中文版 | English
题名

基于超顺磁性纳米粒子的磁粒子成像研究

其他题名
RESEARCH OF MAGNETIC PARTICLE IMAGING BASED ON SUPERPARAMAGNETIC NANOPARTICLES
姓名
姓名拼音
HUANG Kangjian
学号
12132518
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王海峰
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-15
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

超顺磁性纳米粒子是一种灵敏,安全且具有生物相容性的材料,其直 径大小为纳米级别,并具有超顺磁性。磁粒子成像是一种全新的断层成像 模态,可以对超顺磁性纳米粒子的空间浓度分布进行成像,其原理是利用 该粒子的非线性磁化响应来成像,具有安全、高对比度和高空间分辨率等 优点。 本 文 研究了 基 于 超 顺 磁 性 纳 米 粒 子 的 磁粒子 成 像 原 理 , 使 用 经 典 Langevin 理论计算了超顺磁性纳米粒子的非线性磁化响应曲线,结合空间 编码推导出了磁粒子成像的相关信号模型,进行了模拟仿真验证。根据成 像原理,本文设计并实现了一个二维磁粒子成像系统样机,详细介绍了各 部分的具体实现方法,包括主磁场、信号生成,信号空间编码、信号采集 与处理和图像重建等等。完成系统的搭建后,本文使用超顺磁性纳米粒子 样品进行成像实验,验证了所搭建的磁粒子成像系统样机的可行性。本文 的创新之处主要有两个方面:一是设计了一种适用于成像系统信号接收链 的有源陷波滤波器,该滤波器具有较窄的阻带,减少滤波中高次谐波信号 的丢失,从而提高成像的信噪比;二是提出了一种适用于图像重建的卷积 神经网络,分析了其可行性和优势,实验结果显示了该神经网络具有应用 在磁粒子成像重建的潜力。 磁粒子成像是一种有前景的新成像模态,作为一种安全的生物医学成 像方法,在生物医学领域具有很大的潜力,适合细胞示踪,血管成像和肿 瘤诊断等应用。未来随着在超顺磁性纳米粒子、系统硬件和重建算法等方 面的改进,磁粒子成像技术将有助于生物医学成像领域发展,并为医学诊 断和治疗带来更多的可能性。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-07
参考文献列表

