中文版 | English
题名

第三代半导体材料 GaN 在电机驱动中的应用设计

其他题名
APPLICATION DESIGN OF THE THIRD GENERATION SEMICONDUCTOR MATERIAL GAN IN MOTOR DRIVE
姓名
姓名拼音
LING Huyong
学号
12132544
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
梁嘉宁
导师单位
中国科学院深圳先进技术研究院
外机构导师
陈毅东
外机构导师单位
深圳市兆威机电股份有限公司
论文答辩日期
2023-05-11
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氮化镓(GaN)作为一种相对较新的半导体材料,在电源充电器领域 的应用趋于成熟,但在电机驱动领域仍处于起步阶段。电机广泛存在于各 种应用领域中,其耗电量约占全球总耗电量的 46%,因此提高电机的驱动效率有利于降低全球的总能源消耗。本文将基于 GaN 材料的功率器件研发一款高性能的高速电机驱动器。为了充分发挥 GaN 器件的优良特性,本文通过搭建双脉冲仿真实验探究了驱动参数和寄生参数对 GaN 器件开关特性的影响。虽然 GaN 器件具有更高的开关速度和功率密度,可提高系统效率,但是较高的开关频率也使得谐振、桥臂串扰等引起的栅源电压过冲问题不容忽视,影响驱动器的可靠性,因此本文探究了栅源电压过冲问题抑制方法,并改进了一种阻容(RC)网络负压驱动结构以降低开关损耗和提高驱动器的可靠性。为了探究GaN 电机驱动器在驱动高速电机方面的优良特性,本文搭建了高速电机驱动平台并使用无位置传感技术驱动了额定转速为 100000 rpm 的高速电机,验证了 GaN 电机驱动器在驱动高速电机方面的优良特性。本研究对于提高电机驱动器的可靠性和推进 GaN 在高速电机驱动中的应用具有一定的工程价值。

 

其他摘要

Gallium Nitride is a relatively new semiconductor material, which has matured in its application in power chargers, but it is still in its early stages in the field of motor drive. Motors are widely used in various applications and consume about 46% of the world's total electricity, so improving their driving efficiency can reduce the world's total energy consumption. This paper aims to develop a high-performance high-speed motor driver based on GaN power devices.

