中文版 | English
题名

负电容鳍式场效应晶体管电学可靠性仿真研究

其他题名
SIMULATION-BASEDSTUDYOFELECTRICAL RELIABILITYONNEGATIVECAPACITANCE-FIN FIELDEFFECTTRANSISTOR
姓名
姓名拼音
YU Ziwei
学号
12132595
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
于淑会
导师单位
中国科学院深圳先进技术研究院
外机构导师单位
Southern University of Science and Technology
论文答辩日期
2023-05-22
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
在后摩尔时代和智能时代,低功耗电子器件是推动算力提升的关键。负电容鳍式场效应晶体管 (Negative Capacitance Fin Field Effect Transistor, NC-FinFET)的栅极控制能力强,有利于降低亚阈值摆幅,降低器件功耗。 NC-FinFET 基 于 具有铁电性的栅极薄膜,和传统CMOS(Complementary Metal-Oxide-Semiconductor)工艺兼容。但NC-FinFET 工作性能受体缺陷、 自热效应和环境温度影响较大,需要进行电学性能可靠性分析。本论文基于三维 NC-FinFET 模型进行仿真研究,通过对器件特性和物理效应的分析,
以及对材料、结构、缺陷、自热效应的仿真来评估器件的工作可靠性,提
出可以通过低源漏电压降低自热效应以及采用砷化镓沟道提高器件高温工作性能。
根据铁电材料的各向异性参数建立沟道内建电势,研究了器件性能与负电容效应的联系。在此基础上,基于 14nm 节点 FinFET 建立器件模型,在 0.7 V 0.05 V 的源漏电压下将仿真结果与实验数据进行校准。基于基准模型,进一步建立了硅基 NC-FinFET 模型。仿真研究表明,硅基 NC-FinFET 在温度变化和缺陷存在时表现相对稳定的性能,但开态电流变化较明显。为了降低自热效应的影响(self-heating effectsSHEs),总结得到新型自热效应公式;通过公式建立边界热导和源漏电压与自热效应的联系,降低源漏电压至 0.3 V,在相对良好的性能输出中降低了 57.1%功耗。
砷化镓材料具有更大的禁带宽度,高温下载流子跃迁比硅少。针对高温下的性能优化 ,建立了砷化镓基 NC-FinFET(Gallium Arsenide Negative Capacitance FinFET)器件模型,通过采用 GaAs(Gallium Arsenide)沟道材料、SOI(silicon-on-insulator)结构和负电容效应可以有效降低供电电压、降低关态电流并保持器件在高温时工作的稳定性。在低供电电压情况下,砷化镓基 NC-FinFET 与硅基 NC-FinFET 相比,具备在高温情况下更好的低功耗性能,在温度升高时产生的性能退化相对较低。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] BADAROGLU M. More Moore[C]//2021 IEEE International Roadmap for Devicesand Systems Outbriefs, IEEE, 2021: 01-38.
[2] 李珍, 翟亚红. 铁电负电容场效应晶体管器件的研究[J]. 压电与声光, 2019, 41(6):782-785.
[3] ZHOU G, LU Y, LI R, et al. Vertical InGaAs/InP Tunnel FETs With TunnelingNormal to the Gate[J]. IEEE Electron Device Letters, 2011, 32(11): 1516-1518.
[4] 谭欣, 翟亚红. 铁电负电容晶体管的研究进展[J]. 材料导报, 2019, 33(3): 433-437.
[5] 周 家 伟 , 徐 礼 磊 , 葛 凡 . 负 电 容 场 效 应 晶 体 管 研 究 进 展 [J]. 电 子 世 界 , 2020, 605(23): 27-28.
[6] HUANG S, SU P. Suppressed Source-to-Drain Tunneling and Short-Channel Effectsfor MFIS-type InGaAs and Si Negative-Capacitance FinFETs[C]//2021 InternationalSymposium on VLSI Technology, Systems and Applications (VLSI-TSA): IEEE, 2021: 1-2.
[7] HUANG S, YU C, SU P. Investigation of Fin-Width Sensitivity of ThresholdVoltage for InGaAs and Si Negative-Capacitance FinFETs Considering Quantum- Confinement Effect[J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2538- 2543.
