[1] 张淼. 地震定位和检测[D]. 合肥: 中国科学技术大学, 2015.
[2] 张达, 戴锐, 曾志毅, 等. BSN 矿山微震监测技术及其应用[J]. 中国地震, 2021, 37(2): 332-348.
[3] SALVONI M, DIGHT P M. Rock damage assessment in a large unstable slope from microseismic monitoring-MMG Century mine (Queensland, Australia) case study[J]. Engineering Geology, 2016, 210: 45-56.
[4] MAXWELL S C, URBANCIC T I, STEINSBERGER N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[C]//SPE annual technical conference and exhibition. OnePetro, 2002.
[5] 王创业, 谷雷, 高照. 微震监测技术在矿山中的研究与应用[J]. 煤炭技术, 2019, 10.
[6] BIRKELO B, CIESLIK K, WITTEN B, et al. High-quality surface microseismic data illuminates fracture treatments: A case study in the Montney[J]. The Leading Edge, 2012, 31(11): 1318-1325.
[7] LI K L, BEAN C J, BELL A F, et al. Seismic tremor reveals slow fracture propagation prior to the 2018 eruption at Sierra Negra volcano, Galápagos[J]. Earth and Planetary Science Letters, 2022, 586: 117533.
[8] 张山,刘清林,赵群,等. 微地震监测技术在油田开发中的应用[J]. 石油物探, 2002, 41(2):6.
[9] 刘百红, 秦绪英, 郑四连,等. 微地震监测技术及其在油田中的应用现状[J]. 勘探地球物理进展, 2005, 28(5):5.
[10] 梁兵, 朱广生. 油气田勘探开发中的微震监测方法[M]. 北京: 石油工业出版社, 2004.
[11] LI L, TAN J, SCHWARZ B, et al. Recent advances and challenges of waveform‐based seismic location methods at multiple scales[J]. Reviews of Geophysics, 2020, 58(1): e2019RG000667.
[12] MILNE J. Earthquakes and other earth movements[M]. Kegan Paul, Trench, & Company, 1886.
[13] PUJOL J. Earthquake location tutorial: graphical approach and approximate epicentral location techniques[J]. Seismological Research Letters, 2004, 75(1): 63-74.
[14] GEIGER L. Probability method for the determination of earthquake epicenters from the arrival time only[J]. Bull. St. Louis Univ, 1912, 8(1): 56-71.
[15] WALDHAUSER F, ELLSWORTH W L. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the seismological society of America, 2000, 90(6): 1353-1368.
[16] GAJEWSKI D, VANELLE C, TESSMER E, et al. Localization of seismic events by diffraction stacking[C]//2007 SEG Annual Meeting. OnePetro, 2007.
[17] PESICEK J D, CHILD D, ARTMAN B, et al. Picking versus stacking in a modern microearthquake location: Comparison of results from a surface passive seismic monitoring array in OklahomaPicking versus stacking for microseismic[J]. Geophysics, 2014, 79(6): KS61-KS68.
[18] CESCA S, GRIGOLI F. Full waveform seismological advances for microseismic monitoring[J]. Advances in Geophysics, 2015, 56: 169-228.
[19] ZHEBEL O, EISNER L. Simultaneous microseismic event localization and source mechanism determinationinversion of location and mechanism[J]. Geophysics, 2015, 80(1): KS1-KS9.
[20] BESKARDES G D, HOLE J A, WANG K, et al. A comparison of earthquake backprojection imaging methods for dense local arrays[J]. Geophysical Journal International, 2018, 212(3): 1986-2002.
[21] PEROL T, GHARBI M, DENOLLE M. Convolutional neural network for earthquake detection and location[J]. Science Advances, 2018, 4(2): e1700578.
[22] KRIEGEROWSKI M, PETERSEN G M, Vasyura‐Bathke H, et al. A deep convolutional neural network for localization of clustered earthquakes based on multistation full waveforms[J]. Seismological Research Letters, 2019, 90(2A): 510-516.
[23] ZHANG X, ZHANG J, YUAN C, et al. Locating induced earthquakes with a network of seismic stations in Oklahoma via a deep learning method[J]. Scientific reports, 2020, 10(1): 1-12.
