[1] BEDI G, VENAYAGAMOORTHY G K, SINGH R, et al. Review of internet of things (IoT) in electric power and energy Systems[J]. IEEE Internet of Things Journal, 2018, 5(2): 847-870.
[2] FAN Z, ZHANG Y, PAN L, et al. Recent developments in flexible thermoelectrics: from materials to devices[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110448.
[3] CHENG C, DAI Y, YU J, et al. Review of liquid-based systems to recover low-grade waste heat for electrical energy generation[J]. Energy & Fuels, 2020, 35(1): 161-175.
[4] CAI G, WANG J, QIAN K, et al. Extremely stretchable strain sensors based on conductive self-Healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science, 2017, 4(2): 1600190.
[5] ZANG Y, ZHANG F, DI C-A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[6] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9): 1336-1342.
[7] SUN J Y, KEPLINGER C, WHITESIDES G M, et al. Ionic skin[J]. Advanced Materials, 2014, 26(45): 7608-7614.
[8] HAMMOCK M L, CHORTOS A, TEE B C, et al. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997-6038.
[9] YOU I, KIM B, PARK J, et al. Stretchable e-Skin apexcardiogram sensor[J]. Advanced Materials, 2016, 28(30): 6359-6364.
[10] DHARMASENA R D I G, JAYAWARDENA K D G I, SAADI Z, et al. Energy scavenging and powering e-skin functional devices[J]. Proceedings of the Ieee, 2019, 107(10): 2118-2136.
[11] XIA S, SONG S, GAO G. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824.
[12] KIM B J, KIM D H, LEE Y-Y, et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source[J]. Energy & Environmental Science, 2015, 8(3): 916-921.
[13] PANDEY A K, HOSSAIN M S, TYAGI V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323.
[14] DAI C, SUN G, HU L, et al. Recent progress in graphene-based electrodes for flexible batteries[J]. InfoMat, 2019, 2(3): 509-526.
[15] WU Z, WANG Y, LIU X, et al. Carbon-nanomaterial-based flexible batteries for wearable electronics[J]. Advanced Materials, 2019, 31(9): 1800716.
[16] CHEN X, VILLA N S, ZHUANG Y, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics[J]. Advanced Energy Materials, 2019, 10(4): 1902769.
[17] LV Z, LUO Y, TANG Y, et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite[J]. Advanced Materials, 2018, 30(2): 1704531.
[18] WANG R, YAO M, NIU Z. Smart supercapacitors from materials to devices[J]. InfoMat, 2019, 2(1): 113-125.
[19] PARK D Y, JOE D J, KIM D H, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Materials, 2017, 29(37): 1702308.
[20] WANG S, LIN L, WANG Z L. Triboelectric nanogenerators as self-powered active sensors[J]. Nano Energy, 2015, 11: 436-462.
[21] FAN F R, TANG W, WANG Z L. Flexible nanogenerators for energy harvesting and self-powered electronics[J]. Advanced Materials, 2016, 28(22): 4283-4305.
[22] HE J, TRITT T M. Advances in thermoelectric materials research: Looking back and moving forward[J]. Science, 2017, 357(6358): 1369.
[23] LIU W, ZHOU J, JIE Q, et al. New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby[J]. Energy & Environmental Science, 2016, 9(2): 530-539.
[24] CHEN J, ZHANG L, TU Y, et al. Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel[J]. Nano Energy, 2021, 88: 106272.
[25] ZENG W, SHU L, LI Q, et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications[J]. Advanced Materials, 2014, 26(31): 5310-5336.
[26] ZHOU Q, ZHU K, LI J, et al. Leaf-inspired flexible thermoelectric generators with high temperature difference utilization ratio and output power in ambient air[J]. Advanced Science, 2021, 8(12): 2004947.
[27] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515.
[28] MU E, WU Z, WU Z, et al. A novel self-powering ultrathin TEG device based on micro/nano emitter for radiative cooling[J]. Nano Energy, 2019, 55: 494-500.
