[1] MEHROTRA P. Biosensors and their applications–a review[J]. Journal of Oral Biology and Craniofacial Research, 2016, 6(2): 153-159.
[2] PERUMAL V, HASHIM U. Advances in biosensors: principle, architecture and applications[J]. Journal of Applied Biomedicine, 2014, 12(1): 1-15.
[3] TURNER A P F. Biosensors: sense and sensibility[J]. Chemical Society Reviews, 2013, 42(8): 3184-3196.
[4] LOPEZ G A, ESTEVEZ M C, SOLER M, et al. Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration[J]. Nanophotonics, 2017, 6(1): 123-136.
[5] THEVENOT D R, TOTH K, DURST R A, et al. Electrochemical biosensors: recommended definitions and classification[J]. Biosensors & Bioelectronics, 2001, 16(1-2): 121-131.
[6] PICKUP J C, HUSSAIN F, EVANS N D, et al. Fluorescence-based glucose sensors[J]. Biosensors & Bioelectronics, 2005, 20(12): 2555-2565.
[7] JIANG P J, GUO Z J. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors[J]. Coordination Chemistry Reviews, 2004, 248(1-2): 205-229.
[8] YU Q M, CHEN S F, TAYLOR A D, et al. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor[J]. Sensors and Actuators B-Chemical, 2005, 107(1): 193-201.
[9] HOMOLA J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical reviews, 2008, 108(2): 462-493.
[10] Yakovleva J, Davidsson R, Bengtsson M, et al. Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection[J]. Biosensors & Bioelectronics, 2003, 19(1): 21-34.
[11] ZHANG J, QI H L, LI Y, et al. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex[J]. Analytical Chemistry, 2008, 80(8): 2888-2894.
[12] CAO J, SUN T, GRATTAN K T V. Gold nanorod-based localized surface plasmon resonance biosensors: a review[J]. Sensors and Actuators B-Chemical, 2014, 195: 332-351.
[13] DAHLIN A B, WITTENBERG N J, HOOK F, et al. Promises and challenges of nanoplasmonic devices for refractometric biosensing[J]. Nanophotonics, 2013, 2(2): 83-101.
[14] CHEN S, SVEDENDAHL M, VAN DUYNE R P, et al. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity[J]. Nano Letters, 2011, 11(4): 1826-1830.
[15] LIANG Y Z, ZHANG H, ZHU W Q, et al. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing[J]. ACS Sensors, 2017, 2(12): 1796-1804.
[16] BENSON O. Assembly of hybrid photonic architectures from nanophotonic constituents[J]. Nature, 2011, 480(7376): 193-199.
[17] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
[18] SHERRY L J, CHANG S H, SCHATZ G C, et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Letters, 2005, 5(10): 2034-2038.
[19] KRETSCHMANN E, RAETHER H. Radiative decay of non radiative surface plasmons excited by light[J]. Zeitschrift für Naturforschung A, 1968, 23(12): 2135-2136.
[20] SHARMA P, SEMWAL V, GUPTA B D. A highly selective LSPR biosensor for the detection of taurine realized on optical fiber substrate and gold nanoparticles[J]. Optical Fiber Technology, 2019, 52: 101962.
[21] WANG C, NIE X G, SHI Y, et al. Direct plasmon-accelerated electrochemical reaction on gold nanoparticles[J]. ACS Nano, 2017, 11(6): 5897-5905.
[22] YANG X, YANG M X, PANG B, et al. Gold nanomaterials at work in biomedicine[J]. Chemical Reviews, 2015, 115(19): 10410-10488.
[23] FAUCHEAUX J A, JAIN K. Plasmons in photocharged ZnO nanocrystals revealing the nature of charge dynamics[J]. Journal of Physical Chemistry Letters, 2013, 4(18): 3024-3030.
[24] CAO S, ZHANG S L, ZHANG T R, et al. Metal-doped TiO2 colloidal nanocrystals with broadly tunable plasmon resonance absorption[J]. Journal of Materials Chemistry C, 2018, 6(15): 4007-4014.
