中文版 | English
题名

生物组织脂类材料探测和分析方法研究

其他题名
STUDY OF DETECTION AND ANALYSIS METHODS FOR BIOLOGICAL TISSUE LIPID MATERIALS
姓名
姓名拼音
KUANG Junfeng
学号
12132530
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
吴垠
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-17
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

脂肪是一种生物组织脂类材料,在人体代谢活动中发挥重要作用,与骨质疏松等多种代谢疾病密切相关。脂肪定量是脂类材料研究的重要部分,磁共振成像是脂肪定量的主要途径之一,其中Z谱成像(Z-spectral imagingZSI)技术可基于饱和效应获取大分子的频谱分布信息,为脂肪定量研究提供新途径。

本文以3.0 T磁共振成像系统和9.4 T磁共振波谱仪为研究平台,基于纯油仿体和脂肪含量介于0~40%的水脂仿体,对ZSI序列中重复时间和饱和能量进行优化;发展高斯洛伦兹模型,拟合化学位移为-3.8-3.4-2.7-2.0-0.50.6 ppm6个脂肪峰;招募了15名健康志愿者(男性7名,女性8名,平均年龄为27.5±6)和14名骨质疏松患者(男性4名,女性10名,平均年龄为62.5±11.5),使用发展的ZSI技术扫描其第四腰椎进行骨髓脂肪定量。结果显示,在纯油仿体中,重复时间为1.6 s,饱和能量为0.25 μT时,ZSI方法所得的6个脂肪峰幅值与核磁波谱结果呈现高度一致(R2=0.951P<0.001)。在6个脂肪含量不同的水脂仿体中,由ZSI所得水脂分数与仿体实际脂肪含量高度相关(R2=0.982P<0.001)。人体实验研究中,健康组6个归一化后的脂肪峰幅值显著低于患者组(P=0.004P<0.001P<0.001P=0.001P=0.004P=0.002)。此外,健康组的水脂分数(36.3%±8.7%)显著低于患者组(55.3%±6.0%P<0.001),而不饱和脂肪分数(17.0%±3.5%)则显著高于患者组(12.8%±2.1%P=0.004)。