[29] IEZZI B, ANKIREDDY K, TWIDDY J, et al. Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors[J]. Applied Energy, 2017, 208: 758-765.
[30] ZHAO D, WÜRGER A, CRISPIN X. Ionic thermoelectric materials and devices[J]. Journal of Energy Chemistry, 2021, 61: 88-103.
[31] LIU Y, WANG H, SHERRELL P C, et al. Potentially wearable thermo-electrochemical cells for body heat harvesting: From mechanism, materials, strategies to applications[J]. Advanced Science, 2021, 8(13): 2100669.
[32] HAN C G, QIAN X, LI Q, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495): 1091-1098.
[33] KIM H J, CHEN B, SUO Z G, et al. Ionoelastomer junctions between polymer networks of fixed anions and cations[J]. Science, 2020, 367(5475): 773-776.
[34] XU S, ZHANG Y, CHO J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 2013, 4: 1543.
[35] JAZIRI N, BOUGHAMOURA A, MULLER J, et al. A comprehensive review of thermoelectric generators: technologies and common applications[J]. Energy Reports, 2020, 6: 264-287.
[36] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613.
[37] WU X, GAO N, JIA H, et al. Thermoelectric converters based on ionic conductors[J]. Chemistry-An Asian Journal, 2021, 16(2): 129-141.
[38] AL-ZUBAIDI A, JI X, YU J. Thermal charging of supercapacitors: a perspective[J]. Sustainable Energy & Fuels, 2017, 1(7): 1457-1474.
[39] ZHAO D, WANG H, KHAN Z U, et al. Ionic thermoelectric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1450-1457.
[40] KIM S L, LIN H T, YU C. Thermally chargeable solid-state supercapacitor[J]. Advanced Energy Materials, 2016, 6(18): 1600546.
[41] QUICKENDEN T J, MUA Y. A review of power generation in aqueous thermogalvanic cells[J]. Journal of the Electrochemical Society, 1995, 142(11): 3985-3994.
[42] DUAN J, FENG G, YU B, et al. Aqueous thermogalvanic cells with a high seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9(1): 5146.
[43] YU B, DUAN J, CONG H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting[J]. Science, 2020, 370(6514): 342-346.
[44] HU R, COLA B A, HARAM N, et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell[J]. Nano Letters, 2010, 10(3): 838-846.
[45] KANG T J, FANG S, KOZLOV M E, et al. Electrical power from nanotube and graphene electrochemical thermal energy harvesters[J]. Advanced Functional Materials, 2012, 22(3): 477-489.
[46] ROMANO M S, LI N, ANTIOHOS D, et al. Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications[J]. Advanced Materials, 2013, 25(45): 6602-6606.
[47] IM H, KIM T, SONG H, et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes[J]. Nature Communications, 2016, 7: 10600.
[48] ZHANG L, KIM T, LI N, et al. High power density electrochemical thermocells for inexpensively harvesting low-grade thermal energy[J]. Advanced Materials, 2017, 29(12): 1605652.
[49] ABRAHAM T J, MACFARLANE D R, PRINGLE J M. High seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting[J]. Energy & Environmental Science, 2013, 6(9): 2639-2645.
[50] HUPP J T, WEAVER M J. Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples[J]. Inorganic Chemistry, 1984, 23: 3639-3644.
[51] JIAO N, ABRAHAM T J, MACFARLANE D R, et al. Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox couple[J]. Journal of The Electrochemical Society, 2014, 161(7): D3061-D3065.
[52] HE J, AL-MASRI D, MACFARLANE D R, et al. Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting[J]. Faraday Discuss, 2016, 190: 205-218.
[53] LAZAR M A, AL-MASRI D, MACFARLANE D R, et al. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures[J]. Physical Chemistry Chemical Physics, 2016, 18(3): 1404-1410.
[54] TAHERI A, MACFARLANE D R, POZO-GONZALO C, et al. The effect of solvent on the seebeck coefficient and thermocell performance of cobalt bipyridyl and iron ferri/ferrocyanide redox couples[J]. Australian Journal of Chemistry, 2019, 72(9): 709-716.
