[1] ZHOU K, LIU T G and ZHOU L F. Industry 4.0: Towards future industrial opportunities and challenges[C]//IEEE International Conference on Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China, 2015.
[2] DANG S P, AMIN O, SHIHADA B, et al. What should 6G be?[J]. Nature Electronics, 2020, 3:20–29.
[3] KUMAR A, GUPTA M and SINGH R. Topological integrated circuits for 5G and 6G[J]. Nature Electronics, 2022, 5:261–262.
[4] SCHODER D. Internet of Things A to Z[M]. Canada: IEEE Press, 2018.
[5] NOGHABAEI S M, RADIN R L, SAVARIA Y, et al. A High-Sensitivity Wide Input-Power-Range Ultra-Low-Power RF Energy Harvester for IoT Applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(1):440-451.
[6] SANBORN K, MA D and IVANOV V. A Sub-1-V Low-Noise Bandgap Voltage Reference[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11):2466-2481.
[7] LEUNG K N and MOK P K T. A CMOS voltage reference based on weighted ΔVGS for CMOS Low-Dropout linear regulators[J]. IEEE Journal of SolidState Circuits, 2003, 38(1):146-150.
[8] GIUSTOLISI G, PALUMBO G, CRISCIONE M, et al. A low-voltage lowpower voltage reference based on subthreshold MOSFETs[J]. IEEE Journal of Solid-State Circuits, 2003, 38(1):151-154.
[9] LEUNG K N and MOK P K T. A sub-1-V 15-ppm/℃ CMOS bandgap voltage reference without requiring low threshold voltage device[J]. IEEE Journal of Solid-State Circuits, 2002, 37(4):526-530.
[10] LEUNG K N, MOK P K T and LEUNG C Y. A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference[J]. IEEE Journal of Solid-State Circuits, 2003, 38(3):561-564.
[11] VITA G D and IANNACCONE G. A Sub-1-V, 10 ppm/°C, Nanopower Voltage Reference Generator[J]. IEEE Journal of Solid-State Circuits, 2007, 42(7):1536-1542.
[12] DOYLE J, LEE Y J, KIM Y B, et al. A CMOS subbandgap reference circuit with 1-V power supply voltage[J]. IEEE Journal of Solid-State Circuits, 2004, 39(1):252-255.
[13] BUCK A E, MCDONALD C L, LEWIS S H, et al. A CMOS bandgap reference without resistors[J]. IEEE Journal of Solid-State Circuits, 2002, 37(1):81-83.120
[14] PERRY R T, LEWIS S H, BROKAW A P, et al. A 1.4 V Supply CMOS Fractional Bandgap Reference[J]. IEEE Journal of Solid-State Circuits, 2007, 42(10):2180-2186.
[15] UENO K, HIROSE T, ASAI T, et al. A 300 nW, 15 ppm/°C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs[J]. IEEEJournal of Solid-State Circuits, 2009, 44(7):2047-2054.
[16] MALCOVATI P, MALOBERTI F, FIOCCHI C, et al. Curvature-compensated BiCMOS bandgap with 1-V supply voltage[J]. IEEE Journal of Solid-State Circuits, 2001, 36(7):1076-1081.
[17] JI Y, LEE J, KIM B, PARK H J, et al. A 192-pW Voltage Reference Generating Bandgap–Vth With Process and Temperature Dependence Compensation[J]. IEEE Journal of Solid-State Circuits, 2019, 54(12):3281-3291.
[18] MAGNELLI L, CRUPI F, CORSONELLO P, et al. A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference[J]. IEEE Journal of Solid-State Circuits, 2011, 46(2):465-474.
[19] SEOK M, KIM G, BLAAUW D, et al. A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V[J]. IEEE Journal of Solid-State Circuits, 2012, 47(10):2534-2545.
[20] OSAKI Y, HIROSE T, KUROKI N, et al. 1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs[J]. IEEE Journal of Solid-State Circuits, 2013, 48(6):1530-1538.
[21] LEE I, SYLVESTER D and BLAAUW D. A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT Systems[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5):1443-1449.
[22] VULLIGADDALA V B, ADUSUMALLI R, SINGAMALA S, et al. A Digitally Calibrated Bandgap Reference With 0.06% Error for Low-Side Current Sensing Application[J]. IEEE Journal of Solid-State Circuits, 2018, 53(10):2951-2957.