[25] ABBOUD J E, CHONG X Y, ZHANG M J, et al. Photothermally activated motion and ignition using aluminum nanoparticles[J]. Applied Physics Letters, 2013, 102(2): 023905.
[26] CHONG X Y, ABBOUD J, ZHANG Z L. Plasmonics resonance enhanced active photothermal effects of aluminum and iron nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(3): 2234-2240.
[27] LIE S Q, WANG D M, GAO M X, et al. Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence[J]. Nanoscale, 2014, 6(17): 10289-10296.
[28] ZHU D, WANG L, LIU Z, et al. Effects of surface ligands on localized surface plasmon resonance and stabilization of Cu2−xSe nanocrystals[J]. Applied Surface Science, 2020, 509: 145327.
[29] ZHANG S H, HUANG Q, ZHANG L J, et al. Vacancy engineering of Cu2-xSe nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer[J]. Nanoscale, 2018, 10(7): 3130-3143.
[30] SEPULVEDA B, ANGELOME P C, LECHUGA L M, et al. LSPR-based nanobiosensors[J]. Nano Today, 2009, 4(3): 244-251.
[31] JAIN P K, HUANG X H, EL-SAYED I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41(12): 1578-1586.
[32] SHABANINEZHAD M, RAMAKRISHNA G. Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells[J]. Journal of Chemical Physics, 2019, 150(14): 144116.
[33] PARK Y I, IM H, WEISSLEDER R, et al. Nanostar clustering improves the sensitivity of plasmonic assays[J]. Bioconjugate Chemistry, 2015, 26(8): 1470-1474.
[34] WU H J, HENZIE J, LIN W C, et al. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors[J]. Nature Methods, 2012, 9(12): 1189-1191.
[35] HU L, HUANG Y, FANG L, et al. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality[J]. Scientific Reports, 2015, 5(1): 16069.
[36] CHUNG T, LEE S Y, SONG E Y, et al. Plasmonic nanostructures for nano-scale biosensing[J]. Sensors, 2011, 11(11): 10907-10929.
[37] LIU J, JALALI M, MAHSHID S, et al. Are plasmonic optical biosensors ready for use in point-of-need applications?[J]. Analyst, 2020, 145(2): 364-384.
[38] XU T, GENG Z. Strategies to improve performances of LSPR biosensing: structure, materials, and interface modification[J]. Biosensors & Bioelectronics, 2021, 174: 112850.
[39] WANG X, ZHU J, TONG H, et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer[J]. Chinese Physics B, 2019, 28(4): 044201.
[40] SHEN Y, ZHOU J, LIU T, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nature Communications, 2013, 4(1): 2381.
[41] WANG S, ESFAHANI M, GURKAN U A, et al. Efficient on-chip isolation of HIV subtypes[J]. Lab Chip, 2012, 12(8): 1508-1515.
[42] HAES A J, CHANG L, KLEIN W L, et al. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor[J]. Journal of the American Chemical Society, 2005, 127(7): 2264-2271.
[43] GUO L, KIM D H. LSPR biomolecular assay with high sensitivity induced by aptamerantigen-antibody sandwich complex[J]. Biosensors & Bioelectronics, 2012, 31(1): 568.
[44] HALL W P, NGATIA S N, VAN DUYNE R P. LSPR biosensor signal enhancement using nanoparticle-antibody conjugates[J]. The Journal of Physical Chemistry C, 2011, 115(5): 1410-1414.
[45] HONG L, LU M, DINEL M P, et al. Hybridization conditions of oligonucleotidecapped gold nanoparticles for SPR sensing of microRNA[J]. Biosensors & Bioelectronics, 2018, 109: 230-236.
[46] ZANOLI L M, D'AGATA R, SPOTO G. Functionalized gold nanoparticles for ultrasensitive DNA detection[J]. Analytical and Bioanalytical Chemistry, 2012, 402(5): 1759-1771.
[47] HENDRY E, CARPY T, JOHNSTON J, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields[J]. Nature Nanotechnology, 2010, 5(11): 783-787.
