中文版 | English
题名

基于时空注意力的城市交通流量预测研究

其他题名
RESEARCH ON URBAN TRAFFIC FLOW FORECASTING BASED ON SPATIO-TEMPORAL ATTENTION MECHANISM
姓名
姓名拼音
LIU Hangchen
学号
12032491
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
宋轩
导师单位
计算机科学与工程系
论文答辩日期
2023-05-13
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

现代交通给人们出行生活带来便捷的同时,也带了诸多如拥堵、安全方面的问题。因此,交通流量预测作为一个非常典型的多变量时间序列问题,在现代交通向智慧交通转型的过程中扮演了非常重要的角色。交通流量预测关注对复杂时空模式的捕捉,要考虑时间上的长短期依赖以及空间上不同感受野的依赖。传统的基于统计和机器学习的方法很难做到这一点。近年来诸多基于深度学习的方法和模型被广泛应用,如基于RNN的方法、基于GNN的方法、基于注意力的方法等。但这些方法往往对时间和空间信息进行分步提取,这使得模型只能交替捕获时间上或空间上的依赖,而不能显性、直接地提取复杂时空依赖。同时,这些方法往往面临巨大的开销,尤其是时间开销。为了解决这些问题,本文开展了基于时空注意力的城市交通流量预测研究。

本文研究了大量在交通流量预测和其他领域应用的时间依赖和空间依赖方法,通过对这些方法从原理、性能和效率等角度进行深入分析和总结。在此基础上,本文提出了时空网块分割交通预测模型(Spatio-Temporal Patch Transformer for Traffic Forecasting,Paformer)。该模型在时空数据上分割规整的网块,并通过块间注意力和块内注意力的多尺度注意力机制,实现了局部信息和全局信息的提取。通过实验,有效提高了流量预测的精度。

进一步,本文深入分析了Paformer中依然存在的问题,提出了基于时空聚类的时空联合交通流量预测(Spatio-Temporal Clustering Transformer,Clusformer)。该工作创新性地针对时空数据使用参数化深度聚类的方法,有效的对时空粒子进行了分类,并通过精心设计的三种注意力机制,捕获了多尺度依赖。一方面,本工作建立了一种方法来统一且显性地捕获时间依赖和空间依赖;另一方面,本工作大幅降低了Transformer模型的计算开销。实验结果表明,该工作的性能表现超过了近年国内外的前沿工作。

本文为交通流量预测问题提供了新的研究方向。同时,本文的思想和方法也可应用于其它领域的各种使用注意力机制的模型中,有较高的理论创新性和较为广泛的应用场景。

其他摘要

Modern transportation has brought both convenience and challenges to people's daily lives, making traffic flow prediction a crucial task for transportation development. As a typical multivariate time-series problem, it aims to capture spatio-temporal patterns while considering short-term and long-term temporal dependencies and spatial dependencies with different receptive fields. However, traditional statistical and machine learning methods have difficulty addressing these challenges. In recent years, many deep learning methods such as RNN-based, GNN-based, and attention-based methods have been widely used, but they extract temporal and spatial information separately, leaving the challenges to extract complex traffic dependencies directly. Furthermore, these methods often have significant computational costs, especially in terms of time. To address these issues, this paper proposes new methods to traffic flow prediction based on spatio-temporal attention.

By analyzing and summarizing various methods on capturing temporal and spatial dependencies, this paper proposes the Paformer. It segments regular grids on spatio-temporal data and extracts local and global dependencies through multi-scale attention mechanisms between and within patches. We achieved better performance on traffic flow prediction through experiments.
  
Additionally, we address the remaining issues in Paformer and propose an innovative approach named Clusformer. This method applies a parameterized deep clustering method to spatio-temporal data, effectively classifying spatio-temporal particles and capturing multi-scale dependencies through three well-designed attention mechanisms. This method provides a uniform and explicit way to capture temporal and spatial dependencies and significantly reduces computational costs. Experimental results approved that Clusformer outperforms the state-of-the-art works in recent years.
   
This paper provides a new research direction for traffic flow prediction problems and offers a solution to the challenges of spatio-temporal data analysis. The ideas and methods presented in this paper have broad application potential in other fields that use attention mechanisms, as they are highly innovative and theoretically sound.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] DIMITRAKOPOULOS G, DEMESTICHAS P. Intelligent transportation systems[J]. IEEE Vehicular Technology Magazine, 2010, 5(1): 77-84.

[2] FIGUEIREDO L, JESUS I, MACHADO J T, et al. Towards the development of intelligent transportation systems[C]//ITSC 2001. 2001 IEEE intelligent transportation systems. Proceedings (Cat. No. 01TH8585). IEEE, 2001: 1206-1211.

[3] NAGY A M, SIMON V. Survey on traffic prediction in smart cities[J]. Pervasive and Mobile Computing, 2018, 50: 148-163.