[23] KAMATH U, CULLEN E, YU T, et al. A 1-V Bandgap Reference in 7-nm FinFET With a Programmable Temperature Coefficient and Inaccuracy of ±0.2% From −45°C to 125°C[J]. IEEE Journal of Solid-State Circuits, 2019, 54(7):1830-1840.
[24] JIANG J, SHU W and CHANG J S. A 5.6 ppm/°C Temperature Coefficient, 87-dB PSRR, Sub-1-V Voltage Reference in 65-nm CMOS Exploiting the Zero-Temperature-Coefficient Point[J]. IEEE Journal of Solid-State Circuits, 2017, 52(3):623-633.
[25] GUNAWAN M, MEIJER G C M, FONDERIE J, et al. A curvature-corrected low-voltage bandgap reference[J]. IEEE Journal of Solid-State Circuits, 1993, 28(6):667-670.121
[26] ANNEMA A J. Low-power bandgap references featuring DTMOSTs[J]. IEEEJournal of Solid-State Circuits, 1999, 34(7):949-955.
[27] RINCON-MORA G and ALLEN P E. A 1.1-V current-mode and piecewiselinear curvature-corrected bandgap reference[J]. IEEE Journal of Solid-State Circuits, 1998, 33(10):1551-1554.
[28] NICOLLINI G and SENDEROWICZ D. A CMOS bandgap reference for differential signal processing[J]. IEEE Journal of Solid-State Circuits, 1991, 26(1):41-50.
[29] TZANATEAS G, SALAMA C A T and TSIVIDIS Y P. A CMOS bandgap voltage reference[J]. IEEE Journal of Solid-State Circuits, 1979, 14(3):655-657.
[30] VITTOZ E A and NEYROUD O. A low-voltage CMOS bandgap reference[J]. IEEE Journal of Solid-State Circuits, 1979, 14(3):573-579.
[31] MEIJER G C M, SCHMALE P C and ZALINGE K V. A new curvature-corrected bandgap reference[J]. IEEE Journal of Solid-State Circuits, 1982, 17(6):1139-1143.
[32] THAM K M and NAGARAJ K. A low supply voltage high PSRR voltage reference in CMOS process[J]. IEEE Journal of Solid-State Circuits, 1982, 17(6):586-590.
[33] LEE I, KIM G and KIM W. Exponential curvature-compensated BiCMOS bandgap references[J]. IEEE Journal of Solid-State Circuits, 1994, 29(11):1396-1403.
[34] FERRO M, SALERNO F and CASTELLO R. A floating CMOS bandgap voltage reference for differential applications[J]. IEEE Journal of Solid-State Circuits, 1989, 24(3):690-697.
[35] SONG B S and GRAY P R. A precision curvature-compensated CMOS bandgap reference[J]. IEEE Journal of Solid-State Circuits, 1983, 18(6):634-643.
[36] BROKAW A P. A simple three-terminal IC bandgap reference[J]. IEEE Journal of Solid-State Circuits, 1974, 9(6):388-393.
[37] FASSIO L, LIN L, ROSE R D, et al. Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW[J]. IEEE Journal of Solid-State Circuits, 2021, 56(10):3134-3144.
[38] SHAO C Z, KUO S C and LIAO Y T. A 1.8-nW, −73.5-dB PSRR, 0.2-ms Startup Time, CMOS Voltage Reference With Self-Biased Feedback and Capacitively Coupled Schemes[J]. IEEE Journal of Solid-State Circuits, 2021, 56(6):1795-1804.
[39] CHEN K, PETRUZZI L, HULFACHOR R, et al. A 1.16-V 5.8-to-13.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference Circuit With a Shared 122Offset-Cancellation Method for Internal Amplifiers[J]. IEEE Journal of Solid-State Circuits, 2021, 56(1):267-276.
[40] BOO J H, CHO K I, KIM H J, et al. A Single-Trim Switched Capacitor CMOS Bandgap Reference With a 3σ Inaccuracy of +0.02%, −0.12% for BatteryMonitoring Applications[J]. IEEE Journal of Solid-State Circuits, 2021, 56(4):1197-1206.