本文优化了可用于脂肪定量的ZSI技术,并在脂肪波谱成像中展示了其有效性。在健康志愿者与骨质疏松患者的人体实验中,其第四腰椎骨髓中归一化后的6个脂肪峰幅值以及水脂分数和不饱和脂肪分数均存在显著差异,为了解脂肪相关病变提供补充信息。ZSI技术兼备优异的空间分辨率和频谱分辨率等特点,可以成为人体脊柱骨髓脂肪定量新方法,为生物组织脂肪材料定量成像提供便利。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] COHEN P, KAJIMURA S. The cellular and functional complexity of thermogenic fat [J]. Nat Rev Mol Cell Biol, 2021, 22(6): 393-409.
[2] GALLARDO MONTEJANO V I, YANG C, HAHNER L, et al. Perilipin 5 links mitochondrial uncoupled respiration in brown fat to healthy white fat remodeling and systemic glucose tolerance [J]. Nat Commun, 2021, 12(1): 3320-3321.
[3] KARAMPINOS D C, RUSCHKE S, DIECKMEYER M, et al. Quantitative MRI and spectroscopy of bone marrow [J]. J Magn Reson Imaging, 2018, 47(2): 332.
[4] 程静. 面向图像细节优化的快速磁共振成像 [D]; 广东: 中国科学院大学(中国科学院深圳先进技术研究院), 2019: 13-18.
[5] ONGUR D. Making progress with magnetic resonance spectroscopy [J]. JAMA Psychiatry, 2013, 70(12): 1265.
[6] GEE C S, NGUYEN J T, MARQUEZ C J, et al. Validation of bone marrow fat quantification in the presence of trabecular bone using MRI [J]. J Magn Reson Imaging, 2015, 42(2): 539.
[7] SCOTTI A, TAIN R W, LI W, et al. Mapping brown adipose tissue based on fat water fraction provided by Z-spectral imaging [J]. J Magn Reson Imaging, 2017, 47(6): 1527.
[8] LI L, SCOTTI A, FANG J, et al. Characterization of brown adipose tissue (BAT) in polycystic ovary syndrome (PCOS) patients by Z-Spectral Imaging (ZSI) [J]. Eur J Radiol, 2020, 123: 3-5.
[9] SCOTTI A, TAIN R W, LI W G, et al. Mapping brown adipose tissue based on fat water fraction provided by Z-spectral imaging [J]. J Magn Reson Imaging, 2018, 47(6): 1527.
[10] DIEFENBACH M N, RUSCHKE S, EGGERS H, et al. Improving chemical shift encoding-based water-fat separation based on a detailed consideration of magnetic field contributions [J]. Magn Reson Med, 2018, 80(3): 990-991.
[11] YEUNG D K, LAM S L, GRIFFITH J F, et al. Analysis of bone marrow fatty acid composition using high-resolution proton NMR spectroscopy [J]. Chem Phys Lipids, 2008, 151(2): 103.
[12] KNOTHE G, KENAR J A. Determination of the fatty acid profile by 1H-NMR spectroscopy [J]. Eur J Lipid Sci. Technol, 2004, 106(2): 88-96.
[13] JIANG X M, YANG D H, XIANG G Q, et al. Determination of cis/trans fatty acid contents in edible oils by 1H NMR spectroscopy in association with multivariate calibration [J]. J Food Compos Anal, 2022, 105: 6.
[14] BURIAN M, HAJEK M, SEDIVY P, et al. Lipid Profile and Hepatic Fat Content Measured by 1H NMR Spectroscopy in Patients before and after Liver Transplantation [J]. Metabolites, 2021, 11(9): 6-7.
[15] HARI A, FEALY C E, KIRWAN J P. Short-Term Exercise Improves Hepatic Insulin Extraction in Individuals with Nonalcoholic Fatty Liver Disease [J]. Diabetes, 2018, 67: 1.
[16] KARAMPINOS D C, MELKUS G, BAUM T, et al. Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS [J]. Magn Reson Med, 2014, 71(3): 1161.
[17] ISMAIL U N, AZLAN C A, KHAIRULLAH S, et al. Marrow Fat Content and Composition in beta-Thalassemia: A Study using 1H-MRS [J]. J Magn Reson Imaging, 2021, 53(1): 195.
[18] SYVARI J, RUSCHKE S, DIECKMEYER M, et al. Estimating vertebral bone marrow fat unsaturation based on short-TE STEAM MRS [J]. Magn Reson Med, 2021, 85(2): 619.
[19] HU H H, KIM H W, NAYAK K S, et al. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans [J]. Obesity (Silver Spring), 2010, 18(4): 845.
[20] KANG B K, KIM M, SONG S Y, et al. Feasibility of modified Dixon MRI techniques for hepatic fat quantification in hepatic disorders: validation with MRS and histology [J]. Br J Radiol, 2018, 91(1089): 3-6.
[21] HETTERICH H, BAYERL C, PETERS A, et al. Feasibility of a three-step magnetic resonance imaging approach for the assessment of hepatic steatosis in an asymptomatic study population [J]. Eur Radiol, 2016, 26(6): 1898-1903.
[22] CHAUDHARY A, SOOD G, KUMAR N, et al. Validation of Accuracy of Non-Invasive Imaging Methods (Magnetic Resonance Imaging (MRI) Fat Fraction Calculation and Computed Tomography (CT) Liver Attenuation Index) for Hepatic Graft Fat Quantification in Living Liver Transplant Donors [J]. Ann Transplant, 2021, 26: 5-6.
[23] VAN VUCHT N, SANTIAGO R, LOTTMANN B, et al. The Dixon technique for MRI of the bone marrow [J]. Skeletal Radiol, 2019, 48(12): 1861.
[24] DONNERS R, HIRSCHMANN A, GUTZEIT A, et al. T2-weighted Dixon MRI of the spine: A feasibility study of quantitative vertebral bone marrow analysis [J]. Diagn Interv Imaging, 2021, 102(7-8): 431.