[4] BARROS J, ARAUJO M, ROSSETTI R J. Short-term real-time traffic prediction methods: A survey[C]//2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, 2015: 132-139.

[5] ISHAK S, AL-DEEK H. Performance evaluation of short-term time-series traffic prediction model[J]. Journal of transportation engineering, 2002, 128(6): 490-498.

[6] BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [J]. Advances in neural information processing systems, 2020, 33: 17804-17815.

[7] ZHU J, WANG Q, TAO C, et al. AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting[J]. IEEE Access, 2021, 9: 35973-35983.

[8] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[A]. 2017.

[9] LIN Z, FENG J, LU Z, et al. Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis[C]//Proceedings of the AAAI conference on artificial intelligence: volume 33. 2019: 1020-1027.

[10] ZHENG C, FAN X, WANG C, et al. Gman: A graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI conference on artificial intelligence: volume 34. 2020: 1234-1241.

[11] WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling[A]. 2019.

[12] CIRSTEA R G, KIEU T, GUO C, et al. EnhanceNet: Plugin neural networks for enhancing correlated time series forecasting[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021: 1739-1750.

[13] WU Z, PAN S, LONG G, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020: 753-763.

[14] JIANG R, YIN D, WANG Z, et al. Dl-traff: Survey and benchmark of deep learning models for urban traffic prediction[C]//Proceedings of the 30th ACM international conference on information & knowledge management. 2021: 4515-4525. 53

[15] LAN S, MA Y, HUANG W, et al. Dstagnn: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting[C]//International Conference on Machine Learning. PMLR, 2022: 11906-11917.

[16] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.

[17] XU M, DAI W, LIU C, et al. Spatial-temporal transformer networks for traffic flow forecasting [A]. 2020.

[18] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[A]. 2017.

[19] FANG Z, LONG Q, SONG G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021: 364-373.

[20] ZHOU H, REN D, XIA H, et al. Ast-gnn: An attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction[J]. Neurocomputing, 2021, 445: 298-308.

[21] PAN B, DEMIRYUREK U, SHAHABI C. Utilizing real-world transportation data for accurate traffic prediction[C]//2012 ieee 12th international conference on data mining. IEEE, 2012: 595- 604.

[22] ZHANG Y, LIU Y. Traffic forecasting using least squares support vector machines[J]. Transportmetrica, 2009, 5(3): 193-213.

[23] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Thirty-first AAAI conference on artificial intelligence. 2017.

[24] YAO H, TANG X, WEI H, et al. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction[C]//Proceedings of the AAAI conference on artificial intelligence: volume 33. 2019: 5668-5675.

[25] SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI conference on artificial intelligence: volume 34. 2020: 914-921.

[26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

[27] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE transactions on neural networks, 2008, 20(1): 61-80.

[28] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [A]. 2016.

[29] LEA C, FLYNN M D, VIDAL R, et al. Temporal convolutional networks for action segmentation and detection[C]//proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 156-165.

[30] BI J, ZHANG X, YUAN H, et al. A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(3): 1869-1879. 54

[31] KUANG L, HUA C, WU J, et al. Traffic volume prediction based on multi-sources GPS trajectory data by temporal convolutional network[J]. Mobile Networks and Applications, 2020, 25:1405-1417.

[32] ZHAO W, GAO Y, JI T, et al. Deep temporal convolutional networks for short-term traffic flowforecasting[J]. IEEE Access, 2019, 7: 114496-114507.

[33] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid sceneanalysis[J]. IEEE Transactions on pattern analysis and machine intelligence, 1998, 20(11):1254-1259.

[34] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[J]. Advances inneural information processing systems, 2014, 27.

[35] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to alignand translate[A]. 2014.

[36] XU K, BA J, KIROS R, et al. Show, attend and tell: Neural image caption generation with visualattention[C]//International conference on machine learning. PMLR, 2015: 2048-2057.

[37] LU J, XIONG C, PARIKH D, et al. Knowing when to look: Adaptive attention via a visualsentinel for image captioning[C]//Proceedings of the IEEE conference on computer vision andpattern recognition. 2017: 375-383.

[38] LIU G, GUO J. Bidirectional LSTM with attention mechanism and convolutional layer for textclassification[J]. Neurocomputing, 2019, 337: 325-338.

[39] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in neural information processing systems, 2014, 27.

[40] LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neuralmachine translation[A]. 2015.

[41] ZHANG P, XUE J, LAN C, et al. Adding attentiveness to the neurons in recurrent neuralnetworks[C]//proceedings of the European conference on computer vision (ECCV). 2018: 135-151.

[42] SONG K, YAO T, LING Q, et al. Boosting image sentiment analysis with visual attention[J].Neurocomputing, 2018, 312: 218-228.

[43] CHOROWSKI J, BAHDANAU D, CHO K, et al. End-to-end continuous speech recognitionusing attention-based recurrent nn: First results[A]. 2014.