[55] KIM K, LEE H. Thermoelectrochemical cells based on Li+/Li redox couples in LiFSI glyme electrolytes[J]. Physical Chemistry Chemical Physics, 2018, 20(36): 23433-23440.
[56] ABRAHAM T J, MACFARLANE D R, PRINGLE J M. Seebeck coefficients in ionic liquids-prospects for thermo-electrochemical cells[J]. Chemical Communications, 2011, 47(22): 6260-6262.
[57] BUCKINGHAM M A, MARKEN F, ALDOUS L. The thermoelectrochemistry of the aqueous iron(ii)/iron(iii) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion[J]. Sustainable Energy & Fuels, 2018, 2(12): 2717-2726.
[58] BUCKINGHAM M A, LAWS K, SENGEL J T, et al. Using iron sulphate to form both n-type and p-type pseudo-thermoelectrics: non-hazardous and ‘second life’ thermogalvanic cells[J]. Green Chemistry, 2020, 22(18): 6062-6074.
[59] ABRAHAM T J, MACFARLANE D R, BAUGHMAN R H, et al. Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy[J]. Electrochimica Acta, 2013, 113: 87-93.
[60] LAUX E, UHL S, JOURNOT T, et al. Aspects of protonic ionic liquid as electrolyte in thermoelectric generators[J]. Journal of Electronic Materials, 2016, 45(7): 3383-3389.
[61] ZHOU H, YAMADA T, KIMIZUKA N. Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization[J]. Journal of the American Chemical Society, 2016, 138(33): 10502-10507.
[62] ROMANO M S, LI N, ANTIOHOS D, et al. Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications[J]. Advanced Materials, 2013, 25(45): 6602-6606.
[63] YANG Y, LEE S W, GHASEMI H, et al. Charging-free electrochemical system for harvesting low-grade thermal energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(48): 17011-17016.
[64] KIM T, LEE J S, LEE G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions[J]. Nano Energy, 2017, 31: 160-167.
[65] KIM J H, LEE J H, PALEM R R, et al. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy[J]. Scientific Reports, 2019, 9(1): 8706.
[66] LI G, DONG D, HONG G, et al. High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte[J]. Advanced Materials, 2019, 31(25): 1901403.
[67] RONG Q, LEI W, CHEN L, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-Sensitivity at subzero temperatures[J]. Angewandte Chemie International Edtion, 2017, 56(45): 14159-14163.
[68] GAO H, ZHAO Z, CAI Y, et al. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range[J]. Nature Communications, 2017, 8: 15911.
[69] RONG Q, LEI W, HUANG J, et al. Low temperature tolerant organohydrogel electrolytes for flexible solid-State supercapacitors[J]. Advanced Energy Materials, 2018, 8(31): 1801967.
[70] CHEN F, ZHOU D, WANG J, et al. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement[J]. Angewandte Chemie International Edtion, 2018, 57(22): 6568-6571.
[71] YAN Y, MIAO J, YANG Z, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews, 2015, 44(10): 3295-3346.
[72] LIU K, DING T, LI J, et al. Thermal-electric nanogenerator based on the electrokinetic effect in porous carbon film[J]. Advanced Energy Materials, 2018, 8(13): 1702481.
[73] WANG Y, ZHU C X, PFATTNER R, et al. A highly stretchable, transparent, and conductive polymer[J]. Science Advances, 2017, 3: e160207.
[74] WIJERATNE K, AIL U, BROOKE R, et al. Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11899-11904.
[75] TEO M Y, KIM N, KEE S, et al. Highly stretchable and highly conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 819-826.
[76] YUAN L Y, XIAO X, Ding T P, et al. Paper-Based Supercapacitors for Self-Powered Nanosystems[J]. Angewandte Chemie International Edtion, 2012, 51(34): 4934-4938.
[77] YUAN L Y, YAO B, HU B, et al. Polypyrrole-coated paper for flexible solid-state energy storage[J]. Energy & Environmental Science, 2013, 6(4): 470-476.
