[1] RICHTER G M, COLEMAN A L. Minimally invasive glaucoma surgery: current status and future prospects[J]. Clinical Ophthalmology (Auckland, NZ), 2016, 10: 189.
[2] MARESCAUX J, DIANA M. Next step in minimally invasive surgery: hybrid image-guided surgery[J]. Journal of pediatric surgery, 2015, 50(1): 30-36.
[3] SU H, MARIANI A, OVUR S E, et al. Toward teaching by demonstration for robot-assisted minimally invasive surgery[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 484-494.
[4] ANTONIOU S A, ANTONIOU G A, ANTONIOU A I, et al. Past, present, and future of minimally invasive abdominal surgery[J]. JSLS: Journal of the Society of Laparoendoscopic Surgeons, 2015, 19(3).
[5] OVERTOOM E M, HOREMAN T, JANSEN F W, et al. Haptic feedback, force feedback, and force-sensing in simulation training for laparoscopy: A systematic overview[J]. Journal of surgical education, 2019, 76(1): 242-261.
[6] EVANS C H, SCHENARTS K D. Evolving educational techniques in surgical training[J]. Surgical Clinics, 2016, 96(1): 71-88.
[7] 郭园, 童倩倩, 郑宇铠, 等. 融合多元触觉和沉浸式视觉的可移植 VR 软件框架[J]. 系统仿真学报, 2020, 32(7): 1385.
[8] 吴一川, 孟欢欢, 黄启洋,等. 面向触觉力反馈的可穿戴柔性执行器研究现状[J]. 仪器仪表学报, 2021, 42(9):9.
[9] MOGLIA A, PIAZZA R, MOCELLIN D M, et al. Definition of proficiency level by a virtual simulator as a first step toward a curriculum on fundamental skills for endovascular aneurysm repair (EVAR)[J]. Journal of Surgical Education, 2020, 77(6): 1592-1597.
[10] BLUMSTEIN G, ZUKOTYNSKI B, CEVALLOS N, et al. Randomized trial of a virtual reality tool to teach surgical technique for tibial shaft fracture intramedullary nailing[J]. Journal of surgical education, 2020, 77(4): 969-977.
[11] ALZHRANI G, ALOTAIBI F, AZARNOUSH H, et al. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch[J]. Journal of surgical education, 2015, 72(4): 685-696.
[12] WINKLER-SCHWARTZ A, YILMAZ R, MIRCHI N, et al. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation[J]. JAMA network open, 2019, 2(8): e198363-e198363.
[13] AYOUB A, PULIJALA Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery[J]. BMC Oral Health, 2019, 19(1): 1-8.
[14] GASQUES D, JOHNSON J G, SHARKEY T, et al. ARTEMIS: A collaborative mixed-reality system for immersive surgical telementoring[C]. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 2021: 1-14.
[15] HUANG T Y, LIN Y C, TSENG H Y, et al. Full percutaneous intraoperative neuromonitoring technique in remote thyroid surgery: porcine model feasibility study[J]. Head & Neck, 2021, 43(2): 505-513.
[16] ZHENG J, WANG Y, ZHANG J, et al. 5G ultra-remote robot-assisted laparoscopic surgery in China[J]. Surgical Endoscopy, 2020, 34: 5172-5180.
[17] 陈建江, 崔屏. 5G场景下的虚拟手术分析[J]. 科学咨询, 2020, 07.
[18] WISOTZKY E L, ROSENTHAL J C, EISERT P, et al. Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope[C]. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019: 1477-1484.
[19] MCGILLION M, OUELLETTE C, GOOD A, et al. Postoperative remote automated monitoring and virtual Hospital-to-Home Care system following cardiac and major vascular surgery: user testing study[J]. Journal of Medical Internet Research, 2020, 22(3): e15548.
[20] POSTOLACHE O, HEMANTH D J, ALEXANDRE R, et al. Remote monitoring of physical rehabilitation of stroke patients using IoT and virtual reality[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 562-573.
[21] HERRERA MONTANO I, PRESENCIO LAFUENTE E, BREÑOSA MARTÍNEZ J, et al. Systematic Review of Telemedicine and eHealth Systems Applied to Vascular Surgery[J]. Journal of Medical Systems, 2022, 46(12): 104.
[22] IRARRÁZAVAL M J, INZUNZA M, MUÑOZ R, et al. Telemedicine for postoperative follow-up, virtual surgical clinics during COVID-19 pandemic[J]. Surgical Endoscopy, 2021, 35: 6300-6306.