[24] VAN DEN ENDE M P A, AMPUERO J P. Automated seismic source characterization using deep graph neural networks[J]. Geophysical Research Letters, 2020, 47(17): e2020GL088690.
[25] CHEN Y, FOMEL S. Random noise attenuation using local signal-and-noise orthogonalization[J]. Geophysics, 2015, 80(6): WD1-WD9.
[26] BAI M, HUANG G, WANG H, et al. Seismic signal enhancement based on the low‐rank methods[J]. Geophysical Prospecting, 2020, 68(9): 2783-2807.
[27] CAVALCANTE Q, PORSANI M J. Low‐rank seismic data reconstruction and denoising by CUR matrix decompositions[J]. Geophysical Prospecting, 2022, 70(2): 362-376.
[28] DOUGLAS A. Bandpass filtering to reduce noise on seismograms: is there a better way? [J]. Bulletin of the Seismological Society of America, 1997, 87(3): 770-777.
[29] SCHERBAUM F. Of poles and zeros: Fundamentals of digital seismology[M]. Springer Science & Business Media, 2006.
[30] 宋维琪, 吕世超, 郭晓中, 等. 提高微地震资料信噪比的频率域极化滤波[J]. 石油物探, 2011, 50(4): 361-366.
[31] 朱卫星, 宋洪亮, 曹自强, 等. 自适应极化滤波在微地震信号处理中的应用[J]. 勘探地球物理进展, 2010, 33(5): 367-371.
[32] 刘太伟. 地面微地震资料去噪方法研究[D]. 青岛: 中国石油大学 (华东), 2013.
[33] 宋维琪, 刘太伟. 地面微地震资料τ-p变换噪声压制[J]. 石油地球物理勘探, 2015, 50(1): 48-53.
[34] 蒋腾飞. 微地震数据去噪方法研究[D]. 荆州: 长江大学, 2015.
[35] NAGHIZADEH M. Seismic data interpolation and denoising in the frequency-wavenumber domain[J]. Geophysics, 2012, 77(2): V71-V80.
[36] NAGHIZADEH M, SACCHI M. Multicomponent f-x seismic random noise attenuation via vector autoregressive operators[J]. Geophysics, 2012, 77(2): V91-V99.
[37] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 1998, 454(1971): 903-995.
[38] HAN J, VAN DER BAAN M. Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding[J]. Geophysics, 2015, 80(6): KS69-KS80.
[39] ZHANG P, DAI Y, WANG R, et al. A quantitative evaluation method based on EMD for determining the accuracy of time-varying seismic wavelet extraction[J]. Journal of Seismic Exploration, 2017, 26(3): 267-292.
[40] CHEN W, CHEN Y, LIU W, et al. Nonstationary signal decomposition via improved complete ensemble empirical mode decomposition and its application in ground roll noise attenuation[C]//2016 SEG International Exposition and Annual Meeting. OnePetro, 2016.
[41] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE transactions on signal processing, 2013, 62(3): 531-544.
[42] 段家银, 段天友, 刘豪, 等. 变模态分解在微地震信号去噪中的应用[J]. 石化技术, 2015 (7): 217-217.
[43] HAGEN D C. The application of principal components analysis to seismic data sets[J]. Geoexploration, 1982, 20(1-2): 93-111.
[44] HUANG W, WANG R, ZHOU Y, et al. Improved principal component analysis for 3D seismic data simultaneous reconstruction and denoising[M]//SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016: 4102-4106.
[45] 胡永泉, 尹成, 潘树林, 等. 基于单道奇异值分解的微地震资料去噪方法[J]. 石油天然气学报, 2013, 35(4): 64-69.
[46] LIANG X, LI Y, ZHANG C. Noise suppression for microseismic data by non‐subsampled shearlet transform based on singular value decomposition[J]. Geophysical Prospecting, 2018, 66(5): 894-903.
[47] LV H. Noise suppression of microseismic data based on a fast singular value decomposition algorithm[J]. Journal of Applied Geophysics, 2019, 170: 103831.