[78] BEIDAGHI M, GOGOTSI Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science, 2014, 7(3): 867-884.
[79] HASAN S W, SAID S M, SABRI M F, et al. High thermal gradient in thermo-electrochemical cells by insertion of a poly(vinylidene fluoride) membrane[J]. Scientific Reports, 2016, 6: 29328.
[80] WANG X, HUANG Y T, LIU C, et al. Direct thermal charging cell for converting low-grade heat to electricity[J]. Nature Communications, 2019, 10(1): 4151.
[81] YANG P, LIU K, CHEN Q, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat[J]. Angewandte Chemie International Edtion, 2016, 55(39): 12050-12053.
[82] LIU Y, WENG B, RAZAL J M, et al. High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films[J]. Scientific Reports, 2015, 5: 17045.
[83] LIU Y, ZHANG S, ZHOU Y, et al. Advanced wearable thermocells for body heat harvesting[J]. Advanced Energy Materials, 2020, 10(48): 2002539.
[84] WANG R, MU L, BAO Y, et al. Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings[J]. Advanced Materials, 2020, 32(32): e2002878.
[85] TAHERI A, MACFARLANE D R, POZO-GONZALO C, et al. Quasi-solid-state electrolytes for low-grade thermal energy harvesting using a cobalt redox couple[J]. ChemSusChem, 2018, 11(16): 2788-2796.
[86] SHEPELIN N A, GLUSHENKOV A M, LUSSINI V C, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting[J]. Energy & Environmental Science, 2019, 12(4): 1143-1176.
[87] PARANGUSAN H, PONNAMMA D, AL-MAADEED M A A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators[J]. Scientific Reports, 2018, 8(1): 754.
[88] WU J, BLACK J J, ALDOUS L. Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells[J]. Electrochimica Acta, 2017, 225: 482-492.
[89] DUAN J, YU B, LIU K, et al. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting[J]. Nano Energy, 2019, 57: 473-479.
[90] JIN L, GREENE G W, MACFARLANE D R, et al. Redox-active quasi-solid-state electrolytes for thermal energy harvesting[J]. ACS Energy Letters, 2016, 1(4): 654-658.
[91] LIU K, LV J, FAN G, et al. Flexible and robust bacterial cellulose-based ionogels with high thermoelectric properties for low-grade heat harvesting[J]. Advanced Functional Materials, 2021, 32(6)
[92] TAHERI A, MACFARLANE D R, POZO-GONZALO C, et al. Application of a water-soluble cobalt redox couple in free-standing cellulose films for thermal energy harvesting[J]. Electrochimica Acta, 2019, 297: 669-675.
[93] CHENG H, HE X, FAN Z, et al. Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32): 1901085.
[94] ZHAO D, MARTINELLI A, WILLFAHRT A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10(1): 1093.
[95] LIU Z, CHENG H, LE Q, et al. Giant Thermoelectric properties of ionogels with cationic doping[J]. Advanced Energy Materials, 2022, 12(22): 2200858.
[96] AKBAR Z A, JEON J-W, JANG S-Y. Intrinsically self-healable, stretchable thermoelectric materials with a large ionic seebeck effect[J]. Energy & Environmental Science, 2020, 13(9): 2915-2923.
[97] LEI Z, GAO W, WU P. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting[J]. Joule, 2021, 5(8): 2211-2222.
[98] CHEN B, CHEN Q, XIAO S, et al. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions[J]. Science Advances, 2021, 7: eabi7233.
[99] WANG L, NITOPI S, WONG A B, et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area[J]. Nature Catalysis, 2019, 2(8): 702-708.
[100] LI C W, CISTON J, KANAN M W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper[J]. Nature, 2014, 508(7497): 504-507.
[101] RACITI D, CAO L, LIVI K J T, et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires[J]. ACS Catalysis, 2017, 7(7): 4467-4472.
[102] YU L, AKOLKAR R. Communication-underpotential deposition of lead for investigating the early stages of electroless copper deposition on ruthenium[J]. Journal of The Electrochemical Society, 2016, 163(6): D247-D249.