[23] ALTOBELLI D E, KIKINIS R, MULLIKEN J B, et al. Computer-assisted three-dimensional planning in craniofacial surgery[J]. Plastic and reconstructive surgery, 1993, 92(4): 576-585.
[24] QIAN K, BAI J, YANG X, et al. Virtual reality based laparoscopic surgery simulation[C]. Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology. 2015: 69-78.
[25] FAIRÉN M, MOYÉS J, INSA E. VR4Health: Personalized teaching and learning anatomy using VR[J]. Journal of medical systems, 2020, 44(5): 94.
[26] LOHRE R, BOIS A J, POLLOCK J W, et al. Effectiveness of immersive virtual reality on orthopedic surgical skills and knowledge acquisition among senior surgical residents: a randomized clinical trial[J]. JAMA Network Open, 2020, 3(12): e2031217-e2031217.
[27] TANG J, XU L, HE L, et al. Virtual laparoscopic training system based on VCH model[J]. Journal of medical systems, 2017, 41(4): 1-11.
[28] ALLAN M, OURSELIN S, THOMPSON S, et al. Toward detection and localization of instruments in minimally invasive surgery[J]. IEEE Transactions on Biomedical Engineering, 2012, 60(4): 1050-1058.
[29] PERRUSI P H S, BAKSIC P, COURTECUISSE H. Interactive Finite Element model of needle insertion and laceration[C]//Eurographics 2021-The 42nd Annual Conference of the European Association for Computer Graphics. 2021.
[30] BAKSIC P, COURTECUISSE H, DURIEZ C, et al. Robotic needle insertion in moving soft tissues using constraint-based inverse Finite Element simulation[C]//2020 IEEE international conference on robotics and automation (ICRA). IEEE, 2020: 2407-2413.
[31] 彭柳, 司伟鑫, 郑睿,等. 高保真电视胸腔镜肺叶切除术模拟[J]. 系统仿真学报, 2020, 32(5):11.
[32] 戴莎, 司伟鑫, 钱银玲,等. 虚拟显微白内障手术系统人机交互接口设计[J]. 图学学报, 2019, 40(3):9.
[33] LACY A M, BRAVO R, OTERO‐PINEIRO A M, et al. 5G‐assisted telementored surgery[J]. British Journal of Surgery, 2019, 106(12): 1576-1579.
[34] HUANG T, LI R, LI Y, et al. Augmented reality-based autostereoscopic surgical visualization system for telesurgery[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(11): 1985-1997.
[35] SADEGHI A H, WAHADAT A R, DERECI A, et al. Remote multidisciplinary heart team meetings in immersive virtual reality: a first experience during the COVID-19 pandemic[J]. BMJ innovations, 2021, 7(2).
[36] YOON J W, WELCH R L, ALAMIN T, et al. Remote virtual spinal evaluation in the era of COVID-19[J]. International Journal of Spine Surgery, 2020, 14(3): 433-440.
[37] TEA S, PANUWATWANICH K, RUTHANKOON R, et al. Multiuser immersive virtual reality application for real-time remote collaboration to enhance design review process in the social distancing era[J]. Journal of Engineering, Design and Technology, 2022, 20(1): 281-298.
[38] LU Y, XU Y, ZHU X. Designing and Implementing VR2E2C, a Virtual Reality Remote Education for Experimental Chemistry System[J]. Journal of Chemical Education, 2021, 2720-2725.
[39] MAKHNI M C, RIEW G J, SUMATHIPALA M G. Telemedicine in orthopaedic surgery: challenges and opportunities[J]. JBJS, 2020, 102(13): 1109-1115.
[40] VYAS R M, SAYADI L R, BENDIT D, et al. Using virtual augmented reality to remotely proctor overseas surgical outreach: building long-term international capacity and sustainability[J]. Plastic and Reconstructive Surgery, 2020, 146(5): 622e-629e.
[41] FEREYDOONI N , WALKER B N . Virtual Reality as a Remote Workspace Platform: Opportunities and Challenges[C]. Microsoft New Future of Work Virtual Symposium. 2020.
[42] ALMOUSA O, ZHANG R, DIMMA M, et al. Virtual reality technology and remote digital application for tele-simulation and global medical education: an innovative hybrid system for clinical training[J]. Simulation & Gaming, 2021, 52(5): 614-634.