[48] HUANG W, WANG R, YUAN Y, et al. Randomized-order multichannel singular spectrum analysis for simultaneously attenuating random and coherent noise[C]//2016 SEG International Exposition and Annual Meeting. OnePetro, 2016.
[49] OROPEZA V, SACCHI M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 76(3): V25-V32.
[50] 夏森, 王维波, 李树荣, 等. 微地震信号的参数辨识建模及其 Kalman 滤波[J]. 地球物理学进展, 2016, 31(5): 2005-2010.
[51] XIA S, WANG W, LI S, et al. Application of Kalman filter in microseismic data denoising based on identified signal model[C]//2016 Chinese Control and Decision Conference (CCDC). IEEE Singapore Industrial Electronics Branch, 2016: 4381-4385.
[52] 段家银. 基于盲信号理论的微震监测数据信噪分离方法研究[D]. 荆州: 长江大学, 2016.
[53] 刁瑞, 吴国忱, 尚新民, 等. 地面阵列式微地震数据盲源分离去噪方法[J]. 物探与化探, 2017, 41(3): 521-526.
[54] YOON B J, VAIDYANATHAN P P. Wavelet-based denoising by customized thresholding[C]//2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 2004, 2: ii-925.
[55] MOUSAVI S M, LANGSTON C A. Adaptive noise estimation and suppression for improving microseismic event detection[J]. Journal of Applied Geophysics, 2016, 132: 116-124.
[56] 姜宇东, 杨勤勇, 何柯, 等. 基于曲波变换的地面微地震资料去噪方法研究[J]. 石油物探, 2012, 51(6): 620-624.
[57] 曹静杰, 杨志权, 杨勇, 等. 一种基于曲波变换的自适应地震随机噪声消除方法[J]. 石油物探, 2018, 57(1): 72-78.
[58] 程浩, 陈刚, 王恩德, 等. 基于 Shearlet 变换的自适应阈值地震数据去噪方法[J]. 石油学报, 2018, 39(1): 82.
[59] 宋维琪, 张宇. 基于压缩感知理论的微地震资料噪声压制[J]. 地球物理学进展, 2017, 32(4): 1636-1642.
[60] 王鹏, 常旭, 王一博, 等. 基于时频稀疏性分析法的低信噪比微震事件识别与恢复[J]. 地球物理学报, 2014, 57(8): 2656-2665.
[61] DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[62] DONOHO D L. De-noising by soft-thresholding[J]. IEEE transactions on information theory, 1995, 41(3): 613-627.
[63] CHANG S G, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE transactions on image processing, 2000, 9(9): 1532-1546.
[64] 董新桐, 马海涛, 李月. 丘陵地带地震资料随机噪声压制新技术: 高阶加权阈值函数的 Shearlet 变换[J]. 地球物理学报, 2019, 62(10): 4039-4046.
[65] MOUSAVI S M, LANGSTON C A. Adaptive noise estimation and suppression for improving microseismic event detection[J]. Journal of Applied Geophysics, 2016a, 132: 116-124.
[66] MOUSAVI S M, LANGSTON C A. Hybrid seismic denoising using higher‐order statistics and improved wavelet block thresholding[J]. Bulletin of the Seismological Society of America, 2016b, 106(4): 1380-1393.
[67] MOUSAVI S M, LANGSTON C A, HORTON S P. Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform[J]. Geophysics, 2016c, 81(4): V341-V355.
[68] MOUSAVI S M, LANGSTON C A. Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data[J]. Geophysics, 2017, 82(4): V211-V227.
[69] LANGSTON C A, MOUSAVI S M. Separating signal from noise and from other signal using nonlinear thresholding and scale‐time windowing of continuous wavelet transforms[J]. Bulletin of the Seismological Society of America, 2019, 109(5): 1691-1700.
[70] ZHANG H, NADEAU R M, TOKSOZ M N. Locating nonvolcanic tremors beneath the San Andreas fault using a station‐pair double‐difference location method[J]. Geophysical Research Letters, 2010, 37(13).
[71] GUO H, ZHANG H. Development of double-pair double difference earthquake location algorithm for improving earthquake locations[J]. Geophysical Journal International, 2016: ggw397.
