中文版 | English
题名

若干超导体系中关联效应的相关理论研究

其他题名
THEORETICAL STUDY ON CORRELATION EFFECTS IN SEVERAL SUPERCONDUCTING SYSTEMS
姓名
姓名拼音
ZHANG Yu
学号
11930921
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
陈伟强
导师单位
物理系
论文答辩日期
2023-06-01
论文提交日期
2023-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

      在超导系统中,电子关联效应有非常重要的影响。本文研究了几种关联效应较强且关注度较高的超导体系中的关联效应,这些研究可以对超导体的微观理论提供帮助,还可以为超导材料的实验研究提供参考。

       在过去的十几年时间,凝聚态物理学家对低维超导–量子点系统的兴趣急剧增加。超导–量子点体系中主要存在两个物理过程:磁性杂质与巡游电子产生近藤屏蔽效应、磁性杂质与库柏对散射诱导形成 Yu-Shiba-Rusinov 束缚态。将超导电极换成 Ising 超导体,Ising 型的自旋轨道耦合会对其产生显著影响。我们利用解格林函数运动方程的方法,研究了 Ising 超导–量子点体系中的多体关联效应。我们的结果表明此时系统的基态行为由 Ising 超导电性和近藤效应竞争主导,主要由 Ising 自旋轨道耦合强度 𝐼𝑠𝑜 和化学势 𝜇 决定。具体的,在电子型掺杂系统中,当 𝐼𝑠𝑜 ⩽ 𝜇 时,随着 Ising 自旋轨道耦合的增大,近藤效应被抑制,系统倾向于表现 Yu-Shiba-Rusinov 束缚态的行为;相反,当 𝐼𝑠𝑜 > 𝜇 时,随着 Ising 自旋轨道耦合的 增大,超导配对更容易被破环,系统倾向于表现近藤单态行为。同时,我们发现空穴型掺杂系统的情况和电子型掺杂完全相反。

       铜氧化物超导体是典型的强关联电子系统,在理论上单带的 𝑡–𝐽 模型被认为 可以抓住铜氧化物超导体中的主要物理。镍基超导体的晶体结构与铜氧化物超导体非常相似,这为非常规超导机理的研究提供了一个新的平台。有人提出镍基超导体中的超交换作用的 𝐽 值比铜氧化物超导体小,这启发我们利用密度矩阵重整化群的方法,研究了六条腿梯子晶格上的小 𝐽 情况下 𝑡–𝐽 模型系统的基态行为。我们在研究的参数范围内发现了两个条纹相和一个 SDW + CDW 相。在两个条纹相中,都存在交织的自旋密度波和电荷密度波,它们的波长与掺杂浓度相关,且自旋密度波波长为电荷密度波的两倍;在 SDW + CDW 相中,存在一个波矢固定为反铁磁波矢的自旋密度波和一个波长相对条纹相更短的电荷密度波。在三个相中均没有发现准长程超导序。我们的结果表明在更深的 Mott 区域,超导电性受到抑制, 而交织的自旋序和电荷序得到增强。

       魔角石墨烯超导体是一种新型非常规超导体。有人提出其中的超导电性是由范霍夫奇点附近的费米面嵌套驱动的,相关的绝缘态是某种密度波。这个观点在两能带模型的研究中得到了验证,但是两能带的研究模型在能态拓扑上存在问题,于是我们选用了一个能同时抓住魔角石墨烯费米能级附近的能带结构、对称性和拓扑性质的五能带模型,并利用无规相近似的方法对其进行研究。我们发现忽略能谷间微小的交换相互作用,SU(2)K × SU(2)K′ 对称性会使系统的电荷密度波和自旋密度波简并,同时超导的单态和三重态配对也会一一简并。在范霍夫奇点附近的超导配对以简并的 𝑑 波超导和 𝑝 波超导配对为主导。考虑能谷间微小的交换相互作用,电荷密度波和自旋密度波的简并性破坏,同样超导的单态和三重态配对简并性也会破坏,简并性破坏后系统的基态倾向性由交换相互作用的系数的符号决定。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] ONNES H K. Further experiments with liquid helium[M]. Springer Netherlands, 1911: 201-220.
[2] ONNES H K. Investigations into the properties of substances at low temperatures, which have led, amongst other things, to the preparation of liquid helium[J]. Nobel lecture, 1913, 4: 306-336.