[8] SAYEEF S, SUPRIYO D. Use of negative capacitance to provide voltageamplification for low power nanoscale devices[J]. Nano Letters, 2008, 8(2): 405-410.
[9] TU L, WANG X, WANG J, et al. Field Effect Transistors: Ferroelectric NegativeCapacitance Field Effect Transistor[J]. Advanced Electronic Materials, 2018, 4, 1800231.
[10] 杨廷锋. 独立栅 NC-FinFET 优化和低功耗逻辑电路设计[D]. 宁波大学, 2019
[11] LI K, CHEN P, HU C. Sub-60mV-Swing Negative-Capacitance FinFET withoutHysteresis[C]//2015 IEEE International Electron Devices Meeting (IEDM): IEEE, 2015: 22.6.1-22.6.4
[12] .陈俊东, 韩伟华,杨冲,等. 铁电负电容场效应晶体管研究进展[J]. 物理学报, 2020, 69(13): 52-80.
[13] CHAUHAN V, SAMAJDAR D P. Recent advances in negative capacitance FinFETsfor low-power applications: a review[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(10): 3056-3068.
[14] BÖSCKE T S, MÜLLER J, BRÄUHAUS D, et al. Ferroelectricity in hafnium oxidethin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[15] 李庆龙. 硅基负电容场效应晶体管研究和制备[D]. 陕西:西安电子科技大学,2018
[16] 陈坚邦. 砷化镓材料发展和市场前景[J]. 稀有金属, 2000, 24(3): 208-217.
[17] HUANG S E, YOU W X, SU P. Mitigating DIBL and Short-Channel Effects for III- V FinFETs With Negative-Capacitance Effects[J]. IEEE Journal of the ElectronDevices Society, 2021, 10: 65-71.
[18] SU L T, CHUNG J E, ANTONIADIS D A, et al. Measurement and modeling of self- heating in SOI nMOSFET's[J]. IEEE Transactions on Electron Devices, 1994, 41(1):69-75.
[19] SAEIDI A, JAZAERI F, STOLICHNOV I, et al. Double-Gate Negative-CapacitanceMOSFET With PZT Gate-Stack on Ultra Thin Body SOI: An ExperimentallyCalibrated Simulation Study of Device Performance[J]. IEEE Transactions onElectron Devices, 2016, 63(12): 4678-4684.
[20] 杨廷锋, 胡建平, 倪海燕. 一种应用于低功耗电路设计的 NCFET 器件设计导向[J]. 无线通信技术, 2019, 28(1): 17-22.
[21] SAMSUDIN K, ADAMU-LEMA F, BROWN A R, et al. Combined sources ofintrinsic parameter fluctuations in sub-25 nm generation UTB-SOI MOSFETs: Astatistical simulation study[J]. Solid-State Electronics,2007,51(4):611-616.
[22] 倪海燕. 双阈值负电容独立栅 FinFET 器件优化及其电路设计技术研究[D]. 宁波大学, 2020
[23] 王步冉, 李珍, 谭欣,等. SOI 铁电负电容晶体管亚阈值特性研究[J]. 压电与声光, 2019, 41(5): 756-759.
[24] CHAUHAN V, SAMAJDAR D. Recent Advances in Negative Capacitance FinFETsfor Low-Power Applications: A Review[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(10): 3056-3068.
[25] 马伟彬. FinFET 器件技术简介[J]. 科技展望,2016,26(16):104-105.
[26] 熊倩, 马奎, 杨发顺. FinFET 器件结构发展综述[J]. 电子技术应用, 2021, 47(1):21-27.
[27] 赵正平.FinFET 纳电子学与量子芯片的新进展[J].微纳电子技术,2020,57(I):1—6.
[28] JURZAK M, COLLAERT N, VELOSO A, et al. Review of FINFETtechnology[C]//2009 IEEE international SOI conference. IEEE, 2009: 1-4.
[29] 朱范婷. FinFETs 器件及其几何参数的优化[D]. 上海交通大学, 2014.
[30] 刘程晟.具备独立三栅结构的新型 FinFET 器件及其 SRAM 应用研究[D].华东师范大学,2018.
[31] 王阳元, 张兴, 刘晓彦, 等. 32nm 及其以下技术节点 CMOS 技术中的新工艺及新结构器件[J]. 中国科学: E 辑, 2008, 38(6): 921-932.
