[1] SLOUTSKY R, YÜCEL M A, COLLIMORE A N, et al. Targeting post-stroke walking automaticity with a propulsion -augmenting soft robotic exosuit: toward a biomechanical and neurophysiological approach to assistance prescription[C]//2021 10th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2021: 862-865.
[2] NUCKOLS R W, SWAMINATHAN K, LEE S, et al. Automated detection of soleus concentric contraction in variable gait conditions for improved exosuit control[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 4855-4862.
[3] KIM J, LEE G, HEIMGARTNER R, et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit[J]. Science, 2019, 365(6454): 668-672.
[4] JIN Y, GLOVER C M, CHO H, et al. Soft sensing shirt for shoulder kinematics estimation[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 4863 -4869.
[5] SCHMITZ D G. Investigating Changes in Achilles Tendon Load During Walking with Exosuit Assistance[C]//XXVII Congress of the International Society of Biomechanics, held in conjunction with the 43rd Annual Meeting of the American Society of Biomechanics. 2019.
[6] BORISOV A V, BORISOVA V L, KONCHINA L V, et al. Application of active exoskeletons with touch sensing, electric drives, energy recuperators and gravity compensators in agricultural technologies[J]. IOP Conference Series Earth and Environmental Science, 2021, 699(1): 012019.
[7] ASBECK A T, DYER R J, LARUSSON A F, et al. Biologically-inspired soft exosuit[C]// IEEE International Conference on Rehabilitation Ro botics. IEEE, 2013: 1-8.
[8] KIM M, LIU C, KIM J, et al. Bayesian optimization of soft exosuits using a metabolic estimator stopping process[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 9173 -9179.
[9] HSU W H, PARK E J, MIRANDA D L, et al. Gait Initiation of New Walkersand the Adult’s Role in Regulating Directionality of the Child’s Body Motion[J]. Journal of Motor Learning and Development, 2019, 7(1): 35 -48.
[10] ZHANG H, YU M, XIE L, et al. Carbon-nanofibers-based micro-/nanodevices for neural-electrical and neural-chemical interfaces[J]. Journal of Nanomaterials, 2012, 2012: 1 -6.
[11] WANG R, JIANG N, SU J, et al. A bi‐sheath fiber sensor for giant tensile and torsional displacements[J]. Advanced Functional Materials, 2017, 27(35): 1702134.
[12] KIM J H, JANG K L, AHN K, et al. Thermal expansion behavior of thin films expanding freely on water surface[J]. Scientific Reports, 2019, 9(1): 1 -7.
[13] COHEN D J, MITRA D, PETERSON K, et al. A highly elastic, capacitive strain gauge based on percolating nanotube networks[J]. Nano letters, 2012, 12(4): 1821-1825.
[14] KIM J, LEE M, SHIM H J, et al. Stretchable silicon nanoribbon electronics for skin prosthesis[J]. Nature communications, 2014, 5(1): 5747.
[15] ROGERS J A, SOMEYA T, HUANG Y. Materials and mechanics for stretchable electronics[J]. science, 201 0, 327(5973): 1603-1607.
[16] BAIK S, KIM D W, PARK Y, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J]. Nature, 2017, 546(7658): 396 -400.
[17] LEE S, CREA S, MALCOLM P, et al. Controlling negative and positive power at the ankle with a soft exosuit[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016.
[18] WANG R, JIANG N, SU J, et al. A bi‐sheath fiber sensor for giant tensile and torsional displacements[J]. Advanced Functional Materials, 2017, 27(35): 1702134.
[19] KANG D, PIKHITSA P V, CHOI Y W, et al. Ultrasensitive mechanical crack -based sensor inspired by the spider sensory system[J]. Nature, 2014, 516(7530): 222-226.
[20] ZHAO Y, LI C, YU M, et al. Highly stretchable and conductive composite films with a multistoried film and pillar structure of gold on elastic substrates[J]. APL Materials, 2019, 7(10): 101104.