[44] CHAN W, JAITLY N, LE Q, et al. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition[C]//2016 IEEE international conference on acoustics,speech and signal processing (ICASSP). IEEE, 2016: 4960-4964.

[45] YING H, ZHUANG F, ZHANG F, et al. Sequential recommender system based on hierarchicalattention network[C]//IJCAI International Joint Conference on Artificial Intelligence. 2018.

[46] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[A]. 2017.

[47] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances inneural information processing systems, 2017, 30.

[48] DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-training of deep bidirectional transformersfor language understanding[A]. 2018.55

[49] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understandingwith unsupervised learning[M]. Technical report, OpenAI, 2018.

[50] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9.

[51] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advancesin neural information processing systems, 2020, 33: 1877-1901.

[52] PARMAR N, VASWANI A, USZKOREIT J, et al. Image transformer[C]//International conference on machine learning. PMLR, 2018: 4055-4064.

[53] CHILD R, GRAY S, RADFORD A, et al. Generating long sequences with sparse transformers[A]. 2019.

[54] HO J, KALCHBRENNER N, WEISSENBORN D, et al. Axial attention in multidimensionaltransformers[A]. 2019.

[55] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[A]. 2020.

[56] STOCK J H, WATSON M W. Vector autoregressions[J]. Journal of Economic perspectives,2001, 15(4): 101-115.

[57] HUANG W, SONG G, HONG H, et al. Deep architecture for traffic flow prediction: deep beliefnetworks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems,2014, 15(5): 2191-2201.

[58] LV Y, DUAN Y, KANG W, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(2): 865-873.

[59] MA X, YU H, WANG Y, et al. Large-scale transportation network congestion evolution prediction using deep learning theory[J]. PloS one, 2015, 10(3): e0119044.

[60] LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns withdeep neural networks[C]//The 41st international ACM SIGIR conference on research & development in information retrieval. 2018: 95-104.

[61] HAMILTON J D, SUSMEL R. Autoregressive conditional heteroskedasticity and changes inregime[J]. Journal of econometrics, 1994, 64(1-2): 307-333.

[62] MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speedprediction using remote microwave sensor data[J]. Transportation Research Part C: EmergingTechnologies, 2015, 54: 187-197.

[63] LEE H, JIN S, CHU H, et al. Learning to Remember Patterns: Pattern Matching MemoryNetworks for Traffic Forecasting[A]. 2021.

[64] LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck oftransformer on time series forecasting[J]. Advances in neural information processing systems,2019, 32.

[65] WU H, XU J, WANG J, et al. Autoformer: Decomposition transformers with auto-correlationfor long-term series forecasting[J]. Advances in Neural Information Processing Systems, 2021,34: 22419-22430.56

[66] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances inneural information processing systems, 2017, 30.

[67] WU S, XIAO X, DING Q, et al. Adversarial sparse transformer for time series forecasting[J].Advances in neural information processing systems, 2020, 33: 17105-17115.

[68] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advancesin neural information processing systems, 2020, 33: 1877-1901.

[69] HUANG C Z A, VASWANI A, USZKOREIT J, et al. Music transformer[A]. 2018.

[70] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[A]. 2020.

[71] LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shiftedwindows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021: 10012-10022.

[72] ZHOU H, ZHANG S, PENG J, et al. Informer: Beyond efficient transformer for long sequencetime-series forecasting[C]//Proceedings of the AAAI conference on artificial intelligence: volume 35. 2021: 11106-11115.

[73] KITAEV N, KAISER Ł, LEVSKAYA A. Reformer: The efficient transformer[A]. 2020.

[74] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE transactions on neural networks, 2008, 20(1): 61-80.

[75] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[J].Advances in neural information processing systems, 2017, 30.

[76] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. stat,2017, 1050: 20.

[77] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation,1997, 9(8): 1735-1780.

[78] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[A]. 2014.

[79] LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//Proceedings of the AAAI conference on artificial intelligence: volume 35. 2021: 4189-4196.

[80] CHEN Y, SEGOVIA I, GEL Y R. Z-GCNETs: Time zigzags at graph convolutional networksfor time series forecasting[C]//International Conference on Machine Learning. PMLR, 2021:1684-1694.

[81] PAN Z, KE S, YANG X, et al. AutoSTG: Neural Architecture Search for Predictions of SpatioTemporal Graph[C]//Proceedings of the Web Conference 2021. 2021: 1846-1855.57

所在学位评定分委会
电子科学与技术
国内图书分类号
TP391.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545137
专题工学院_计算机科学与工程系
推荐引用方式
GB/T 7714
刘航晨. 基于时空注意力的城市交通流量预测研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032491-刘航晨-计算机科学与工(3667KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘航晨]的文章
百度学术
百度学术中相似的文章
[刘航晨]的文章
必应学术
必应学术中相似的文章
[刘航晨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。