[48] NIRSCHL M, REUTER F, VOROS J. Review of transducer principles for label-free biomolecular interaction analysis[J]. Biosensors, 2011, 1(3): 70-92.
[49] SOLER M, ESTEVEZ M C, ALVAREZ M, et al. Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies[J]. Sensors, 2014, 14(2): 2239-2258.
[50] NA H K, WI J S, SON H Y, et al. Discrimination of single nucleotide mismatches using a scalable, flexible, and transparent three-dimensional nanostructure-based plasmonic miRNA sensor with high sensitivity[J]. Biosensors & Bioelectronics, 2018, 113: 39-45.
[51] CHUANG C S, WU C Y, JUAN P H, et al. LMP1 gene detection using a capped gold nanowire array surface plasmon resonance sensor in a microfluidic chip[J]. Analyst, 2019, 145(1): 52-60.
[52] FOCSAN M, CRACIUN A M, POTARA M, et al. Flexible and tunable 3D gold nanocups platform as plasmonic biosensor for specific dual LSPR-SERS immunodetection[J]. Scientific Reports, 2017, 7(1): 1-11.
[53] KHATEB H, KLOS G, MEYER R L, et al. Development of a label-free LSPR-apta sensor for Staphylococcus aureus detection[J]. ACS Applied Bio Materials, 2020, 3(5): 3066-3077.
[54] ZHU S, LI H, YANG M, et al. Label-free detection of live cancer cells and DNA hybridization using 3D multilayered plasmonic biosensor[J]. Nanotechnology, 2018, 29(36): 365503.
[55] MARINAKOS S M, CHEN S H, CHILKOTI A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor[J]. Analytical Chemistry, 2007, 79(14): 5278-5283.
[56] GUO L H, ZHOU X D, KIM D H. Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors[J]. Biosensors & Bioelectronics, 2011, 26(5): 2246-2251.
[57] OH S Y, HEO N S, SHUKLA S, et al. Development of gold nanoparticle-aptamerbased LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat[J]. Scientific Reports, 2017, 7(1): 1-10.
[58] OH S Y, HEO N S, BAJPAI V K, et al. Development of a cuvette-based LSPR sensor chip using a plasmonically active transparent strip[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 299.
[59] KIM J, OH S Y, SHUKLA S, et al. Heteroassembled gold nanoparticles with sandwichimmunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg)[J]. Biosensors & Bioelectronics, 2018, 107: 118-122.
[60] LEE J H, KIM B C, OH B K, et al. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1[J]. NanomedicineNanotechnology Biology and Medicine, 2013, 9(7): 1018-1026.
[61] PARK J, IM H, HONG S, et al. Analyses of intravesicular exosomal proteins using a nano-plasmonic system[J]. ACS Photonics, 2018, 5(2): 487-494.
[62] WANG Y, LIU F, YANG Y, et al. Droplet evaporation-induced analyte concentration toward sensitive biosensing[J]. Materials Chemistry Frontiers, 2021, 5(15): 5639-5652.
[63] ZHONG X, CRIVOI A, DUAN F. Sessile nanofluid droplet drying[J]. Advances in Colloid and Interface Science, 2015, 217: 13-30.
[64] TARAFDAR S, TARASEVICH Y Y, DUTTA CHOUDHURY M, et al. Droplet drying patterns on solid substrates: from hydrophilic to superhydrophobic contact to levitating drops[J]. Advances in Condensed Matter Physics, 2018, 2018: 1-24.
[65] LARSON R G. Re-shaping the coffee ring[J]. Angewandte Chemie International Edition, 2012, 51(11): 2546-2548.
[66] RISTENPART W D, KIM P G, DOMINGUES C, et al. Influence of substrate conductivity on circulation reversal in evaporating drops[J]. Physical Review Letters, 2007, 99(23).
[67] SADEK C, SCHUCK P, FALLOURD Y, et al. Drying of a single droplet to investigate process-structure-function relationships: a review[J]. Dairy Science & Technology, 2015, 95(6): 771-794.