[25] LINS C F, SALMON C E G, DE SOUZA L A, et al. Six-point DIXON and Magnetic Resonance Spectroscopy Techniques in Quantifying Bone Marrow Fat in Sickle Cell Disease [J]. Acad Radiol, 2022, 29(5): e73-e81.
[26] HENNINGSSON M, BRUNDIN M, SCHEFFEL T, et al. Quantification of epicardial fat using 3D cine Dixon MRI [J]. BMC Med Imaging, 2020, 20(1): 80.
[27] TAYLOR-CHO M W, ROBERTSON S H, KNIGHT J R, 2ND, et al. Contrast-Enhanced In-Phase Dixon Sequence: Impact on Biopsy Clip Detection on Breast MRI [J]. AJR Am J Roentgenol, 2023, 220(3): 347.
[28] LI L, SCOTTI A, FANG J C, et al. Characterization of brown adipose tissue (BAT) in polycystic ovary syndrome (PCOS) patients by Z-Spectral Imaging (ZSI) [J]. Eur. J. Radiol, 2020, 123: 3-5.
[29] CAI Z M, TAO Q, SCOTTI A, et al. Early detection of increased marrow adiposity with age in rats using Z-spectral MRI at ultra-high field (7 T) [J]. Nmr in Biomedicine, 2022, 35(2): 6-10.
[30] 王秋良, 杨文辉, 倪志鹏, 等. 核磁共振成像技术研究进展 [J]. 高科技与产业化, 2013, (12): 46-59.
[31] 李钊. 基于深度学习的磁共振图像重建和波谱相位校正方法研究 [D], 湖北: 中国科学院大学(中国科学院精密测量科学与技术创新研究院), 2021: 1-4.
[32] STEHLING M K, TURNER R, MANSFIELD P. Echo-Planar Imaging Magnetic Resonance Imaging in a Fraction of a Second [J]. Science, 1991, 254(5028): 43-50.
[33] GLOVER G H, SCHNEIDER E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction [J]. Magn Reson Med, 1991, 18(2): 371.
[34] REEDER S B, PINEDA A R, WEN Z F, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): Application with fast spin-echo imaging [J]. Magn Reson Med, 2005, 54(3): 636.
[35] WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) [J]. J Magn Reson, 2000, 143(1): 79.
[36] LADEFOGED C N, HANSEN A E, KELLER S H, et al. Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion [J]. EJNMMI Phys, 2014, 1(1): 101.
[37] JAIN V, BIESINGER M C, LINFORD M R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans [J]. Appl Surf Sci, 2018, 447: 548.
[38] BAO J, LI Z, ZHANG Y, et al. Low Unsaturated Fatty Acids Level in the Vertebral Bone Marrow of Postmenopausal Osteoporosis: A Pilot 2D iDQC-MRS on 3.0 T Study [J]. J Magn Reson Imaging, 2023, 57: 1423-1430.
[39] CAWTHORN W P, SCHELLER E L, LEARMAN B S, et al. Bone Marrow Adipose Tissue is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction [J]. Cell Metab, 2014, 20(2): 368.
[40] ORIOL A, VALVERDE D, CAPELLADES J, et al. In vivo quantification of response to treatment in patients with multiple myeloma by 1H magnetic resonance spectroscopy of bone marrow [J]. Magn Reson Mater Phys, Biol Med, 2007, 20(2): 93-101.
[41] YEUNG D K W, GRIFFITH J F, ANTONIO G E, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: A proton MR spectroscopy study [J]. J Magn Reson Imaging, 2005, 22(2): 279.
[42] LI X, KUO D, SCHAFER A L, et al. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis [J]. J Magn Reson Imaging, 2011, 33(4): 974.
[43] MCDONNELL J M, LANE J M, ZIMMERMAN P A. Osteoporosis: definition, risk factors, etiology, and diagnosis [J]. AAOHN J, 1987, 35(12): 527.
[44] 郭小妮, 刘师伟, 段瑞雪, 等. 脂肪因子vaspin与骨质疏松症相关性的研究进展 [J]. 生命的化学, 2022, 42(10): 1905.
[45] SCHELLER E L, ROSEN C J. What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health [J]. Ann N Y Acad Sci, 2014, 1311(1): 14-30.
[46] LI J, CHEN X, LU L Y, et al. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis [J]. Cytokine Growth F R, 2020, 52: 88-98.
[47] 潘虹, 李嘉琪, 易云平, 等. 3.0T mDIXON-Quant技术在围绝经期女性椎体骨髓脂肪定量测量中的应用 [J]. 现代医院, 2023, 23(02): 318.
[48] MEUNIER P, AARON J, EDOUARD C, et al. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies [J]. Clin Orthop Relat Res, 1971, 80: 147.
[49] JUSTESEN J, STENDERUP K, EBBESEN E N, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis [J]. Biogerontology, 2001, 2(3): 165.
[50] VERMA S, RAJARATNAM J H, DENTON J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis [J]. J Clin Pathol, 2002, 55(9): 693.
[51] SCHWARTZ A V, SIGURDSSON S, HUE T F, et al. Vertebral Bone Marrow Fat Associated With Lower Trabecular BMD and Prevalent Vertebral Fracture in Older Adults [J]. J Clin Endocr Metab, 2013, 98(6): 2294.
[52] BAUM T, YAP S P, KARAMPINOS D C, et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? [J]. J Magn Reson Imaging, 2012, 35(1): 117.

所在学位评定分委会
材料与化工
国内图书分类号
R445.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545121
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
匡俊峰. 生物组织脂类材料探测和分析方法研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132530-匡俊峰-中国科学院深圳(2966KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[匡俊峰]的文章
百度学术
百度学术中相似的文章
[匡俊峰]的文章
必应学术
必应学术中相似的文章
[匡俊峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。