[21] ZHAO Y, YU M, LIU Z, et al. Electrical and thermal effects on electromechanical performance of stretchable thin gold films on PDMS substrates for stretchable electronics[J]. Journal of Applied Physics, 2019, 125(16): 165305.
[22] ZHAO Y, SHINMI A, ZHAO X, et al. Investigation of interfacial properties of atmospheric plasma sprayed thermal barrier coatings with four-point bending and computed tomography technique[J]. Surface and Coatings Technology, 2012, 206(23): 4922 -4929.
[23] LACOUR S P, COURTINE G, GUCK J. Materials and technologies for soft implantable neuroprostheses[J]. Nature Reviews Materials, 2016, 1(10): 1 -14.
[24] ZHANG X, ZHAO Y, WITHERS P J, et al. Microstructural degradation of Electron Beam-Physical Vapour Deposition Thermal Barrier Coating during thermal cycling tracked by X-ray micro-computed tomography[J]. Scripta Materialia, 2018, 152: 79-83.
[25] ZHAO Y, YU M, LI G, et al. Highly stretchable electrodes based on gold films with cyclic stability for electrocorticogram recordings[C]//2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). IEEE, 2018: 17-20.
[26] XIE R, DU Q, ZOU B, et al. Wearable leather-based electronics for respiration monitoring[J]. ACS Applied Bio Materials, 2 019, 2(4): 1427-1431.
[27] CHEN Y Y, XIE R J, ZOU B H, et al. CNT@ leather-based electronic bidirectional pressure sensor[J]. Science China Technological Sciences, 2020, 63(10): 2137-2146.
[28] XIE R, ZHU J, WU H, et al. 3D-conductive pathway written on leather for highly sensitive and durable electronic whisker[J]. Journal of Materials Chemistry C, 2020, 8(28): 9748-9754.
[29] YU M, WANG C, YANG C, et al. Synthesis of Stretchable Gold Films with Nanocracks: Stretched up to 120% Strain while Maintaining Conductivity[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 265(1): 012009.
[30] LOHMANDER L S, ENGLUND P M, DAHL L L, et al. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis[J]. The American journal of sports medicine, 2007, 35(10): 1756-1769.
[31] LEE S, FRANKLIN S, HASSANI F A, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference[J]. Science, 2020, 370(6519): 966-970.
[32] YOKOTA T, FUKUDA K, SOMEYA T. Recent Progress of Flexible Image Sensors for Biomedical Applications[J]. Advanced Materials.
[33] 钟卫兵, 刘琼珍, 王跃丹, 王栋. 柔性自支撑纳米纤维基超灵敏压力传感器的制备及其在人体脉搏监测上的应用[C]//. 2016 年全国高分子材料科学与工程研讨会论文摘要集. [出版者不详], 2016: 102.
[34] 李仲豪, 郑富中. 柔性传感器研究现状与进展[J]. 传感器世界, 2021, 27(10): 1-7+25.
[35] 彭军, 李津, 李伟, 常胜男, 刘皓. 柔性可穿戴电子应变传感器的研究现状与应用[J]. 化工新型材料, 2020, 48(01): 57-62.
[36] WANG Y, WU H, XU L, et al. Hierarchically patterned self-powered sensors for multifunctional tactile sensing[J]. Science Advances, 2020, 6(34):eabb9083.
[37] SHI L, LI Z, CHEN M, et al. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density[J]. Nature Communications, 2020, 11(1).
[38] LIU H, ZHANG H, HAN W, et al. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals[J]. Advanced Materials, 2021.
[39] 徐先亮, 陈昕, 吴杰, 沈宏峻. 柔性电容式压力传感器制作与性能优化分析[J]. 林业机械与木工设备, 2021, 49(05): 66-69+74.
[40] LIU Z, WANG X, QI D, et al. High-Adhesion Stretchable Electrodes Based on Nanopile Interlocking[J]. Advanced Materials, 2017.
[41] JOHNSON S, EVERINGHAM M. Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation[C]// British Machine Vision Conference. DBLP, 2010.