[32] 张燕.三栅 FinFET 电学特性仿真分析与研究[D].西安电子科技大学,2013.
[33] Prakash O, Pahwa G, Dabhi C K, et al. Impact of self-heating on negative- capacitance FinFET: Device-circuit interaction[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1420-1424.
[34] AFRIN F, TITIRSHA T, ALAM M K. Statistical analysis of leakage current oftrapezoidal FinFETs[C]//2015 IEEE international WIE conference on Electrical andcomputer engineering (WIECON-ECE). IEEE, 2015: 407-410.
[35] GAIDHANE A D, PAHWA G, VERMA A, et al. Modeling of inner fringing chargesand short channel effects in negative capacitance MFIS transistor[C]//2019 ElectronDevices Technology and Manufacturing Conference (EDTM). IEEE, 2019: 282-284.
[36] YU H, WANG C, MIAO X, et al. A TCAD-based Study of NDR Effect in NC- FinFET[C]//2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 2020: 102-103.
[37] LI H, JIA T, ZHANG C, et al. Critical parameters of gate control in NC-FinFET onGaAs[J]. Journal of Computational Electronics, 2022, 22: 164-177.
[38] AGARWAL H, KUSHWAHA P, DUARTE J, et al. Designing 0.5 V 5-nm HP and0.23 V 5-nm LP NC-FinFETs With Improved IOFF Sensitivity in Presence ofParasitic Capacitance[J]. IEEE Transactions on Electron Devices, 2018, 65(3): 1211- 1216.
[39] WANG C, WU J, YU H, et al. Effects of Temperature on the Performance ofHf₀.₅Zr₀.₅O₂-Based Negative Capacitance FETs[J]. IEEE Electron Device Letters, 2020, 41(11): 1625-1628.
[40] PRAKASH O, GUPTA A, PAHWA G, et al. Impact of Interface Traps on NegativeCapacitance Transistor: Device and Circuit Reliability[J]. IEEE Journal of theElectron Devices Society, 2020, 8: 1193-1201.
[41] BAJPAI G, GUPTA A, PRAKASH O, et al. Impact of Radiation on NegativeCapacitance FinFET[C]//2020 IEEE International Reliability Physics Symposium(IRPS): IEEE, 2020: 1-5.
[42] JAISAWAL R K, RATHORE S, GANDHI N, et al. Role of temperature on linearityand analog/RF performance merits of a negative capacitance FinFET[J]. Semiconductor Science and Technology, 2022, 37(11): 115003.
[43] JAISAWAL R K, RATHORE S, GANDHI N, et al. Self-Heating and Interface TrapsAssisted Early Aging Revelation and Reliability Analysis of Negative CapacitanceFinFET[C]//2023 7th IEEE Electron Devices Technology & ManufacturingConference (EDTM). IEEE, 2023: 1-3.
[44] LÜ W, ZHANG C, CHEN D, et al. Comparative Study on Random Interface Traps￾Induced Reliability of NC-FinFETs and FinFETs[J]. Silicon, 2023: 1-8.
[45] CHAUHAN V, SAMAJDAR D P. Estimation of performance degradation due tointerface traps in the gate and spacer stack of NC-FinFET[J]. Semiconductor Scienceand Technology, 2023, 38(4): 045012.
[46] HU C, SALAHUDDIN S, LIN C I, et al. 0.2 v adiabatic nc-finfet with 0.6 ma/µm ion and 0.1 na/µm i off[C]//2015 73rd Annual Device Research Conference (DRC). IEEE, 2015: 39-40.
[47] TSAI M, CHEN P, PENG P, et al. Atomic-level Analysis by Synchrotron Radiationand Characterization of 2 nm, 3 nm, and 5 nm-thick Hf0.5Zr0.5O2 NegativeCapacitance FinFET[C]//2019 Silicon Nanoelectronics Workshop (SNW): IEEE, 2019: 1-2.
[48] 于天宇. 电容匹配对负电容晶体管性能影响[D]. 杭州电子科技大学, 2021
[49] 周久人. 基于铁电材料的负电容场效应晶体管研究[D]. 西安电子科技大学, 2019
[50] BISHOP J. Computer simulation of the effects of electrical mismatches inphotovoltaic cell interconnection circuits[J]. Solar Cells, 1988, 25(1): 73-89.
