中文版 | English
题名

基于 PVDF-HFP 的高灵敏度高线性度柔性电容式压力传感器设计

其他题名
DESIGN OF HIGH-SENSITIVITY AND HIGH- LINEARITY FLEXIBLE CAPACITIVE PRESSURE SENSOR BASED ON PVDF-HFP
姓名
姓名拼音
LAN Ronghua
学号
12132531
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李晖
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-18
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       随着全球老龄化的加剧和物质生活水平的提高,人们越来越关注自身 的健康状况。然而,现有的医疗系统和设备难以为每个人提供及时有效的 医疗服务。因此,构建微小、便携的健康监测器件,以实现精准、实时的 健康监测人体生理信号,成为备受关注的技术问题。由于人体生理活动, 如呼吸、心跳、说话和运动等都会产生人体界面压力的变化,因此使用可 贴合人体皮肤、响应速度快的便携式柔性压力传感器可以精确采集多种人 体生理信号,实现对人体的精准、实时、连续长时程的健康监测。

       本文从电容式压力传感器的内部结构出发,通过在电极层中引入微结 构,建立传感器灵敏度等性能与微结构空间复杂度关系模型,研究影响电 容传感器性能的物理学效应与机制。首先,选用杨氏模量较小的聚二甲基 硅氧烷(Polydimethylsiloxane,PDMS)作为基底材料。接着,首次提出使 用朱槿花天然材料作为微结构模板,通过正反两次倒模得到了具有乳突状 的 PDMS 基底材料。为提高传感器灵敏度,介电层材料选用了具有压电特 性的聚偏氟乙烯-六氟丙烯(Polyvinylidene fluoride-hexafluoropropylene, PVDF-HFP)离子凝胶膜。通过激光切割制备图案化掩模版,放在具有微结 构和表面平滑的 PDMS 上,随后均匀喷涂银纳米线,分别用作上下电极层 材料。对制备的柔性压力传感器进行了性能分析,结果显示在 2.5-5 kPa 的 压力范围内,灵敏度高达 42.35 kPa-1,且其在 0-15 kPa 的压力范围内总体 线性度高达 98.18%。该传感器的快速响应时间和恢复时间均为 61.5 ms,通 过 3000 次重复性测试且误差较小,表面出良好的耐久度与稳定性,并在检 测微弱压力应用方面具有一定潜力,可以对玉米粒、绿豆等微小颗粒做出 响应。此外,该传感器在人体脉搏、呼吸以及声带振动监测等方面表现出 良好的可应用性,显示了在人体健康和运动状态监测及电子皮肤等柔性可 穿戴器件中巨大的应用潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] SHI Q, DONG B, HE T, et al. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things[J]. Information Material, 2020, 2(6): 1131-1162.
[2] SHI J, LIU S, ZHANG L, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Energy Materials, 2020, 32(5): e1901958.
[3] DONG K, PENG X, WANG Z L. Fiber/Fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Energy Materials, 2020, 32(5): e1902549.
[4] WANG Z L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution[J]. Advanced Energy Materials, 2020, 10(17).
[5] CHUNG H U, KIM B H, LEE J Y, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care[J]. Science, 2019, 363(6430).
[6] MENG K, CHEN J, LI X, et al. Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure[J]. Advanced Functional Materials, 2018.
[7] PARK D Y, JOE D J, KIM D H, et al. Self-Powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Energy Materials, 2017, 29(37).
[8] ZHANG J, WAN L, GAO Y, et al. Highly stretchable and self-healable mxene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic Skin[J]. Advanced Electronic Materials, 2019, 5(7).
[9] TANG G, SHI Q, ZHANG Z, et al. Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface[J]. Nano Energy, 2021, 81.
[10] XU K, LU Y, TAKEI K. Multifunctional skin-inspired flexible sensor systems for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(3).
[11] 李仲豪, 郑富中. 柔性传感器研究现状与进展[J]. 传感器世界, 2021, 27(10): 17-25.
[12] TAO L Q, TIAN H, LIU Y, et al. An intelligent artificial throat with sound-sensing ability based on laser-induced graphene[J]. Nature Communications, 2017, 8: 14579.
[13] LIANG C, RUAN K, ZHANG Y, et al. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18023-18031.
[14]JEON S, LIM S-C, TRUNG T Q, et al. Flexible multimodal sensors for electronic skin: principle, materials, device, array architecture, and data acquisition method[J]. Proceedings of the IEEE, 2019, 107(10): 2065-2083.
