Ribosome Assembly[J]. Annu Rev Biochem, 2019, 88: 281-306.
[56] SCHUBERT H L, BLUMENTHAL R M, CHENG X. Many paths to methyltransfer: a chronicle of convergence[J]. Trends Biochem Sci, 2003, 28(6): 329-335.
[57] ANANTHARAMAN V, KOONIN E V, ARAVIND L. SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases[J]. J Mol Microbiol Biotechnol, 2002, 4(1): 71-75.
[58] BJORK G R, WIKSTROM P M, BYSTROM A S. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine[J]. Science, 1989, 244(4907): 986-989.
[59] PERSSON B C, JAGER G, GUSTAFSSON C. The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2'-O-methyltransferase activity[J]. Nucleic Acids Res, 1997, 25(20): 4093-4097.
[60] CAVAILLE J, CHETOUANI F, BACHELLERIE J P. The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 2'-O-ribose methyltransferase catalyzing the formation of Gm18 in tRNAs[J]. RNA, 1999, 5(1): 66-81.
[61] TKACZUK K L, DUNIN-HORKAWICZ S, PURTA E, et al. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases[J]. BMC Bioinformatics, 2007, 8: 73.
[62] JACKMAN J E, MONTANGE R K, MALIK H S, et al. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9[J]. RNA, 2003, 9(5): 574-585.
[63] PURTA E, VAN VLIET F, TKACZUK K L, et al. The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase[J]. BMC Mol Biol, 2006, 7: 23.
[64] KEMPENAERS M, ROOVERS M, OUDJAMA Y, et al. New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA[J]. Nucleic Acids Res, 2010, 38(19): 6533-6543.
[65] SOMME J, VAN LAER B, ROOVERS M, et al. Characterization of two homologous 2'-O-methyltransferases showing different specificities for their tRNA substrates[J]. RNA, 2014, 20(8): 1257-1271.
[66] LIU R J, LONG T, ZHOU M, et al. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily[J]. Nucleic Acids Res, 2015, 43(15): 7489-7503.
[67] LV F, ZHANG T, ZHOU Z, et al. Structural basis for Sfm1 functioning as a protein arginine methyltransferase[J]. Cell Discov, 2015, 1: 15037.
[68] HORI H. Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA[J]. Biomolecules, 2017, 7(1)
[69] TREIBER T, TREIBER N, PLESSMANN U, et al. A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis[J]. Mol Cell, 2017, 66(2): 270-284 e213.
[70] PRINGLE E S, MCCORMICK C, CHENG Z. Polysome Profiling Analysis of mRNA and Associated Proteins Engaged in Translation[J]. Curr Protoc Mol Biol, 2019, 125(1): e79.
[71] BATISTA P J, MOLINIE B, WANG J, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6): 707-719.
[72] OHIRA T, MINOWA K, SUGIYAMA K, et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance[J]. Nature, 2022, 605(7909): 372-379.
[73] CHEN K, LUO G Z, HE C. High-Resolution Mapping of N(6)-Methyladenosine in Transcriptome and Genome Using a Photo-Crosslinking-Assisted Strategy[J]. Methods Enzymol, 2015, 560: 161-185.
[74] STENSTROM L, MAHDESSIAN D, GNANN C, et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder[J]. Molecular Systems Biology, 2020, 16(8)
修改评论