[72] ZHOU W, WANG L, GUAN L, et al. Microseismic event location using an inverse method of joint P–S phase arrival difference and P-wave arrival difference in a borehole system[J]. Journal of Geophysics and Engineering, 2015, 12(2): 220-226.
[73] ZHOU H, ZHANG W, ZHANG J. Downhole microseismic monitoring for low signal-to-noise ratio events[J]. Journal of Geophysics and Engineering, 2016, 13(5): 805-816.
[74] TIAN X, ZHANG W, ZHANG J. Cross double-difference inversion for microseismic event location using data from a single monitoring wellCDD inversion of microseismic event location[J]. Geophysics, 2016, 81(5): KS183-KS194.
[75] OYE V, ELLSWORTH W L. Orientation of three-component geophones in the San Andreas fault observatory at depth pilot hole, Parkfield, California[J]. Bulletin of the Seismological Society of America, 2005, 95(2): 751-758.
[76] CHEN Y, ZHANG H, MIAO Y, et al. Back azimuth constrained double-difference seismic location and tomography for downhole microseismic monitoring[J]. Physics of the Earth and Planetary Interiors, 2017, 264: 35-46.
[77] WUESTEFELD A, GREVE S M, NÄSHOLM S P, et al. Benchmarking earthquake location algorithms: A synthetic comparison[J]. Geophysics, 2018, 83(4): KS35-KS47.
[78] TARANTOLA A, VALETTE B. Inverse problems = quest for information[J]. Journal of geophysics, 1982, 50(1): 159-170.
[79] LOMAX A. A reanalysis of the hypocentral location and related observations for the great 1906 California earthquake[J]. Bulletin of the Seismological Society of America, 2005, 95(3): 861-877.
[80] RODI W. Grid-search event location with non-Gaussian error models[J]. Physics of the Earth and Planetary Interiors, 2006, 158(1): 55-66.
[81] ZHOU H. Rapid three‐dimensional hypocentral determination using a master station method[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B8): 15439-15455.
[82] FONT Y, KAO H, Lallemand S, et al. Hypocentre determination offshore of eastern Taiwan using the Maximum Intersection method[J]. Geophysical Journal International, 2004, 158(2): 655-675.
[83] 谭玉阳, 李罗兰, 张鑫, 等. 一种改进的基于网格搜索的微地震震源定位方法[J]. 地球物理学报, 2017, 60(1): 293-304.
[84] THEUNISSEN T, FONT Y, LALLEMAND S, et al. Improvements of the maximum intersection method for 3D absolute earthquake locations[J]. Bulletin of the Seismological Society of America, 2012, 102(4): 1764-1785.
[85] SHEEN D H. A robust maximum‐likelihood earthquake location method for early warning[J]. Bulletin of the Seismological Society of America, 2015, 105(3): 1301-1313.
[86] LI X B, WANG Z W, DONG L J. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)[J]. Scientific reports, 2016, 6(1): 19205.
[87] 王泽伟, 李夕兵, 尚雪义, 等. 基于 VFOM 的矿山微震震源定位及近震震级标定[J]. 岩土工程学报, 2017, 39(8): 1408-1415.
[88] PENG K, GUO H, SHANG X. Data field application in removing large P-phase arrival picking errors and relocating a mine microseismic event[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106359.
[89] DONG L, ZOU W, LI X, et al. Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining[J]. Engineering Fracture Mechanics, 2019, 210: 95-112.
[90] ARTMAN B, PODLADTCHIKOV I, WITTEN B. Source location using time‐reverse imaging[J]. Geophysical Prospecting, 2010, 58(5): 861-873.
[91] KAO H, SHAN S J. The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space[J]. Geophysical Journal International, 2004(2):157.
[92] KAO H, SHAN S J. Rapid identification of earthquake rupture plane using source‐scanning algorithm[J]. Geophysical Journal International, 2007, 168(3): 1011-1020.
[93] HANSEN S M, SCHMANDT B. Automated detection and location of microseismicity at Mount St. Helens with a large‐N geophone array[J]. Geophysical Research Letters, 2015, 42(18): 7390-7397.