To fully exploit the excellent characteristics of GaN devices, this paper investigates the effects of driving parameters and parasitic parameters on the switching characteristics of GaN devices through a dual-pulse simulation experiment. Although GaN devices have higher switching speed and power density, which can improve system efficiency, the problem of gate-source voltage overshoot caused by resonance and bridge arm crosstalk due to high switching frequency cannot be ignored, affecting the reliability of the driver. Therefore, this paper investigates the method of suppressing the problem of gate-source voltage overshoot and improves a negative voltage drive structure of an RC network to reduce switching losses and improve the reliability of the driver. To investigate the excellent characteristics of GaN motor drivers in driving high-speed motors, this paper builds a high-speed motor drive platform and uses positionless sensing technology to drive a high-speed motor with a rated speed of 100000 rpm, verifying the excellent characteristics of GaN motor drivers in driving high-speed motors. This study has certain engineering value for improving the reliability of motor drivers and promoting the application of GaN in the high-speed motor drive.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] ESHKEVARI A L, FARZI M, AREFIAN M. Design of a new high-frequency power converter for electrostatic precipitators[C]//2018 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC). IEEE, 2018: 289-293.
[2] SUN R, LAI J, CHEN W, et al. GaN power integration for high frequency and high efficiency power applications: A review[J]. IEEE Access, 2020, 8: 15529-15542.
[3] ZHAO B, WANG G, WANG D L. Analysis of High Frequency Flyback Converters For High-voltage Low-power Applications[C]//2019 International Vacuum Electronics Conference (IVEC). IEEE, 2019: 1-3.
[4] JONES E A, WANG F F, COSTINETT D J I J O E, et al. Review of commercial GaN power devices and GaN-based converter design challenges[J]. 2016, 4(3): 707-719.
[5] CHEN H-Y, LIN W-T, LIAO C-H, et al. A domino bootstrapping 12V GaN driver for driving an on-chip 650V eGaN power switch for 96% high efficiency; proceedings of the 2020 IEEE Symposium on VLSI Circuits, F, 2020 [C]. IEEE.
[6] 张波, 邓小川, 张有润, 等. 宽禁带半导体SiC功率器件发展现状及展望 , 中国电子科学研究院学报[J]. 2009, 4(02): 111-118.
[7] 刘武扬. 氮化镓功率器件的特性及其应用的研究[D]. 天津:天津工业大学, 2018.
[8] 汽车电子设计. GaN器件的主要应用目标有哪些?[EB/OL]. (2021-09-27)
[2023-04-15]. https://www.ednchina.com/technews/12563.html.
[9] 效率达97%,英诺赛科推出无桥架构240 W高效氮化镓方案[EB/OL].(2022-07-29)
[2023-03-01]. https://new.qq.com/rain/a/20220729A066LH00.
[10] 基于GaN晶体管的500 W电机驱动方案[EB/OL].(2021-03-02)
[2023-03-01]. https://www.elecfans.com/d/1359543.html.
[11] JÄRVISALO H, KORHONEN J, HONKANEN J, et al. Considerations for a high-speed PMSM drive featuring a GaN-ANPC inverter[C]//2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). IEEE, 2017: P. 1-P. 6.
[12] CHEN Y, WANG R, LIU X, et al. Gate-drive power supply with decayed negative voltage to solve crosstalk problem of GaN synchronous buck converter[J]. 2020, 36(1): 6-11.
[13] KEEPING S. GaN HEMT推动电机变革 , 中国集成电路[J]. 2022, 31(03): 26-29+32.
[14] GaN如何改革创新电机驱动应用?[EB/OL].(2021-05-21)
[2023-03-01]. https://www.sekorm.com/news/69656171.html.
[15] SUN B, ZHANG Z, ANDERSEN M A J I T O I A. A comparison review of the resonant gate driver in the silicon MOSFET and the GaN transistor application[J]. 2019, 55(6): 7776-7786.
[16] 李万杰. Cascode型GaN HEMT结构优化及其在PFC变换器中的应用[D]. 重庆:重庆大学, 2021.
[17] 牛双蛟, 李倩. 氮化镓材料的研究进展,广东化工[J]. 2017, 44(02): 84-86.