[42] HUANG C H, ALLAIN B, BOYER E, et al. Tracking-by-Detection of 3D Human Shapes: from Surfaces to Volumes[J]. IEEE Trans Pattern Anal Mach Intell, 2018: 1-1.
[43] 肖锋, 周杰. 基于区域分割和蒙特卡洛采样的静态图片人体姿态估计[J]. 智能系统学报, 2011, 6(01): 38-43.
[44] 谢非, 徐贵力. 基于支持向量机的多种人体姿态识别[J]. 重庆工学院学报(自然科学版), 2009, 23(03): 138-143.
[45] 曹玉珍, 蔡伟超, 程旸. 基于 MEMS 加速度传感器的人体姿态检测技术[J]. 纳米技术与精密工程, 2010,8(01): 37-41. DOI:10. 13494/j. npe. 2010.008.
[46] MENGÜÇ Y, PARK Y L, PEI H, et al. Wearable soft sensing suit for human gait measurement[J]. The International Journal of Robotics Research, 2014, 33(14): 1748-1764.
[47] GRIFFIN L Y, AGEL J, ALBOHM M J, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies[J]. JAAOS -Journal of the American Academy of Orthopaedic Surgeons, 2000, 8(3): 141 -150.
[48] DING Y, GALIANA I, ASBECK A, et al. Multi-joint actuation platform for lower extremity soft exosuits[C]// ICRA. IEEE, 2014.
[49] YANG J C, MUN J, KWON S Y, et al. Electronic skin: recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics[J]. Advanced Materials, 2019, 31(48): 1 904765.
[50] CATALDI P, DUSSONI S, CESERACCIU L, et al. Carbon nanofiber versus graphene‐based stretchable capacitive touch sensors for artificial electronic skin[J]. Advanced Science, 2018, 5(2): 1700587.
[51] TYBRANDT K, KHODAGHOLY D, DIELACHER B, et al. High ‐density stretchable electrode grids for chronic neural recording[J]. Advanced Materials, 2018, 30(15): 1706520.
[52] QI D, LIU Z, YU M, et al. Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms[J]. Advanced Materials, 201 5, 27(20): 3145-3151.
[53] NAWROCKI R A, JIN H, LEE S, et al. Self‐adhesive and ultra‐conformable, sub ‐ 300 nm dry thin ‐ film electrodes for surface monitoring of biopotentials[J]. Advanced Functional Materials, 2018, 28(36): 1803279.
[54] TRUNG T Q, LEE N E. Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoring and personal healthcare[J]. Advanced materials, 2016, 28(22): 4338 -4372.
[55] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin‐mountable, and wearable stra in sensors and their potential applications: a review[J]. Advanced Functional Materials, 2016, 26(11): 1678 -1698.
[56] CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio ‐ electronic devices integrated with nanomaterials[J]. Advanced materials, 2016, 28(22): 4203 -4218.
[57] CAO H. Research on application of flexible strain sensor in human motion monitoring[J]. Journal of Ambient Intelligence and Humanized Computing, 2021: 1-13.
[58] BYUN S W, LEE S P. Implementation of hand gesture recognition based on flexible sensor array for mobile devices[C]//2019 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2019: 1 -4.
[59] GRIMMER M, RIENER R, WALSH C J, et al. Mobility-related physical and functional losses due to aging and disease -a motivation for lower limb exoskeletons[J]. Journal of neuroengineering and Rehabilitation, 2019, 16(1): 1-21.
[60] WALSH C. Human-in-the-loop development of soft wearable robots[J]. Nature Reviews Materials, 2018, 3(6): 78 -80.
[61] GUGLIELMELLI E, MOHAMMED S, MORENO J C, et al. A Journey Toward the Convergence of Robotics and Life Sciences[J]. IEEE Robotics & Automation Magazine, 2018.Wang Y, Wang L, Yang T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Advanced Functional Materials, 2014, 24(29): 4666 -4670.
[62] WANG Y, WANG L, YANG T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Advanced Functional Materials, 2014, 24(29): 4666 -4670.
修改评论