[15] DING Y, XU T, ONYILAGHA O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6685-6704.
[16] BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57.
[17] SHIN K Y, LEE J S, JANG J. Highly sensitive, wearable, and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring[J]. Nano Energy, 2016, 22: 95-104.
[18] GHOSH R, SONG M S, PARK J, et al. Fabrication of piezoresistive Si nanorod -based pressure sensor arrays: A promising candidate for portable breath monitoring devices[J]. Nano Energy, 2021, 80.
[19] MENG K, XIAO X, WEI W, et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Energy Materials, 2022, 34(21): e2109357.
[20] WANG J C, KARMAKAR R S, LU Y J, et al. Miniaturized flexible piezoresistive pressure sensors: poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) copolymers blended with graphene oxide for biomedical applications[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34305-34315.
[21] ZOU R, SHAN S, HUANG L, et al. High-Performance intraocular biosensors from chitosan-functionalized nitrogen-containing graphene for the detection of glucose [J]. ACS Biomaterials Science and Engineering, 2020, 6(1): 673-679.
[22] SONG Z, LI W, BAO Y, et al. Bioinspired microstructured pressure sensor based on a Janus graphene film for monitoring vital signs and cardiovascular assessment[J]. Advanced Electronic Materials, 2018, 4(11).
[23] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70.
[24] WANG K, LOU Z, WANG L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (mxene)/natural microcapsule-based flexible pressure sensors[J]. ACS Applied Nano Materials, 2019, 13(8): 9139-9147.
[25] GHOSH R, PIN K Y, REDDY V S, et al. Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation[J]. Applied Physics Reviews, 2020, 7(4).
[26] 赵静, 王子娅, 莫黎昕, 等. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[27] 周帅, 刘茜. 基于微结构提升柔性电容式压力传感器灵敏度的研究现状[J]. 微纳电子技术, 2021, 58(12): 1047-1053.
[28] KIM J, CHOU E F, LE J, et al. Soft wearable pressure sensors for beat-to-beat blood pressure monitoring[J]. Advanced Healthcare Materials, 2019, 8(13): e1900109.
[29] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用[J]. 物理学报, 2020, 69(17): 70-85.
[30] ZHANG Z, GUI X, HU Q, et al. Highly sensitive capacitive pressure sensor based on a micro pyramid array for health and motion monitoring[J]. Advanced Electronic Materials, 2021, 7(7).
[31] 徐先亮, 陈昕, 吴杰, 等. 柔性电容式压力传感器制作与性能优化分析[J]. 林业机械与木工设备, 2021, 49(05): 66-69.
[32] 李朝阳 . 基于微结构的柔性可穿戴压力传感器[D]. 合肥 : 中国科学技术大学 , 2021: 5-17.
[33] 李刚. 柔性压力传感器的制备与应用[D]. 济南: 齐鲁工业大学, 2021: 17-29.
[34] 徐国际, 张文磊, 李廷鱼, 等. 基于 MWCNT-PDMS 高灵敏度电容式柔性压力传感器[J]. 微纳电子技术, 2021, 58(10): 920-925.
[35] 田玉玉, 何韧, 吴菊英, 等. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023(16): 1-23.
[36] 郑娜. 基于微结构的柔性压力传感器的设计[D]. 南昌: 江西科技师范大学, 2019: 5-19.
[37] WAN Y, QIU Z, HONG Y, et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4(4).
[38] QIU Z, WAN Y, ZHOU W, et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37).
[39] CHEN M, LI K, CHENG G, et al. Touchpoint-Tailored ultrasensitive piezoresistive pressure sensors with a broad dynamic response range and low detection limit[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2551-2558.
[40] CHANG H, KIM S, KANG T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32291-32300.
[41] 马靖轩. 仿生微结构柔性压阻传感器设计及其性能研究[D]. 杭州: 杭州电子科技大学, 2022: 7-23.
[42] YANG T, DENG W, CHU X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics[J]. ACS Applied Nano Materials, 2021, 15(7): 11555-11563.
[43] CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. ACS Applied Nano Materials, 2017, 11(5): 4507-4513.
[44] HOSSEINI E S, MANJAKKAL L, SHAKTHIVEL D, et al. Glycine-Chitosan-Based flexible biodegradable piezoelectric pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9008-9016.
[45] WANG J, JIANG J, ZHANG C, et al. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: piezoelectric signal amplified with organic field-effect transistors[J]. Nano Energy, 2020, 76.