[94] 杨心超, 朱海波, 崔树果, 等. P 波初动震源机制解在水力压裂微地震监测中的应用[J]. 石油物探, 2015, 54(1): 43-50.
[95] 唐杰, 温雷, 李聪, 等. 水力压裂诱发的剪张型微地震震源机制矩张量反演方法[J]. 石油地球物理勘探, 2019, 54(4): 826-835.
[96] SHI P, ANGUS D, ROST S, et al. Automated seismic waveform location using multichannel coherency migration (MCM)–I: theory[J]. Geophysical Journal International, 2019, 216(3): 1842-1866.
[97] ANIKIEV D, VALENTA J, STANĚK F, et al. Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing[J]. Geophysical Journal International, 2014, 198(1): 249-258.
[98] ZHEBEL O, EISNER L. Simultaneous microseismic event localization and source mechanism determinationinversion of location and mechanism[J]. Geophysics, 2015, 80(1): KS1-KS9.
[99] XU J, ZHANG W, LIANG X, et al. Joint microseismic moment-tensor inversion and location using P-and S-wave diffraction stacking[J]. Geophysics, 2021, 86(6): KS137-KS150.
[100] LIANG C, YU Y, YANG Y, et al. Joint inversion of source location and focal mechanism of microseismicitySource location and focal mechanism[J]. Geophysics, 2016, 81(2): KS41-KS49.
[101] ZHANG Q, ZHANG W. An efficient diffraction stacking interferometric imaging location method for microseismic events[J]. Geophysics, 2022, 87(3): KS73-KS82.
[102] ZHANG Q, ZHANG W, WU X, et al. Deep Learning for Efficient Microseismic Location Using Source Migration‐Based Imaging[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(3): e2021JB022649.
[103] ZHOU Y, ZHANG Q, ZHANG W. PS interferometric imaging condition for microseismic source elastic time-reversal imaging[J]. Geophysical Journal International, 2022, 229(1): 505-521.
[104] GRIGOLI F, CESCA S, VASSALLO M, et al. Automated seismic event location by travel‐time stacking: An application to mining induced seismicity[J]. Seismological Research Letters, 2013, 84(4): 666-677.
[105] GRIGOLI F, CESCA S, AMOROSO O, et al. Automated seismic event location by waveform coherence analysis[J]. Geophysical Journal International, 2014, 196(3): 1742-1753.
[106] LANGET N, MAGGI A, MICHELINI A, et al. Continuous kurtosis‐based migration for seismic event detection and location, with application to Piton de la Fournaise Volcano, La Reunion[J]. Bulletin of the Seismological Society of America, 2014, 104(1): 229-246.
[107] POIATA N, SATRIANO C, VILOTTE J P, et al. Multiband array detection and location of seismic sources recorded by dense seismic networks[J]. Geophysical Journal International, 2016, 205(3): 1548-1573.
[108] BECKEL R A, LUND B, EGGERTSSON G A, et al. Comparing the performance of stacking-based methods for microearthquake location: A case study from the Burträsk fault, northern Sweden[J]. Geophysical Journal International, 2022, 228(3): 1918-1934.
[109] ZENG Z, LU T, HAN P, et al. Microseismic data denoising in the sychrosqueezed domain by integrating the wavelet coefficient thresholding and pixel connectivity[J]. Geophysical Journal International, 2023, 232(2): 1113-1128.
[110] GABOR D. Theory of communication. Part 1: The analysis of information[J]. Journal of the Institution of Electrical Engineers-part III: radio and communication engineering, 1946, 93(26): 429-441.
[111] SALOMON D. The Wavelet Transform[M]. The Computer Graphics Manual. Springer London, 2011:1147-1200.
[112] GUO H F, SUN Z D, CHEN Y L. Continue Wavelet Transform's Analysis in Zhuji Station's Rainfall Sequence Transformation[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 574: 708-711.
[113] MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47(2): 203-221.
[114] DAUBECHIES I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE transactions on information theory, 1990, 36(5): 961-1005.
[115] DAUBECHIES I, LU J, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and computational harmonic analysis, 2011, 30(2): 243-261.