[43] LIU P, LI C, XIAO C, et al. A wearable augmented reality navigation system for surgical telementoring based on Microsoft HoloLens[J]. Annals of biomedical engineering, 2021, 49: 287-298.
[44] AMINOFF H, MEIJER S, ARNELO U, et al. Telemedicine for remote surgical guidance in endoscopic retrograde cholangiopancreatography: mixed methods study of practitioner attitudes[J]. JMIR formative research, 2021, 5(1): e20692.
[45] NICKEL F, CIZMIC A, CHAND M. Telestration and augmented reality in minimally invasive surgery: an invaluable tool in the age of COVID-19 for remote proctoring and telementoring[J]. JAMA surgery, 2022, 157(2): 169-170.
[46] POSTOLACHE O, HEMANTH D J, ALEXANDRE R, et al. Remote monitoring of physical rehabilitation of stroke patients using IoT and virtual reality[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 562-573.
[47] SHABIR D, ABDURAHIMAN N, PADHAN J, et al. Towards development of a tele‐mentoring framework for minimally invasive surgeries[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17(5): e2305.
[48] YOUNUS O, GILLAM M, CAUCHI P, et al. Real world outcomes of a virtual ocular oncology service in Scotland[J]. Eye, 2022: 1-3.
[49] 赵刚, 王能才, 韦哲,等. 基于5G的移动通讯技术在远程医疗中的应用[J]. 中国医学装备, 2020, 17(10):4.
[50] 岳梅. 虚拟现实技术在远程医学教学中的应用场景[J]. 中国中医药现代远程教育, 2020, 18(21):3.
[51] 袁帅, 陈斌, 易超, 等. 虚拟地理环境中沉浸式多人协同交互技术研究及实现[J]. 地球信息科学学报, 2018, 20(8): 1055-1063.
[52] 熊山, 郭建龙, 祁彦威, 等. 基于多人协同虚拟现实的主变应急培训应用研究[J]. 计算技术与自动化, 2021 (4): 145-150.
[53] MACKLIN M, MÜLLER M, CHENTANEZ N, et al. Unified particle physics for real-time applications[J]. ACM Transactions on Graphics (TOG), 2014, 33(4): 1-12.
[54] MACKLIN M, MÜLLER M, CHENTANEZ N. XPBD: position-based simulation of compliant constrained dynamics[C]. Proceedings of the 9th International Conference on Motion in Games. 2016: 49-54.
[55] MACKLIN M, STOREY K, LU M, et al. Small steps in physics simulation[C]. Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2019: 1-7.
[56] EITZ M, LIXU G. Hierarchical spatial hashing for real-time collision detection[C]. IEEE International Conference on Shape Modeling and Applications 2007 (SMI'07). IEEE, 2007: 61-70.
[57] MACKLIN M, ERLEBEN K, MULLER M, et al. Local optimization for robust signed distance field collision[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2020, 3(1): 1-17.
[58] KUBIAK B, PIETRONI N, GANOVELLI F, et al. A robust method for real-time thread simulation[C]. Proceedings of the 2007 ACM symposium on Virtual reality software and technology. 2007: 85-88.
[59] KUGELSTADT T, SCHÖMER E. Position and orientation based Cosserat rods[C]. Symposium on Computer Animation. 2016: 169-178.
[60] XU L, LIU Q. Real-time inextensible surgical thread simulation[J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13: 1019-1035.
[61] MÜLLER M, HEIDELBERGER B, TESCHNER M, et al. Meshless deformations based on shape matching[J]. ACM transactions on graphics (TOG), 2005, 24(3): 471-478.
[62] MÜLLER M, CHENTANEZ N. Solid simulation with oriented particles[M]. ACM SIGGRAPH 2011 papers. 2011: 1-10.
[63] BRIDSON R, FEDKIW R, ANDERSON J. Robust treatment of collisions, contact and friction for cloth animation[C]. Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 2002: 594-603.
[64] KELAGER M, NIEBE S, ERLEBEN K. A Triangle Bending Constraint Model for Position-Based Dynamics[J]. VRIPHYS, 2010, 10: 31-37.
[65] KIM T Y, CHENTANEZ N, MÜLLER-FISCHER M. Long range attachments-a method to simulate inextensible clothing in computer games[C]. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2012: 305-310.
[66] SOUZA M S, WANGENHEIM A, COMUNELLO E. Fast simulation of cloth tearing[J]. SBC Journal on Interactive Systems, 2014, 5(1): 44-48.