[18] 韩绍文. 高压、高效、快速的垂直型氮化镓功率二极管研究[D]. 浙江:浙江大学, 2021.
[19] YANG S, LIU S, LU Y, et al. AC-capacitance techniques for interface trap analysis in GaN-based buried-channel MIS-HEMTs[J]. 2015, 62(6): 1870-1878.
[20] CHEN C, SADLER R, WANG D, et al. The trap locations of GaN HEMT by current transient spectroscopy; proceedings of the ROCS (Reliability Of Compound Semiconductors Workshop), F, 2017 [C].
[21] WU T-L, MARCON D, DE JAEGER B, et al. Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN/GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs; proceedings of the 2015 IEEE International Reliability Physics Symposium, F, 2015 [C]. IEEE.
[22] 郭松. 氮化镓功率器件测试分析与开关电源应用研究[D]. 陕西:西安电子科技大学, 2020.
[23] 岳远征,郝跃,冯倩等.超薄Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件研究[J].中国科学(E辑:技术科学),2009,39(02):239-243.
[24] DENG Y Q, ISLAM M D M, GAEVSKI M, et al. Determination of the average channel temperature of GaN MOSHFETs under continuous wave and periodic-pulsed RF operational conditions[J]. Solid-State Electronics, 2008, 52(7): 1106-1113.
[25] XIAO D P, SCHREURS D, DE RAEDT W, et al. Detailed analysis of parasitic loading effects on power performance of GaN-on-silicon HEMTs[J]. Solid-State Electronics, 2009, 53(2): 185-189.
[26] OKA T, UENO Y, INA T, et al. Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV[J]. Applied Physics Express, 2014, 7(2)
[27] CHOWDHURY S, SWENSON B L, WONG M H, et al. Current status and scope of gallium nitride-based vertical transistors for high-power electronics application[J]. Semiconductor Science and Technology, 2013, 28(7)
[28] 蔡蔚, 孙东阳, 周铭浩, 等. 第三代宽禁带功率半导体及应用发展现状 , 科技导报[J]. 2021, 39(14): 42-55.
[29] NIE H, DIDUCK Q, ALVAREZ B, et al. 1.5-kV and 2.2-m\(\Omega\)-cm\(^{2}\) Vertical GaN Transistors on Bulk-GaN Substrates[J]. 2014, 35(9): 939-941.
[30] MENEGHESSO G, MENEGHINI M, ZANONI E J J J O A P. Breakdown mechanisms in AlGaN/GaN HEMTs: an overview[J]. 2014, 53(10): 100211.
[31] HSIEH T-E, CHANG E Y, SONG Y-Z, et al. Gate recessed quasi-normally OFF Al 2 O 3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer[J]. 2014, 35(7): 732-734.
[32] 秦海鸿, 董耀文, 张英, 等. GaN功率器件及其应用现状与发展 , 上海电机学院学报[J]. 2016, 19(04): 187-196+215.
[33] 黄火林, 孙楠. GaN基增强型HEMT器件的研究进展 , 电子与封装[J]. 2023, 23(01): 77-88.
[34] HUANG S, JIANG Q, WEI K, et al. High-temperature low-damage gate recess technique and ozone-assisted ALD-grown Al 2 O 3 gate dielectric for high-performance normally-off GaN MIS-HEMTs; proceedings of the 2014 IEEE International Electron Devices Meeting, F, 2014 [C]. IEEE.
[35] TANG C, XIE G, SHENG K. Enhancement-mode GaN-on-Silicon MOS-HEMT using pure wet etch technique; proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), F, 2015 [C]. IEEE.
[36] YAO Y, HE Z, YANG F, et al. Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique[J]. 2013, 7(1): 016502.
[37] NI Y, HE Z, ZHOU D, et al. The influences of AlN/GaN superlattices buffer on the characteristics of AlGaN/GaN-on-Si (1 1 1) template[J]. 2015, 83: 811-818.
[38] 马焕, 王康平, 杨旭, 等. GaN器件的LLC谐振变换器的优化设计 , 电源学报[J]. 2015, 13(01): 21-27.
[39] 谢欣荣. 第三代半导体材料氮化镓(GaN)研究进展 , 广东化工[J]. 2020, 47(18): 92-93.
[40] 高雅丽. 氮化镓衬底晶片实现“中国造” , 中国科学报[N]. 2018-01-29.
[41] 彭子和. 基于eGaN HEMT的1.5kW永磁同步电机驱动器研制[D]. 江苏:南京航空航天大学, 2021.
[42] 孙灿. 基于氮化镓功率器件的高速永磁同步电机驱动系统若干关键技术研究[D]. 浙江:浙江大学, 2022.
[43] 张英. GaN基电机驱动器中的关键问题探究[D]. 江苏:南京航空航天大学, 2019.
[44] KEMPITIYA A, AMIRKHANIAN H, YERRA S, et al. 100V GaN for Highly Efficient 1kW Motor Drive Applications; proceedings of the 2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA), F 7-9 Nov. 2022, 2022 [C].