[1] GLEICH B, WEIZENECKER J. Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature, 2005, 435(7046): 1214-1217.
[2] GLEICH B, WEIZENECKER J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging[J]. Physics in Medicine & Biology, 2008, 53(6): N81.
[3] WEIZENECKER J, GLEICH B, BORGERT J. Magnetic particle imaging using a field free line[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105009.
[4] WEIZENECKER J, GLEICH B, RAHMER J, et al. Three-dimensional real-time in vivo magnetic particle imaging[J]. Physics in Medicine & Biology, 2009, 54(5): L1.
[5] GLEICH B, WEIZENECKER J, TIMMINGER H, et al. Fast MPI demonstrator with enlarged field of view[C]. Proceedings of International Society for Magnetic Resonance in Medicine. Texas, USA: ISMRM, 2010: 1920-1970.
[6] KNOPP T, BIEDERER S, SATTEL T F, et al. 2D model-based reconstruction for magnetic particle imaging[J]. Medical Physics, 2010, 37(2): 485-491.
[7] GOODWILL P W, CONOLLY S M. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation[J]. IEEE Transactions on Medical Imaging, 2010, 29(11): 1851-1859.
[8] FRANKE J, HEINEN U, LEHR H, et al. System characterization of a highly integrated preclinical hybrid MPI-MRI scanner[J]. IEEE Transactions on Medical Imaging, 2016, 35(9): 1993-2004.
[9] TAY Z W, HENSLEY D, MA J, et al. Pulsed excitation in magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2389-2399.
[10] GRÄSER M, THIEBEN F, SZWARGULSKI P, et al. Human-sized magnetic particle imaging for brain applications[J]. Nature Communications, 2019, 10(1): 1-9.
[11] MATTINGLY E, MASON E, SLIWIAK M, et al. Drive and receive coil design for a human-scale MPI system[J]. International Journal on Magnetic Particle Imaging, 2022, 8(1 Suppl 1).
[12] CHAN H P, SAMALA R K, HADJIISKI L M, et al. Deep learning in medical image analysis[J]. Deep Learning in Medical Image Analysis: Challenges and Applications, 2020: 3-21.
[13] ZHANG H M, DONG B. A review on deep learning in medical image reconstruction[J]. Journal of the Operations Research Society of China, 2020, 8: 311-340.
[14] Fu Y, Lei Y, Wang T, et al. Deep learning in medical image registration: a review[J]. Physics in Medicine & Biology, 2020, 65(20): 20TR01.
[15] HATSUDA T, TAKAGI T, MATSUHISA A, et al. Basic Study of Image Reconstruction Method Using Neural networks with additional learning for magnetic particle imaging[J]. International Journal on Magnetic Particle Imaging, 2016, 2(2):1-5.
[16] CHAE B G. Neural network image reconstruction for magnetic particle imaging[J]. ETRI Journal, 2017, 39(6): 841-850.
[17] GÜNGÖR A, ASKIN B, SOYDAN D A, et al. Deep learned super resolution of system matrices for magnetic particle imaging[C]. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). New York, USA: IEEE, 2021: 3749-3752.
[18] BALTRUSCHAT I M, SZWARGULSKI P, GRIESE F, et al. 3d-SMRnet: Achieving a new quality of MPI system matrix recovery by deep learning[C]. Medical Image Computing and Computer Assisted Intervention-MICCAI 2020: 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part II 23. Berlin, Germany: Springer International Publishing, 2020: 74-82.
[19] HAYAT H, SUN A, HAYAT H, et al. Artificial intelligence analysis of magnetic particle imaging for islet transplantation in a mouse model[J]. Molecular Imaging and Biology, 2021, 23: 18-29.
[20] GÜNGÖR A, ASKIN B, SOYDAN D A, et al. TranSMS: Transformers for super-resolution calibration in magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2022, 41(12): 3562-3574.
[21] SONG G, ZHENG X, WANG Y, et al. A magneto-optical nanoplatform for multimodality imaging of tumors in mice[J]. ACS nano, 2019, 13(7): 7750-7758.
[22] SILVESTRI N, GAVILÁN H, GUARDIA P, et al. Di-and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications[J]. Nanoscale, 2021, 13(32): 13665-13680.
[23] TAY Z W, SAVLIWALA S, HENSLEY D W, et al. Superferromagnetic nanoparticles enable order-of-magnitude resolution & sensitivity gain in magnetic particle imaging[J]. Small Methods, 2021, 5(11): 2100796.
[24] TAY Z W, SAVLIWALA S, HENSLEY D, et al. Superferromagnetic iron oxide: a new paradigm for color multiplex and FRET-like nanoscale 'ruler' for magnetic particle imaging[C]. Colloidal Nanoparticles for Biomedical Applications XVII. Wash, USA: SPIE, 2022: 18-23.
[25] DADFAR S M, CAMOZZI D, DARGUZYTE M, et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance[J]. Journal of nanobiotechnology, 2020, 18(1): 1-13.
[26] BULTE J W M, WALCZAK P, GLEICH B, et al. MPI cell tracking: what can we learn from MRI?[C]. Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging. Wash, USA: SPIE, 2011: 79650Z.
[27] ZHENG B, VAZIN T, GOODWILL P W, et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast[J]. Scientific Reports, 2015, 5(1): 14055.
[28] SALAMON J, HOFMANN M, JUNG C, et al. Magnetic particle/magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach[J]. PloS One, 2016, 11(6): e0156899.
[29] MAKELA A V, GAUDET J M, SCHOTT M A, et al. Magnetic particle imaging of macrophages associated with cancer: Filling the voids left by iron-based magnetic resonance imaging[J]. Molecular Imaging and Biology, 2020, 22: 958-968.