[3] MEISSNER W, OCHSENFELD R. Ein neuer effekt bei eintritt der supraleitfähigkeit[J]. Naturwissenschaften, 1933, 21(44): 787-788.
[4] LONDON F, LONDON H. The electromagnetic equations of the supraconductor[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935, 149(866): 71-88.
[5] GINZBURG V L, GINZBURG V L, LANDAU L. On the theory of superconductivity[M].Springer, 2009.
[6] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity[J]. Physical review, 1957, 108(5): 1175.
[7] MCMILLAN W. Transition temperature of strong-coupled superconductors[J]. Physical Review, 1968, 167(2): 331.
[8] BEDNORZ J G, MÜLLER K A. Possible high T𝑐 superconductivity in the Ba-La-Cu-O system[J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189-193.
[9] WU M K, ASHBURN J R, TORNG C, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908.
[10] RAY P J. Structural investigation of La2−𝑥Sr𝑥CuO4+𝑦[D]. Master’s thesis (University of Copenhagen), 2015.
[11] LI D, LEE K, WANG B Y, et al. Superconductivity in an infinite-layer nickelate[J]. Nature, 2019, 572(7771): 624-627.
[12] LI D, WANG B Y, LEE K, et al. Superconducting dome in Nd1−𝑥Sr𝑥NiO2infinite layer films[J]. Physical Review Letters, 2020, 125(2): 027001.
[13] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magicangle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84.
[14] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50.
[15] LU J, ZHELIUK O, LEERMAKERS I, et al. Evidence for two-dimensional Ising superconductivity in gated MoS2[J]. Science, 2015, 350(6266): 1353-1357.
[16] XI X, WANG Z, ZHAO W, et al. Ising pairing in superconducting NbSe2 atomic layers[J].Nature Physics, 2016, 12(2): 139-143.
[17] TSEN A, HUNT B, KIM Y, et al. Nature of the quantum metal in a two-dimensional crystalline superconductor[J]. Nature Physics, 2016, 12(3): 208-212.
[18] XING Y, ZHAO K, SHAN P, et al. Ising superconductivity and quantum phase transition in macro-size monolayer NbSe2[J]. Nano letters, 2017, 17(11): 6802-6807.
[19] DE FRANCESCHI S, KOUWENHOVEN L, SCHÖNENBERGER C, et al. Hybrid superconductor–quantum dot devices[J]. Nature nanotechnology, 2010, 5(10): 703-711.
[20] KOUWENHOVEN L P, AUSTING D, TARUCHA S. Few-electron quantum dots[J]. Reports on Progress in Physics, 2001, 64(6): 701.
[21] LUH Y U. Bound state in superconductors with paramagnetic impurities[J]. Acta Physica Sinica, 1965, 24(1).
[22] SHIBA H. Classical spins in superconductors[J]. Progress of theoretical Physics, 1968, 40(3): 435-451.
[23] RUSINOV A. Theory of gapless superconductivity in alloys containing paramagnetic impurities[J]. Soviet Physics JETP, 1969, 29(6): 1101-1106.
[24] SALKOLA M, BALATSKY A, SCHRIEFFER J. Spectral properties of quasiparticle excitations induced by magnetic moments in superconductors[J]. Physical Review B, 1997, 55(18): 12648.
[25] BAUER J, OGURI A, HEWSON A. Spectral properties of locally correlated electrons in a Bardeen–Cooper–Schrieffer superconductor[J]. Journal of Physics: Condensed Matter, 2007,19(48): 486211.
[26] BALATSKY A V, VEKHTER I, ZHU J X. Impurity-induced states in conventional and unconventional superconductors[J]. Reviews of Modern Physics, 2006, 78(2): 373.
[27] MATSUURA T. The effects of impurities on superconductors with Kondo effect[J]. Progress of Theoretical Physics, 1977, 57(6): 1823-1835.
[28] SATORI K, SHIBA H, SAKAI O, et al. Numerical renormalization group study of magnetic impurities in superconductors[J]. Journal of the Physical Society of Japan, 1992, 61(9): 3239-3254.
[29] ALICEA J. New directions in the pursuit of Majorana fermions in solid state systems[J]. Reports on progress in physics, 2012, 75(7): 076501.
[30] BEENAKKER C. Search for Majorana fermions in superconductors[J]. Annual Review of Condensed Matter Physics, 2013, 4(1): 113-136.