[45] SONG M K, CHEN L, SANKMAN J, et al. On-chip HV bootstrap gate driving for GaN compatible power circuits operating above 10 MHz[J]. 2021, 57(3): 942-952.
[46] SAITO W, TAKADA Y, KURAGUCHI M, et al. Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications[J]. Ieee Transactions on Electron Devices, 2006, 53(2): 356-362.
[47] XU H, TANG G, WEI J, et al. Monolithic integration of gate driver and protection modules with P-GaN gate power HEMTs[J]. 2021, 69(7): 6784-6793.
[48] NAWAZ M, ILVES K, IEEE. Replacing Si to SiC: Opportunities and Challenges; proceedings of the 46th European Solid-State Device Research Conference (ESSDERC) / 42nd European Solid-State Circuits Conference (ESSCIRC), Lausanne, SWITZERLAND, F Sep 12-15, 2016 [C]. 2016.
[49] AGARWAL A, IEEE. Technical challenges in commercial SiC power MOSFETs; proceedings of the International Semiconductor Device Research Symposium, College Pk, MD, F Dec 12-14, 2007 [C]. 2007.
[50] KIMOTO T, NIWA H, KAJIL N, et al. Progress and Future Challenges of SiC Power Devices and Process Technology; proceedings of the 63rd IEEE Annual International Electron Devices Meeting (IEDM), San Francisco, CA, F Dec 02-06, 2017 [C]. 2017.
[51] ZHANG Z, GUO B, WANG F, et al. Methodology for switching characterization evaluation of wide band-gap devices in a phase-leg configuration; proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, F, 2014 [C]. IEEE.
[52] DESHPANDE A, IMRAN A, PAUL R, et al. High power density 1700-V/300-A Si-IGBT and SiC-MOSFET hybrid switch-based half-bridge power module; proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), F, 2020 [C]. IEEE.
[53] 肖捷. GaN器件的开关特性研究及其串扰抑制驱动电路设计[D]. 湖南:湖南大学, 2021.
[54] 乔杰. P-GaN栅极结合槽栅结构的增强型GaN HEMT优化设计[D]. 四川:西南交通大学, 2021.
[55] KIM H, ACHARYA S, ANURAG A, et al. Effect of Inverter Output dv/dt with Respect to Gate Resistance and Loss Comparison with dv/dt Filters for SiC MOSFET based High Speed Machine Drive Applications; proceedings of the 11th Annual IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, F Sep 29-Oct 03, 2019 [C]. 2019.
[56] PERSSON E, WILHELM D, IEEE. Gate Drive Concept for dv/dt Control of GaN GIT-Based Motor Drive Inverters; proceedings of the IEEE International Electron Devices Meeting (IEDM), Electr Network, F Dec 12-18, 2020 [C]. 2020.
[57] ZHANG X N, SHEN Z Y, HARYANI N, et al. Ultra-Low Inductance Vertical Phase Leg Design with EMI Noise Propagation Control for Enhancement Mode GaN Transistors; proceedings of the 31st Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, F Mar 20-24, 2016 [C]. 2016.
[58] MA Y, YANG M, LYU Z, et al. Research of High Frequency Drive Circuit for Motor Drive System Based on GaN Power Device; proceedings of the 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), F, 2020 [C]. IEEE.
[59] GaN E-HEMTs的PCB布局[EB/OL].(2022-03-08)
[2023-03-01].https://cn.gansyst-ems.com/design-center/application-notes/.
[60] MOENCH S, REINER R, WALTEREIT P, et al. PCB-Embedded GaN-on-Si Half-Bridge and Driver ICs With On-Package Gate and DC-Link Capacitors[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 83-86.

所在学位评定分委会
材料与化工
国内图书分类号
TN389
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545105
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
令狐勇. 第三代半导体材料 GaN 在电机驱动中的应用设计[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132544-令狐勇-中国科学院深圳(11941KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[令狐勇]的文章
百度学术
百度学术中相似的文章
[令狐勇]的文章
必应学术
必应学术中相似的文章
[令狐勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。