[68] DE ANGELIS F, GENTILE F, MECARINI F, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nature Photonics, 2011, 5(11): 683-688.
[69] HERNANDEZ-PEREZ R, FAN Z H, GARCIA-CORDERO J L. Evaporation-driven bioassays in suspended droplets[J]. Analytical Chemistry, 2016, 88(14): 7312-7317.
[70] LI D, CHEN R, ZHU X, et al. Light fueled mixing in open surface droplet microfluidics for rapid probe preparation[J]. Physical Chemistry Chemical Physics, 2021, 23(46): 26356-26365.
[71] KANG H, HEO Y J, KIM D J, et al. Droplet-guiding superhydrophobic arrays of plasmonic microposts for molecular concentration and detection[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37201-37209.
[72] SONG J, CHENG W F, NIE M T, et al. Partial leidenfrost evaporation-assisted ultrasensitive surface-enhanced Raman spectroscopy in a Janus water droplet on hierarchical plasmonic micro-/nanostructures[J]. ACS Nano, 2020, 14(8): 9521-9531.
[73] ZHU Y, DENG N, HU Z, et al. Droplet constraint by a superhydrophobicsuperhydrophilic hybrid surface with a SiO2 np coating for determination of heavy metals using LIBS[J]. ACS Applied Nano Materials, 2022, 5(12): 17508-17515.
[74] ROGERS J A, BAO Z, BALDWIN K, et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 4835-4840.
[75] SAITO M, KITAMURA A, MURAHASHI M, et al. Novel gold-capped nanopillars imprinted on a polymer film for highly sensitive plasmonic biosensing[J]. Analytical Chemistry, 2012, 84(13): 5494-5500.
[76] CAI J X, ZHANG C P, LIANG C W, et al. Solution-processed large-area gold nanocheckerboard metasurfaces on flexible plastics for plasmonic biomolecular sensing[J]. Advanced Optical Materials, 2019, 7(19): 1900516.
[77] ZHAO Z J, AHN J, HWANG S H, et al. Large-area nanogap-controlled 3D nanoarchitectures fabricated via layer-by-layer nanoimprint[J]. ACS Nano, 2021, 15(1): 503-514.
[78] ANSARI A, TREHAN R, WATSON C, et al. Increasing silicone mold longevity: a review of surface modification techniques for PDMS-PDMS double casting[J]. Soft Materials, 2021, 19(4): 388-399.
[79] AGHA A, WAHEED W, ALAMOODI N, et al. A review of cyclic olefin copolymer applications in microfluidics and microdevices[J]. Macromolecular Materials and Engineering, 2022, 307(8): 2200053.
[80] YOUNG T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805 (95): 65-87.
[81] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28: 988-994.
[82] CASSIE A B D, BAXTER S. Large contact angles of plant and animal surfaces[J]. Nature, 1945, 155(3923): 21-22.
[83] LIU L, ZHANG Y L, WANG W L, et al. Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene[J]. Advanced Materials, 2011, 23(10): 1246.
[84] MOHAMED K, ALKAISI M M, BLAIKIE R J. A three‐dimensional ultraviolet curable nanoimprint lithography (3D UV-NIL)[C]. AIP Conference Proceedings. American Institute of Physics, 2009, 1151(1): 114-117.
[85] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25 nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116.
[86] GUO L J. Nanoimprint lithography: methods and material requirements[J]. Advanced Materials, 2007, 19(4): 495-513.
[87] BALAUR E, SADATNAJAFI C, KOU S, et al. Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels[J]. Scientific Reports, 2016, 6(1): 1-11.
[88] RA S H, LEE H. Nano sized patterning on the thermoset materials using thermal curing nano-imprinting technology[J]. Solid State Phenomena, 2007, 121-123: 683.
[89] TURKEVICH J, STEVENSON P C, HILLIER J. A study of the nucleation and growth processes in the synthesis of colloidal gold[J]. Discussions of the Faraday Society, 1951(11): 55-75.
修改评论