[67] MÜLLER M, BENDER J, CHENTANEZ N, et al. A robust method to extract the rotational part of deformations[C]. Proceedings of the 9th International Conference on Motion in Games. 2016: 55-60.
[68] WU H, YE F, GAO Y, et al. Real-Time Laparoscopic Cholecystectomy Simulation Using a Particle-Based Physical System[J]. Complex System Modeling and Simulation, 2022, 2(2): 186-196.
[69] ALLAN M, OURSELIN S, THOMPSON S, et al. Toward detection and localization of instruments in minimally invasive surgery[J]. IEEE Transactions on Biomedical Engineering, 2012, 60(4): 1050-1058.
[70] 冒苏敏, 周乐, 张金宇,等. 信息物理融合系统应用前景研究[J]. 中国新通信, 2016, 18(21):1.
[71] QIAN K, BAI J, YANG X, et al. Essential techniques for laparoscopic surgery simulation[J]. Computer Animation and Virtual Worlds, 2017, 28(2): e1724.
[72] TURCHETTI G, PALLA I, PIEROTTI F, et al. Economic evaluation of da Vinci-assisted robotic surgery: a systematic review[J]. Surgical endoscopy, 2012, 26(3): 598-606.
[73] ARIKATLA V S, SANKARANARAYANAN G, AHN W, et al. Face and construct validation of a virtual peg transfer simulator[J]. Surgical endoscopy, 2013, 27(5): 1721-1729.
[74] MENDIZABAL A, TAGLIABUE E, HOELLINGER T, et al. Data-driven simulation for augmented surgery[J]. Developments and Novel Approaches in Biomechanics and Metamaterials, 2020: 71-96.
[75] HARRINGTON C M, DICKER P, TRAYNOR O, et al. Visuospatial abilities and fine motor experiences influence acquisition and maintenance of fundamentals of laparoscopic surgery (FLS) task performance[J]. Surgical endoscopy, 2018, 32: 4639-4648.
[76] SU H, YANG C, FERRIGNO G, et al. Improved human–robot collaborative control of redundant robot for teleoperated minimally invasive surgery[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1447-1453.
[77] LAAKI H, MICHE Y, TAMMI K. Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery[J]. IEEE Access, 2019, 7: 20325-20336.
[78] RUSSELL J O, RAZAVI C R, GARSTKA M E, et al. Remote-access thyroidectomy: a multi-institutional North American experience with transaxillary, robotic facelift, and transoral endoscopic vestibular approaches[J]. Journal of the American College of Surgeons, 2019, 228(4): 516-522.
[79] TERRIS D J, SINGER M C. Robotic facelift thyroidectomy: facilitating remote access surgery[J]. Head & neck, 2012, 34(5): 746-747.
[80] CASTILLEJO J A P. Telemedicina, una herramienta también para el médico de familia[J]. Atención primaria, 2013, 45(3): 129.
[81] HUANG E Y, KNIGHT S, GUETTER C R, et al. Telemedicine and telementoring in the surgical specialties: a narrative review[J]. The American Journal of Surgery, 2019, 218(4): 760-766.
[82] PORTNOY J, WALLER M, ELLIOTT T. Telemedicine in the era of COVID-19[J]. The Journal of Allergy and Clinical Immunology: In Practice, 2020, 8(5): 1489-1491.
[83] 李晋芳, 陈基荣, 李二芳,等. 远程协同手术指导平台的研究[J]. 实验室研究与探索, 2019, 38(6):7.
[84] ODOT A, HAFERSSAS R, COTIN S. DeepPhysics: a physics aware deep learning framework for real-time simulation[J]. arXiv preprint arXiv:2109.09491, 2021.
[85] PFAFF T, FORTUNATO M, SANCHEZ-GONZALEZ A, et al. Learning Mesh-Based Simulation with Graph Networks[J]. arXiv preprint arXiv:2010.03409, 2020.
[86] SUZUKI R, KARIM A, XIA T, et al. Augmented reality and robotics: A survey and taxonomy for ar-enhanced human-robot interaction and robotic interfaces[C]. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2022: 1-33.
[87] WEN R, YANG L, CHUI C, et al. Intraoperative visual guidance and control interface for augmented reality robotic surgery[C]. IEEE International Conference on Control & Automation. IEEE, 2010.
[88] OVERTOOM E M, HOREMAN T, JANSEN F W, et al. Haptic feedback, force feedback, and force-sensing in simulation training for laparoscopy: A systematic overview[J]. Journal of surgical education, 2019, 76(1): 242-261.
修改评论