[46] LIN Z, WU Z, ZHANG B, et al. A Triboelectric nanogenerator-based smart insole for multifunctional gait monitoring[J]. Advanced Materials Technologies, 2019, 4(2).
[47] YUAN Z, ZHOU T, YIN Y, et al. Transparent and flexible triboelectric sensing array for touch security applications[J]. ACS Applied Nano Materials, 2017, 11(8): 8364-8369.
[48] TAO K, CHEN Z, YU J, et al. Ultra-Sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces[J]. Advanced Science, 2022, 9(10): e2104168.
[49] CHEN X, LIU H, ZHENG Y, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42594-42606.
[50] KWAK Y H, KIM W, PARK K B, et al. Flexible heartbeat sensor for wearable device[J]. Biosensors and Bioelectronics, 2017, 94: 250-255.
[51] AMOLI V, KIM J S, KIM S Y, et al. Ionic tactile sensors for emerging human‐interactive technologies: a review of recent progress[J]. Advanced Functional Materials, 2019, 30(20).
[52] WANG Z, ZHANG X, CAO T, et al. Antiliquid-Interfering, antibacterial, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 46022-46032.
[53] CHEN J, ZHENG J, GAO Q, et al. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications[J]. Applied Sciences, 2018, 8(3).
[54] HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B: Engineering, 2021, 211.
[55] 段田田. 基于多孔 PDMS 的柔性压力传感器设计及制备[D]. 武汉: 华中科技大学, 2017: 17-36.
[56] LI L, ZHENG J, CHEN J, et al. Flexible pressure sensors for biomedical applications: from ex vivo to in vivo[J]. Advanced Materials Interfaces, 2020, 7(17).
[57]JAYATHILAKA W, QI K, QIN Y, et al. Significance of nanomaterials in wearables: areview on wearable actuators and sensors[J]. Advanced Energy Materials, 2019, 31(7): e1805921.
[58] CHUNG M, FORTUNATO G, RADACSI N. Wearable flexible sweat sensors for healthcare monitoring: a review[J]. Journal of the Royal Society Interface, 2019, 16(159): 20190217.
[59] WANG D, LI D, ZHAO M, et al. Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric[J]. Applied Surface Science, 2018, 454: 218-226.
[60] YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A: Physical, 2020, 301.
[61] CAI X, LEI T, SUN D, et al. A critical analysis of the α, β, and γ phases in poly(vinylidene fluoride) using FTIR [J]. RSC Advances, 2017, 7(25): 15382-15389.
[62] HUANG Y, FAN X, CHEN S C, et al. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 2019, 29(12).
[63] GONG H, CAI C, GU H, et al. Flexible and wearable strain sensor based on electrospun carbon sponge/polydimethylsiloxane composite for human motion detection[J]. RSC Advances, 2021, 11(7): 4186-4193.
[64] MA Z, WEI A, MA J, et al. Lightweight, compressible, and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors[J]. Nanoscale, 2018, 10(15): 7116 -7126.
[65] DENG Y, SUN J, JIN H, et al. Chemically modified polyaniline for the detection of volatile biomarkers of minimal sensitivity to humidity and bending[J]. Advanced Healthcare Materials, 2018, 7(15): e1800232.
[66] YANG T, JIANG X, ZHONG Y, et al. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring[J]. ACS Sensors, 2017, 2(7): 967-974.
[67] CHEN G, AU C, CHEN J. Textile triboelectric nanogenerators for wearable pulse wave monitoring[J]. Trends in Biotechnology, 2021, 39(10): 1078-1092.
[68] ZHONG J, LI Z, TAKAKUWA M, et al. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions[J]. Advanced Energy Materials, 2022, 34(6): e2107758.
[69] 包智宇. 基于 PVDF 柔性压电传感器的人体压力信号探究[D]. 吉林: 东北电力大学, 2021: 39-56.
[70] 林修竹. 面向人体生命体征信号监测的柔性压力传感器的研究[D]. 长春: 吉林大学, 2022: 59-67.
[71] WANG C, ZHAO J, MA C, et al. Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film[J]. Nano Energy, 2017, 34: 578-585.

所在学位评定分委会
材料与化工
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545096
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
蓝荣华. 基于 PVDF-HFP 的高灵敏度高线性度柔性电容式压力传感器设计[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132531-蓝荣华-中国科学院深圳(2987KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蓝荣华]的文章
百度学术
百度学术中相似的文章
[蓝荣华]的文章
必应学术
必应学术中相似的文章
[蓝荣华]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。