[103] BAUGHMAN R H, CUI C, ZAKHIDOV A A, et al. Carbon nanotube actuators[J]. Science, 1999, 284(56): 1340-1344.
[104] ROMANO M S, RAZAL J M, ANTIOHOS D, et al. Nano-carbon electrodes for thermal energy harvesting[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(1): 1-14.
[105] LIU J, HUANG X, LI Y, et al. Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability[J]. Journal of Materials Chemistry, 2006, 16(45): 4427-4434.
[106] WU W, ZHAO W, LI L, et al. Simple fabrication of copper surfaces with tunable wettability and multi-level structures via one-step method[J]. Materials Letters, 2019, 235: 212-215.
[107] TAHERI A, MACFARLANE D R, POZO-GONZALO C, et al. Flexible and non-volatile redox active quasi-solid state ionic liquid based electrolytes for thermal energy harvesting[J]. Sustainable Energy & Fuels, 2018, 2(8): 1806-1812.
[108] JEONG M, NOH J, ISLAM M Z, et al. Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit[J]. Advanced Functional Materials, 2021, 31(29): 2011016.
[109] JIANG Q, SUN H, ZHAO D, et al. High thermoelectric performance in n-type perylene bisimide induced by the soret effect[J]. Advanced Materials, 2020, 32(45): 2002752.
[110] KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric[J]. Energy & Environmental Science, 2014, 7(6): 1959-1965.
[111] OH J Y, LEE J H, HAN S W, et al. Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators[J]. Energy & Environmental Science, 2016, 9(5): 1696-1705.
[112] KIM C S, LEE G S, CHOI H, et al. Structural design of a flexible thermoelectric power generator for wearable applications[J]. Applied Energy, 2018, 214: 131-138.
[113] ORYAN A, KAMALI A, MOSHIRI A, et al. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds[J]. International Journal of Biological Maromolecules, 2018, 107: 678-688.
[114] REDDY N, REDDY R, JIANG Q. Crosslinking biopolymers for biomedical applications[J]. Trends in Biotechnology, 2015, 33(6): 362-369.
[115] FARRIS S, SONG J, HUANG Q. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 998-1003.
[116] CHITTUR K K. FTIR/ATR for protein adsorption to biomaterial surfaces[J]. Biomaterials, 1998, 19: 357-369.
[117] FEINER R, DVIR T. Tissue-electronics interfaces: from implantable devices to engineered tissues[J]. Nature Reviews Materials, 2017, 3(1): 17076.
[118] HORIKE S, WEI Q, KIRIHARA K, et al. Outstanding electrode-dependent seebeck coefficients in ionic hydrogels for thermally chargeable supercapacitor near room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43674-43683.
[119] JEONG M, NOH J, ISLAM M Z, et al. Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit[J]. Advanced Functional Materials, 2021, 31(29): 2011016.
[120] HE X, CHENG H, YUE S, et al. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties[J]. Journal of Materials Chemistry A, 2020, 8(21): 10813-10821.
[121] ZHAO W, SUN T, ZHENG Y, et al. Tailoring intermolecular interactions towards high-performance thermoelectric ionogels at low humidity[J]. Advanced Science, 2022, 9: 2201075.
[122] LEI Z, GAO W, ZHU W, et al. Anti-fatigue and highly conductive thermocells for continuous electricity generation[J]. Advanced Functional Materials, 2022, 32: 2201021.
[123] ZHANG D, MAO Y, YE F, et al. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization[J]. Energy & Environmental Science, 2022, 15(7): 2974-2982.
[124] CHI C, AN M, QI X, et al. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing[J]. Nature Communications, 2022, 13(1): 221.
[125] MALIK Y T, AKBAR Z A, SEO J Y, et al. Self-healable organic-inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties[J]. Advanced Energy Materials, 2021, 12(6): 2103070.
[126] LU Y, LI X, CAI K, et al. Enhanced-performance PEDOT:PSS/Cu2Se-based composite films for wearable thermoelectric power generators[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 631-638.
修改评论