[30] KNIER N N, DUBOIS V P, CHEN Y, et al. A method for the efficient iron-labeling of patient-derived xenograft cells and cellular imaging validation[J]. Journal of Biological Methods, 2021, 8(3): 1-6.
[31] PARKINS K M, MELO K P, CHEN Y, et al. Visualizing tumour self-homing with magnetic particle imaging[J]. Nanoscale, 2021, 13(12): 6016-6023.
[32] GREESON E M, MADSEN C S, MAKELA A V, et al. Magnetothermal control of temperature-sensitive repressors in superparamagnetic iron nanoparticle-coated Bacillus subtilis[J]. ACS Nano, 2022, 16(10): 16699-16712.
[33] 谢迪, 张朴, 程晶晶. 基于磁性粒子成像技术的一维建模仿真研究[J]. 计算机仿真, 2013, 30(9): 410-414.
[34] LV X, WANG Z, YANG W. Field free line generation for magnetic particle imaging based on the mirror rule[C]. 2013 6th International Conference on Biomedical Engineering and Informatics. New York, USA: IEEE, 2013: 43-47.
[35] 张玉录, 柯丽, 杜强等. 基于小波稀疏的磁性纳米粒子成像算法研究[J]. 北京生物医学工程, 2021, 40(04): 337-345.
[36] TONG W, HUI H, SHANG W, et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles[J]. Theranostics, 2021, 11(2): 506.
[37] WU X, HE B, GAO P, et al. PGNet: Projection generative network for sparse‐view reconstruction of projection‐based magnetic particle imaging[J]. Medical Physics, 2022.
[38] JIA G, HUANG L, WANG Z, et al. Gradient-based pulsed excitation and relaxation encoding in magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2022, 41(12): 3725-3733.
[39] JIA G, FENG X, LIU Y, et al. Gradient-based rotational drift and frequency encoding for high-resolution magnetic particle imaging[J]. International Journal on Magnetic Particle Imaging IJMPI, 2023, 9(1 Suppl 1).
[40] 杜益群, 张东生, 倪海燕等. 肿瘤热疗用Fe3O4磁性纳米粒子的生物相容性研究[J].南京大学学报(自然科学版), 2006(03): 324-330.
[41] 吕言云. 基于超顺磁性纳米粒子的药物载体和基因载体制备及其性能研究[D]. 吉林:吉林大学, 2013:1-3.
[42] PI S, LIU W, WEI K, et al. AC magnetic nanothermometry: an investigation of the influence of size distribution of magnetic nanoparticles[J]. IEEE Transactions on Magnetics, 2016, 53(3): 1-7.
[43] SONG G, KENNEY M, CHEN Y S, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties[J]. Nature Biomedical Engineering, 2020, 4(3): 325-334.
[44] PENG Z, LU C, SHI G, et al. Sensitive and quantitative in vivo analysis of PD-L1 using magnetic particle imaging and imaging-guided immunotherapy[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2022: 1-15.
[45] AVUGADDA S K, WICKRAMASINGHE S, NICULAES D, et al. Uncovering the magnetic particle imaging and magnetic resonance imaging features of iron oxide nanocube clusters[J]. Nanomaterials, 2020, 11(1): 62.
[46] DU Y, LIU X, LIANG Q, et al. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy[J]. Nano Letters, 2019, 19(6): 3618-3626.
[47] BEAN C P, LIVINGSTON J D. Superparamagnetism[J]. Journal of Applied Physics, 1959, 30(4): S120-S129.
[48] KNOPP T, BUZUG T M. Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation[M]. Springer Science & Business Media, 2012.
[49] FERGUSON R M, MINARD K R, KRISHNAN K M. Optimization of nanoparticle core size for magnetic particle imaging[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1548-1551.
[50] FERGUSON R M, MINARD K R, KHANDHAR A P, et al. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging[J]. Medical physics, 2011, 38(3): 1619-1626.
[51] GLEICH B. Principles and applications of magnetic particle imaging[M]. Springer Science & Business Media, 2013.
[52] KNOPP T, SATTEL T F, BIEDERER S, et al. Model-based reconstruction for magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2009, 29(1): 12-18.
[53] 刘聪聪. 基于超顺磁性纳米粒子的磁性粒子成像系统的研究[D]. 重庆:重庆理工大学, 2020:27-32.
[54] GRAESER M, KNOPP T, SZWARGULSKI P, et al. Towards picogram detection of superparamagnetic iron-oxide particles using a gradiometric receive coil[J]. Scientific Reports, 2017, 7(1): 1-13.
[55] 王翠珍, 唐金元, 潘云芝. 双T网络带阻滤波器传输特性研究与仿真[J]. 仪表技术, 2012, No.278(06): 6-9.
[56] GOODWILL P W, LU K, ZHENG B, et al. An x-space magnetic particle imaging scanner[J]. Review of Scientific Instruments, 2012, 83(3): 033708.
[57] GRAESER M, KNOPP T, GRÜTTNER M, et al. Analog receive signal processing for magnetic particle imaging[J]. Medical Physics, 2013, 40(4): 042303.
[58] JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522.
[59] WANG G, YE J C, MUELLER K, et al. Image reconstruction is a new frontier of machine learning[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1289-1296.
[60] KANG E, MIN J, YE J C. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction[J]. Medical Physics, 2017, 44(10): e360-e375.
[61] ZHU B, LIU J Z, CAULEY S F, et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018, 555(7697): 487-492.

所在学位评定分委会
材料与化工
国内图书分类号
O482.54
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545122
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
黄康健. 基于超顺磁性纳米粒子的磁粒子成像研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132518-黄康健-中国科学院深圳(5788KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄康健]的文章
百度学术
百度学术中相似的文章
[黄康健]的文章
必应学术
必应学术中相似的文章
[黄康健]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。