[31] ELLIOTT S R, FRANZ M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics[J]. Reviews of Modern Physics, 2015, 87(1): 137.
[32] SAITO Y, NAKAMURA Y, BAHRAMY M S, et al. Superconductivity protected by spin–valley locking in ion-gated MoS2[J]. Nature Physics, 2016, 12(2): 144-149.
[33] ANDERSON P W. The resonating valence bond state in La2CuO4 and superconductivity[J].science, 1987, 235(4793): 1196-1198.
[34] SCHILLING A, CANTONI M, GUO J, et al. Superconductivity above 130 k in the hg–ba–ca–cu–o system[J]. Nature, 1993, 363(6424): 56-58.
[35] YUAN J, HE G, YANG H, et al. Research trends in electron-doped cuprate superconductors[J].Science China Physics, Mechanics & Astronomy, 2015, 58: 1-11.
[36] RYBICKI D, JURKUTAT M, REICHARDT S, et al. Perspective on the phase diagram of cuprate high-temperature superconductors[J]. Nature communications, 2016, 7(1): 11413.
[37] PRESLAND M, TALLON J, BUCKLEY R, et al. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors[J]. Physica C: Superconductivity, 1991, 176(1-3): 95-105.
[38] OBERTELLI S, COOPER J, TALLON J. Systematics in the thermoelectric power of high-T𝑐 oxides[J]. Physical Review B, 1992, 46(22): 14928.
[39] LOESER A, SHEN Z X, DESSAU D, et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+𝛿[J]. Science, 1996, 273(5273): 325-329.
[40] DING H, YOKOYA T, CAMPUZANO J C, et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-T𝑐 superconductors[J]. Nature, 1996, 382(6586): 51-54.
[41] MARSHALL D, DESSAU D, LOESER A, et al. Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+𝛿: Angle-resolved photoemission results[J]. Physical Review Letters, 1996, 76(25): 4841.
[42] KEIMER B, KIVELSON S A, NORMAN M R, et al. From quantum matter to high-temperature superconductivity in copper oxides[J]. Nature, 2015, 518(7538): 179-186.
[43] FRADKIN E, KIVELSON S A, TRANQUADA J M. Colloquium: Theory of intertwined orders in high temperature superconductors[J]. Reviews of Modern Physics, 2015, 87: 457-482.
[44] ZHANG F, RICE T. Effective Hamiltonian for the superconducting Cu oxides[J]. Physical Review B, 1988, 37(7): 3759.
[45] CORBOZ P, RICE T M, TROYER M. Competing states in the 𝑡–𝐽 model: Uniform D-wave state versus stripe state[J]. Physical Review Letters, 2014, 113(4): 046402.
[46] DODARO J F, JIANG H C, KIVELSON S A. Intertwined order in a frustrated four-leg 𝑡–𝐽 cylinder[J]. Physical Review B, 2017, 95(15): 155116.
[47] JIANG H C, WENG Z Y, KIVELSON S A. Superconductivity in the doped 𝑡–𝐽 model: Results for four-leg cylinders[J]. Physical Review B, 2018, 98(14): 140505.
[48] CORBOZ P, WHITE S R, VIDAL G, et al. Stripes in the two-dimensional 𝑡–𝐽 model with infinite projected entangled-pair states[J]. Physical Review B, 2011, 84(4): 041108.
[49] WHITE S R, SCALAPINO D. Pairing on striped 𝑡–𝑡′–𝐽 lattices[J]. Physical Review B, 2009, 79(22): 220504.
[50] GONG S, ZHU W, SHENG D. Robust d-wave superconductivity in the square-lattice 𝑡–𝐽 model[J]. Physical Review Letters, 2021, 127(9): 097003.
[51] ANISIMOV V, BUKHVALOV D, RICE T. Electronic structure of possible nickelate analogs to the cuprates[J]. Physical Review B, 1999, 59(12): 7901.
[52] OSADA M, WANG B Y, LEE K, et al. Phase diagram of infinite layer praseodymium nickelate Pr1−𝑥Sr𝑥NiO2 thin films[J]. Physical Review Materials, 2020, 4(12): 121801.
[53] OSADA M, WANG B Y, GOODGE B H, et al. A superconducting praseodymium nickelate with infinite layer structure[J]. Nano letters, 2020, 20(8): 5735-5740.