[116] LILLY J M, OLHEDE S C. On the analytic wavelet transform[J]. IEEE transactions on information theory, 2010, 56(8): 4135-4156.
[117] THAKUR G, BREVDO E, FUČKAR N S, et al. The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications[J]. Signal Processing, 2013, 93(5): 1079-1094.
[118] PAROLAI S. Denoising of seismograms using the S transform[J]. Bulletin of the Seismological Society of America, 2009, 99(1): 226-234.
[119] WANG D, LI Y, ZHANG K, et al. An adaptive time-frequency filtering method for nonstationary signals based on the generalized S-transform[J]. Optoelectronics Letters, 2010, 6(2): 133-136.
[120] WANG D, WANG J, LIU Y, et al. An adaptive time-frequency filtering algorithm for multi-component LFM signals based on generalized S-transform[C]//2015 21st International Conference on Automation and Computing (ICAC). IEEE, 2015: 1-6.
[121] AUGER F, FLANDRIN P, LIN Y T, et al. Time-frequency reassignment and synchrosqueezing: An overview[J]. IEEE Signal Processing Magazine, 2013, 30(6): 32-41.
[122] HERRERA R H, HAN J, VAN DER BAAN M. Applications of the synchrosqueezing transform in seismic time-frequency analysis[J]. Geophysics, 2014, 79(3): V55-V64.
[123] AHRABIAN A, LOONEY D, STANKOVIĆ L, et al. Synchrosqueezing-based time-frequency analysis of multivariate data[J]. Signal Processing, 2015, 106: 331-341.
[124] CLAUSEL M, OBERLIN T, PERRIER V. The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM–FM images[J]. Applied and Computational Harmonic Analysis, 2015, 39(3): 450-486.
[125] LIU N, GAO J, ZHANG Z, et al. High-resolution characterization of geologic structures using the synchrosqueezing transform[J]. Interpretation, 2017, 5(1): T75-T85.
[126] FENG S, YU L, WANG F, et al. Midterm periodicity analysis of the Mount Wilson magnetic indices using the synchrosqueezing transform[J]. The Astrophysical Journal, 2017, 845(1): 11.
[127] PAN X, CAO S, ZU S, et al. Synchroqueezed wavelet transform based groundroll suppression[J]. Journal of Applied Geophysics, 2020, 179: 104033.
[128] 郑升, 马海涛, 李月. 基于自适应阈值 RCSST 变换的金属矿山地地区地震信号随机噪声消减[J]. 地球物理学报, 2019, 62(10): 4020-4027.
[129] ALLEN R V. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the seismological society of America, 1978, 68(5): 1521-1532.
[130] RAVIER P, AMBLARD P O. Wavelet packets and de-noising based on higher-order-statistics for transient detection[J]. Signal processing, 2001, 81(9): 1909-1926.
[131] TSOLIS G, XENOS T D. Signal denoising using empirical mode decomposition and higher order statistics[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2011, 4(2): 91-106.
[132] DECARLO L T. On the meaning and use of kurtosis[J]. Psychological methods, 1997, 2(3): 292.
[133] TSOLIS G, XENOS T D. Signal denoising using empirical mode decomposition and higher order statistics[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2011, 4(2): 91-106.
[134] GONZALEZ R C, WOODS R E. Image processing[J]. Digital image processing, 2007, 2(1).
[135] PENG Z, ZHAO P. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nature Geoscience, 2009, 2(12): 877-881.
[136] CHENG J, SONG G, SUN X, et al. Research developments and prospects on microseismic source location in mines[J]. Engineering, 2018, 4(5): 653-660.
[137] BEVINGTON P R, ROBINSON D K. Uncertainties in Measurements[J]. Data reduction and error analysis for the physical sciences, 2002.
[138] SCHIMMEL M, PAULSSEN H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks[J]. Geophysical Journal International, 1997, 130(2): 497-505.
[139] SCHIMMEL M, GALLART J. Frequency‐dependent phase coherence for noise suppression in seismic array data[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4).
[140] SCHIMMEL M, STUTZMANN E, GALLART J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale[J]. Geophysical Journal International, 2011, 184(1): 494-506.