[51] JERAPUTRA C, ENJETI P. Development of a robust anti-islanding algorithm forutility interconnection of distributed fuel cell powered generation[J]. IEEETransactions on Power Electronics, 2004, 19(5): 1163-1170.
[52] SIRI K, WILLHOFF M. Uniform Current/Voltage-Sharing for Interconnected DC- DC Converters[Z], 2007: 1-17.
[53] 朱明璋. 基于铁电材料栅介质层负电容场效应晶体管特性研究[D]. 西安电子科技大学, 2020
[54] 谭欣. 铁电负电容晶体管的仿真和研究[D]. 电子科技大学, 2019
[55] BIDENKO P, LEE S, HAN J, et al. Simulation Study on the Design of Sub- kT/qNon-Hysteretic Negative Capacitance FET Using Capacitance Matching[J]. IEEEJournal of the Electron Devices Society, 2018, 6: 910-921.
[56] JO J, CHOI W, PARK J, et al. Negative Capacitance in Organic/FerroelectricCapacitor to Implement Steep Switching MOS Devices[J]. Nano Letter., 2015, 15(7):4553-4556.
[57] DASGUPTA S, RAJASHEKHAR A, MAJUMDAR K, et al. Sub-kT/q Switching inStrong Inversion in PbZr0.52Ti0.48O3 Gated Negative Capacitance FETs[J]. IEEEJournal on Exploratory Solid-State Computational Devices and Circuits, 2015, 1: 43- 48.
[58] 李珍. 负电容场效应晶体管器件模型及仿真研究[D]. 电子科技大学, 2020
[59] GERRER L, BROWN A, MILLAR C, et al. Accurate Simulation of Transistor-LevelVariability for the Purposes of TCAD-Based Device-Technology Cooptimization[J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1739-1745.
[60] OTA H, FUKUDA K, IKEGAMI T, et al. Perspective of negative capacitanceFinFETs investigated by transient TCAD simulation[C]//2017 IEEE InternationalElectron Devices Meeting (IEDM): IEEE: 15.2.1-15.2.4.
[61] RAMOSALVARADO B, BROWN D, PETERSON G. On the assessment of voids inthe thermal interface material on the thermal performance of a silicon chippackage[J]. Microelectronics Reliability, 2013, 53(12): .1987-1995. 65
[62] SAKIB F, HASAN M, HOSSAIN M. Exploration of Negative Capacitance in Gate- All-Around Si Nanosheet Transistors[J]. IEEE Transactions on Electron Devices, 2020, 67(11): 5236-5242.
[63] 张骁竣, 季昊, 聂笔剑. 鳍式场效应晶体管结合自热效应的电迁移分析[J]. 电子技术应用, 2019, 45(8): 53-60.
[64] PUGLISI F, COSTANTINI F, KACZER B, et al. Probing defects generation duringstress in high-k/metal gate FinFETs by random telegraph noisecharacterization[C]//2016 46th European Solid-State Device Research Conference(ESSDERC): IEEE, 2016:252-255.
[65] JONES K, TURNER E, LEE J, et al. The Defect Formation Mechanism Associatedwith Low Dose Implants into Si Fin Structures[C]//2018 22nd InternationalConference on Ion Implantation Technology (IIT): IEEE, 2018:118-120.
[66] KUMAR M, DIXIT A. Effect of Self-Heating on Linearity of Novel JunctionlessAccumulation Mode Negative Capacitance FinFET[C]//2020 5th IEEE InternationalConference on Emerging Electronics (ICEE): IEEE, 2020: 1-4.
[67] UMA S, MCCONNELL A, ASHEGHI M, et al. Temperature-dependent thermalconductivity of undoped polycrystalline silicon layers[Z], 2001: 605-616.
[68] HU C, LU D, CHAU Y. FinFET Modeling for IC Simulation and Design[J]. 2015

所在学位评定分委会
材料与化工
国内图书分类号
TN386
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545111
专题南方科技大学
中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
于子苇. 负电容鳍式场效应晶体管电学可靠性仿真研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132595-于子苇-中国科学院深圳(4620KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[于子苇]的文章
百度学术
百度学术中相似的文章
[于子苇]的文章
必应学术
必应学术中相似的文章
[于子苇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。