[54] OSADA M, WANG B Y, GOODGE B H, et al. Nickelate superconductivity without rare-earth magnetism:(La, Sr) NiO2[J]. Advanced Materials, 2021, 33(45): 2104083.
[55] ZENG S, LI C, CHOW L E, et al. Superconductivity in infinite-layer nickelate La1−𝑥Ca𝑥NiO2 thin films[J]. Science advances, 2022, 8(7): eabl9927.
[56] AZUMA M, HIROI Z, TAKANO M, et al. Superconductivity at 110 K in the infinite-layer compound (Sr1−𝑥Ca𝑥)1−𝑦CuO2[J]. Nature, 1992, 356(6372): 775-776.
[57] NOMURA Y, ARITA R. Superconductivity in infinite-layer nickelates[J]. Reports on Progress in Physics, 2022.
[58] HAYWARD M, ROSSEINSKY M. Synthesis of the infinite layer Ni (I) phase NdNiO2+𝑥 by low temperature reduction of NdNiO3 with sodium hydride[J]. Solid state sciences, 2003, 5(6): 839-850.
[59] SAKAKIBARA H, USUI H, SUZUKI K, et al. Model construction and a possibility of cupratelike pairing in a new d9 nickelate superconductor (Nd, Sr) NiO2[J]. Physical Review Letters, 2020, 125(7): 077003.
[60] WU X, DI SANTE D, SCHWEMMER T, et al. Robust 𝑑𝑥2−𝑦2 -wave superconductivity of infinite-layer nickelates[J]. Physical Review B, 2020, 101(6): 060504.
[61] GU Y, ZHU S, WANG X, et al. A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates[J]. Communications Physics, 2020, 3(1): 84.
[62] BEEN E, LEE W S, HWANG H Y, et al. Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates[J]. Physical Review X, 2021, 11(1): 011050.
[63] KAPEGHIAN J, BOTANA A S. Electronic structure and magnetism in infinite-layer nickelates RNiO2 (R= La- Lu)[J]. Physical Review B, 2020, 102(20): 205130.
[64] LECHERMANN F. Multiorbital processes rule the Nd1−𝑥Sr𝑥NiO2 normal state[J]. Physical Review X, 2020, 10(4): 041002.
[65] WERNER P, HOSHINO S. Nickelate superconductors: Multiorbital nature and spin freezing [J]. Physical Review B, 2020, 101(4): 041104.
[66] LECHERMANN F. Late transition metal oxides with infinite-layer structure: Nickelates versus cuprates[J]. Physical Review B, 2020, 101(8): 081110.
[67] LECHERMANN F. Doping-dependent character and possible magnetic ordering of NdNiO2 [J]. Physical Review Materials, 2021, 5(4): 044803.
[68] NOMURA Y, HIRAYAMA M, TADANO T, et al. Formation of a two-dimensional singlecomponent correlated electron system and band engineering in the nickelate superconductor NdNiO2 [J]. Physical Review B, 2019, 100(20): 205138.
[69] HIRSCH J, MARSIGLIO F. Hole superconductivity in infinite-layer nickelates[J]. Physica C: Superconductivity and its Applications, 2019, 566: 1353534.
[70] GU Q, LI Y, WAN S, et al. Single particle tunneling spectrum of superconductingNd1−𝑥Sr𝑥NiO2 thin films[J]. Nature communications, 2020, 11(1): 6027.
[71] LEE P A, NAGAOSA N, WEN X G. Doping a Mott insulator: Physics of high-temperature superconductivity[J]. Reviews of modern physics, 2006, 78(1): 17.
[72] SULEWSKI P, FLEURY P, LYONS K, et al. Light scattering from quantum spin fluctuations in R2CuO4 (R= La, Nd, Sm)[J]. Physical Review B, 1990, 41(1): 225.
[73] FU Y, WANG L, CHENG H, et al. Core-level x-ray photoemission and Raman spectroscopy studies on electronic structures in Mott-Hubbard type nickelate oxide NdNiO2[A]. 2019.
[74] LU H, ROSSI M, NAG A, et al. Magnetic excitations in infinite-layer nickelates[J]. Science,2021, 373(6551): 213-216.
[75] ZHANG R, LANE C, SINGH B, et al. Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like 3𝑑𝑥2−𝑦2 band[J]. Communications Physics, 2021, 4(1): 118.
[76] RYEE S, YOON H, KIM T J, et al. Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd1−𝑥Sr𝑥NiO2[J]. Physical Review B, 2020, 101(6): 064513.