[141] THURBER C H, ZENG X, THOMAS A M, et al. Phase‐weighted stacking applied to low‐frequency earthquakes[J]. Bulletin of the Seismological Society of America, 2014, 104(5): 2567-2572.
[142] BESKARDES G D, HOLE J A, WANG K, et al. A comparison of earthquake backprojection imaging methods for dense local arrays[J]. Geophysical Journal International, 2018, 212(3): 1986-2002.
[143] NEIDELL N S, TANER M T. Semblance and other coherency measures for multichannel data[J]. Geophysics, 1971, 36(3): 482-497.
[144] EISNER L, GEI D, HALLO M, et al. The peak frequency of direct waves for microseismic events[J]. Geophysics, 2013, 78(6): A45-A49.
[145] ZHEBEL O, GAJEWSKI D, VANELLE C. Localization of seismic events in 3D media by diffraction stacking[C]//73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011. EAGE Publications BV, 2011: cp-238-00077.
[146] TROJANOWSKI J, EISNER L. Comparison of migration‐based location and detection methods for microseismic events[J]. Geophysical Prospecting, 2017, 65(1): 47-63.
[147] CHEN C, HOLLAND A A. PHASEPAPY. A robust pure Python package for automatic identification of seismic phases[J]. Seismological Research Letters, 2016, 87(6): 1384-1396.
[148] PUGH D J, WHITE R S, CHRISTIE P A F. Automatic Bayesian polarity determination[J]. Geophysical Journal International, 2016, 206(1): 275-291.
[149] ROSS Z E, MEIER M A, HAUKSSON E. P wave arrival picking and first‐motion polarity determination with deep learning[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 5120-5129.
[150] HARA S, FUKAHATA Y, IIO Y. P-wave first-motion polarity determination of waveform data in western Japan using deep learning[J]. Earth, Planets and Space, 2019, 71(1): 127.
[151] TIAN X, ZHANG W, ZHANG X, et al. Comparison of single‐trace and multiple‐trace polarity determination for surface microseismic data using deep learning[J]. Seismological Research Letters, 2020, 91(3): 1794-1803.
[152] LI S, FANG L, XIAO Z, et al. FocMech-Flow: Automatic Determination of P-Wave First-Motion Polarity and Focal Mechanism Inversion and Application to the 2021 Yangbi Earthquake Sequence[J]. Applied Sciences, 2023, 13(4): 2233.
[153] 战婷婷, 李磊, 陈浩. 基于瞬时相位的微地震干涉定位方法研究[J]. 地球物理学报, 2022, 65(5): 1753-1768.
[154] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618.
[155] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical journal international, 2007, 169(3): 1239-1260.
[156] ZHANG W, ZHANG J. Microseismic migration by semblance-weighted stacking and interferometry[C]//2013 SEG Annual Meeting. OnePetro, 2013.
[157] XU J, ZHANG W, CHEN X, et al. Minimum semblance weighted stacking with polarity correction for surface microseismic data processing[J]. The Leading Edge, 2019, 38(8): 630-636.
[158] ZHANG C, QIAO W, CHE X, et al. Automated microseismic event location by amplitude stacking and semblanceMicroseismic location method[J]. Geophysics, 2019, 84(6): KS191-KS210.
[159] YU Z C, YU J, FENG F F, et al. Arrival picking method for microseismic phases based on curve fitting[J]. Applied Geophysics, 2020, 17: 453-464.
[160] LI K L, GUDMUNDSSON O. A probabilistic tremor location method[J]. Geophysical Research Letters, 2020, 47(4): e2019GL085538.
[161] SHI P, NOWACKI A, ROST S, et al. Automated seismic waveform location using Multichannel Coherency Migration (MCM)—II. Application to induced and volcano-tectonic seismicity[J]. Geophysical Journal International, 2019, 216(3): 1608-1632.
[162] ZHU W, MCBREARTY I W, MOUSAVI S M, et al. Earthquake phase association using a Bayesian Gaussian mixture model[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023249.
[163] ROSS Z E, ZHU W, AZIZZADENESHELI K. Neural mixture model association of seismic phases[J]. arXiv preprint arXiv:2301.02597, 2023.
修改评论