[77] LEONOV I, SKORNYAKOV S, SAVRASOV S. Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2 upon hole doping[J]. Physical Review B, 2020, 101(24): 241108.
[78] LEONOV I. Effect of lattice strain on the electronic structure and magnetic correlations in infinite-layer (Nd, Sr) NiO2[J]. Journal of Alloys and Compounds, 2021, 883: 160888.
[79] DOS SANTOS J L, PERES N, NETO A C. Graphene bilayer with a twist: Electronic structure[J]. Physical Review Letters, 2007, 99(25): 256802.
[80] BISTRITZER R, MACDONALD A H. Moiré bands in twisted double-layer graphene[J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12233-12237.
[81] YOO H, ENGELKE R, CARR S, et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene[J]. Nature materials, 2019, 18(5): 448-453.
[82] TOMARKEN S L, CAO Y, DEMIR A, et al. Electronic compressibility of magic-angle graphene superlattices[J]. Physical Review Letters, 2019, 123(4): 046601.
[83] OCHI M, KOSHINO M, KUROKI K. Possible correlated insulating states in magic-angle twisted bilayer graphene under strongly competing interactions[J]. Physical Review B, 2018,98(8): 081102.
[84] VENDERBOS J W, FERNANDES R M. Correlations and electronic order in a two-orbital honeycomb lattice model for twisted bilayer graphene[J]. Physical Review B, 2018, 98(24): 245103.
[85] ZOU L, PO H C, VISHWANATH A, et al. Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions[J]. Physical Review B,2018, 98(8): 085435.
[86] DODARO J F, KIVELSON S A, SCHATTNER Y, et al. Phases of a phenomenological model of twisted bilayer graphene[J]. Physical Review B, 2018, 98(7): 075154.
[87] THOMSON A, CHATTERJEE S, SACHDEV S, et al. Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene[J]. Physical Review B, 2018, 98(7): 075109.
[88] XIE M, MACDONALD A H. On the nature of the correlated insulator states in twisted bilayer graphene. arXiv e-prints, art[A]. 2018.
[89] KANG J, VAFEK O. Strong coupling phases of partially filled twisted bilayer graphene narrow bands[J]. Physical Review Letters, 2019, 122(24): 246401.
[90] SEO K, KOTOV V N, UCHOA B. Ferromagnetic mott state in twisted graphene bilayers at the magic angle[J]. Physical Review Letters, 2019, 122(24): 246402.
[91] YANKOWITZ M, CHEN S, POLSHYN H, et al. Tuning superconductivity in twisted bilayer graphene[J]. Science, 2019, 363(6431): 1059-1064.
[92] PADHI B, PHILLIPS P W. Pressure-induced metal-insulator transition in twisted bilayer graphene[J]. Physical Review B, 2019, 99(20): 205141.
[93] PADHI B, SETTY C, PHILLIPS P W. Doped twisted bilayer graphene near magic angles:proximity to Wigner crystallization, not Mott insulation[J]. Nano letters, 2018, 18(10): 6175-6180.
[94] KIM K, DASILVA A, HUANG S, et al. Tunable moiré bands and strong correlations in smalltwist-angle bilayer graphene[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3364-3369.
[95] CHU Y, ZHU F, WEN L, et al. Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics[J]. Chinese Physics B, 2020, 29(11): 117401.
[96] LIU C C, ZHANG L D, CHEN W Q, et al. Chiral spin density wave and d+ i d superconductivity in the magic-angle-twisted bilayer graphene[J]. Physical Review Letters, 2018, 121(21): 217001.
[97] LIN Y P, NANDKISHORE R M. Kohn-Luttinger superconductivity on two orbital honeycomb lattice[J]. Physical Review B, 2018, 98(21): 214521.
[98] GONZALEZ J, STAUBER T. Kohn-luttinger superconductivity in twisted bilayer graphene[J]. Physical Review Letters, 2019, 122(2): 026801.
[99] YOU Y Z, VISHWANATH A. Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene[J]. npj Quantum Materials, 2019, 4(1): 16.
[100] SHERKUNOV Y, BETOURAS J J. Electronic phases in twisted bilayer graphene at magic angles as a result of Van Hove singularities and interactions[J]. Physical Review B, 2018, 98(20): 205151.
[101] YUAN N F, FU L. Model for the metal-insulator transition in graphene superlattices and beyond[J]. Physical Review B, 2018, 98(4): 045103.
[102] LU C, ZHANG Y, ZHANG Y, et al. Chiral SO (4) spin-valley density wave and degenerate topological superconductivity in magic-angle twisted bilayer graphene[J]. Physical Review B, 2022, 106(2): 024518.
[103] FLATTÉ M E, BYERS J M. Local electronic structure of a single magnetic impurity in a superconductor[J]. Physical Review Letters, 1997, 78(19): 3761.
[104] FRANKE K, SCHULZE G, PASCUAL J. Competition of superconducting phenomena and Kondo screening at the nanoscale[J]. Science, 2011, 332(6032): 940-944.
[105] KIM B K, AHN Y H, KIM J J, et al. Transport measurement of Andreev bound states in a Kondo-correlated quantum dot[J]. Physical Review Letters, 2013, 110(7): 076803.
[106] CLERK A A, AMBEGAOKAR V. Loss of 𝜋-junction behavior in an interacting impurity Josephson junction[J]. Physical Review B, 2000, 61(13): 9109.
[107] SIANO F, EGGER R. Erratum: Josephson current through a nanoscale magnetic quantum dot[phys. rev. lett. 93, 047002 (2004)][J]. Physical Review Letters, 2005, 94(3): 039902.
[108] BUIZERT C, OIWA A, SHIBATA K, et al. Kondo universal scaling for a quantum dot coupled to superconducting leads[J]. Physical Review Letters, 2007, 99(13): 136806.
[109] LEE E J, JIANG X, AGUADO R, et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors[J]. Physical Review Letters, 2012, 109(18): 186802.
[110] CHANG W, MANUCHARYAN V, JESPERSEN T, et al. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction[J]. Physical Review Letters, 2013, 110(21): 217005.
[111] LI L, ZHENG B B, CHEN W Q, et al. 0- 𝜋 transition characteristic of the Josephson current in a carbon nanotube quantum dot[J]. Physical Review B, 2014, 89(24): 245135.
[112] ISLAND J O, GAUDENZI R, DE BRUIJCKERE J, et al. Proximity-induced Shiba states in a molecular junction[J]. Physical Review Letters, 2017, 118(11): 117001.
[113] LI L, CAO Z, FANG T F, et al. Kondo screening of Andreev bound states in a normal metal–quantum dot–superconductor system[J]. Physical Review B, 2016, 94(16): 165144.
[114] LU J, ZHELIUK O, CHEN Q, et al. Full superconducting dome of strong Ising protection in gated monolayer WS2[J]. Proceedings of the National Academy of Sciences, 2018, 115(14):3551-3556.
[115] PHILLIPS M, AJI V. Kondo screening in two-dimensional p-type transition-metal dichalcogenides[J]. Physical Review B, 2017, 95(7): 075103.
[116] SHARMA G, TEWARI S. Yu-Shiba-Rusinov states and topological superconductivity in Ising paired superconductors[J]. Physical Review B, 2016, 94(9): 094515.
[117] ZHOU B T, YUAN N F, JIANG H L, et al. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides[J]. Physical Review B, 2016, 93(18): 180501.
[118] ZUBAREV D N. Double-time Green functions in statistical physics[J]. Soviet Physics Uspekhi, 1960, 3(3): 320.
[119] LUO H G, YING J J, WANG S J. Equation of motion approach to the solution of the Anderson model[J]. Physical Review B, 1999, 59(15): 9710.
[120] ANDERSON P W. Localized magnetic states in metals[J]. Physical Review, 1961, 124(1): 41.
[121] LEE E J, JIANG X, HOUZET M, et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures[J]. Nature nanotechnology, 2014, 9(1): 79-84.
[122] VECINO E, MARTÍN-RODERO A, YEYATI A L. Josephson current through a correlated quantum level: Andreev states and 𝜋 junction behavior[J]. Physical Review B, 2003, 68(3): 035105.
[123] CUEVAS J, YEYATI A L, MARTÍN-RODERO A. Kondo effect in normal-superconductor quantum dots[J]. Physical Review B, 2001, 63(9): 094515.
[124] BENJAMIN C, JONCKHEERE T, ZAZUNOV A, et al. Controllable 𝜋 junction in a Josephson quantum-dot device with molecular spin[J]. The European Physical Journal B, 2007, 57: 279-289.
[125] LACROIX C. Density of states for the Anderson model[J]. Journal of Physics F: Metal Physics, 1981, 11(11): 2389.
[126] LI L, GAO M X, WANG Z H, et al. Rashba-induced Kondo screening of a magnetic impurity in a two-dimensional superconductor[J]. Physical Review B, 2018, 97(6): 064519.
[127] YE J, ZHANG Y J, AKASHI R, et al. Superconducting dome in a gate-tuned band insulator[J]. Science, 2012, 338(6111): 1193-1196.
[128] COSTANZO D, JO S, BERGER H, et al. Gate-induced superconductivity in atomically thin MoS2 crystals[J]. Nature nanotechnology, 2016, 11(4): 339-344.
[129] KONDO J. Resistance minimum in dilute magnetic alloys[J]. Progress of theoretical physics, 1964, 32(1): 37-49.
[130] HALDANE F. Scaling theory of the asymmetric Anderson model[J]. Physical Review Letters, 1978, 40(6): 416.
[131] ARMITAGE N, FOURNIER P, GREENE R. Progress and perspectives on electron-doped cuprates[J]. Reviews of modern physics, 2010, 82(3): 2421.
[132] DAMASCELLI A, HUSSAIN Z, SHEN Z X. Angle-resolved photoemission studies of the cuprate superconductors[J]. Reviews of modern physics, 2003, 75(2): 473.
[133] NORMAN M, PÉPIN C. The electronic nature of high temperature cuprate superconductors [J]. Reports on Progress in Physics, 2003, 66(10): 1547.
[134] FISHMAN M, WHITE S, STOUDENMIRE E. The ITensor software library for tensor network calculations[J]. SciPost Physics Codebases, 2022: 004.
[135] WHITE S R, SCALAPINO D J. Density matrix renormalization group study of the striped phase in the 2D 𝑡 − 𝐽 model[J]. Physical Review Letters, 1998, 80: 1272-1275.
[136] VOLOVIK G E. Graphite, graphene, and the flat band superconductivity[J]. JETP Letters, 2018, 107: 516-517.
[137] ROY B, JURIČIĆ V. Unconventional superconductivity in nearly flat bands in twisted bilayer graphene[J]. Physical Review B, 2019, 99(12): 121407.
[138] PO H C, ZOU L, VISHWANATH A, et al. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene[J]. Physical Review X, 2018, 8(3): 031089.
[139] XU C, BALENTS L. Topological superconductivity in twisted multilayer graphene[J]. Physical Review Letters, 2018, 121(8): 087001.
[140] BASKARAN G. Theory of Emergent Josephson Lattice in Neutral Twisted Bilayer Graphene (Moiŕe is Different)[A]. 2018.
[141] CHITTARI B L, CHEN G, ZHANG Y, et al. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices[J]. Physical Review Letters, 2019, 122(1): 016401.
[142] WU F, LOVORN T, TUTUC E, et al. Hubbard model physics in transition metal dichalcogenide moiré bands[J]. Physical Review Letters, 2018, 121(2): 026402.
[143] XIAN L, KENNES D M, TANCOGNE-DEJEAN N, et al. Multiflat bands and strong correlations in twisted bilayer boron nitride: Doping-induced correlated insulator and superconductor[J]. Nano letters, 2019, 19(8): 4934-4940.
[144] PO H C, ZOU L, SENTHIL T, et al. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene[J]. Physical Review B, 2019, 99(19): 195455.
[145] BISTRITZER R, MACDONALD A H. Transport between twisted graphene layers[J]. Physical Review B, 2010, 81(24): 245412.
[146] GRASER S, MAIER T, HIRSCHFELD P, et al. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides[J]. New Journal of Physics, 2009, 11(2): 025016.
[147] MAIER T, GRASER S, HIRSCHFELD P, et al. D-wave pairing from spin fluctuations in the K𝑥Fe2−𝑦Se2 superconductors[J]. Physical Review B, 2011, 83(10): 100515.

所在学位评定分委会
物理学
国内图书分类号
O511
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545123
专题理学院_物理系
推荐引用方式
GB/T 7714
张渝. 若干超导体系中关联效应的相关理论研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930921-张渝-物理系.pdf(8852KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张渝]的文章
百度学术
百度学术中相似的文章
[张渝]的文章
必应学术
必应学术中相似的文章
[张渝]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。