[41] KIM M and CHO S. A Single BJT Bandgap Reference With Frequency Compensation Exploiting Mirror Pole[J]. IEEE Journal of Solid-State Circuits, 2021, 56(10):2902-2912.
[42] GUO J and LEUNG K N. A 6-μW Chip-Area-Efficient Output-Capacitorless LDO in 90-nm CMOS Technology[J]. IEEE Journal of Solid-State Circuits, 2010, 45(9):1896-1905.
[43] HO M, LEUNG K N and MAK K L. A Low-Power Fast-Transient 90-nm LowDropout Regulator With Multiple Small-Gain Stages[J]. IEEE Journal of Solid-State Circuits, 2010, 45(11):2466-2475.
[44] AL-SHYOUKH M, LEE H and PEREZ R. A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator With Buffer Impedance Attenuation[J]. IEEE Journal of Solid-State Circuits, 2007, 42(8):1732-1742.
[45] OR P Y and LEUNG K N. An Output-Capacitorless Low-Dropout Regulator With Direct Voltage-Spike Detection[J]. IEEE Journal of Solid-State Circuits, 2010, 45(2):458-466.
[46] EL-NOZAHI M, AMER A, TORRES J, et al. High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3):565-577.
[47] LEUNG K N and MOK P H T. A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation[J]. IEEE Journal of Solid-State Circuits, 2003, 38(10):1691-1702.
[48] PARK C J, ONABAJO M and SILVA-MARTINEZ J. External Capacitor-Less Low Drop-Out Regulator With 25 dB Superior Power Supply Rejection in the 0.4–4 MHz Range[J]. IEEE Journal of Solid-State Circuits, 2014, 49(2):486-501.
[49] LEE Y J, QU W Y, SINGH S, et al. A 200-mA Digital Low Drop-Out Regulator With Coarse-Fine Dual Loop in Mobile Application Processor[J]. IEEEJournal of Solid-State Circuits, 2017, 52(1):64-76.
[50] HUANG M, LU Y, U S P and MARTINS R P. An Analog-Assisted Tri-Loop Digital Low-Dropout Regulator[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1):20-34.
[51] LEE Y H, PENG S Y, CHIU C C, et al. A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 123nm SoC for MIPS Performance Improvement[J]. IEEE Journal of Solid-State Circuits, 2013, 48(4):1018-1030.
[52] DUONG Q H, NGUYEN H H, KONG J W, et al. Multiple-Loop Design Technique for High-Performance Low-Dropout Regulator[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10):2533-2549.
[53] YANG F and MOK P K T. A Nanosecond-Transient Fine-Grained Digital LDO With Multi-Step Switching Scheme and Asynchronous Adaptive Pipeline Control[J]. IEEE Journal of Solid-State Circuits, 2017, 52(9):2463-2474.
[54] SALEM L G, WARCHALL J and MERCIER P P. A Successive Approximation Recursive Digital Low-Dropout Voltage Regulator With PD Compensation and Sub-LSB Duty Control[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1):35-49.
[55] KUNDU S, LIU M, WEN S J, et al. A Fully Integrated Digital LDO With Built-In Adaptive Sampling and Active Voltage Positioning Using a BeatFrequency Quantizer[J]. IEEE Journal of Solid-State Circuits, 2019, 54(1):109-120.
[56] TAN X L, CHONG S S, CHAN P K, et al. A LDO Regulator With Weighted Current Feedback Technique for 0.47 nF–10 nF Capacitive Load[J]. IEEEJournal of Solid-State Circuits, 2014, 49(11):2658-2672.
[57] JIANG J, SHU W and CHANG J S. A 65-nm CMOS Low Dropout Regulator Featuring >60-dB PSRR Over 10-MHz Frequency Range and 100-mA Load Current Range[J]. IEEE Journal of Solid-State Circuits, 2018, 53(8):2331-2342.
[58] KIM D and SEOK M. A Fully Integrated Digital Low-Dropout Regulator Based on Event-Driven Explicit Time-Coding Architecture[J]. IEEE Journal of Solid-State Circuits, 2017, 52(11):3071-3080.
[59] MAGOD R, BAKKALOGLU B and MANANDHAR S. A 1.24 μA Quiescent Current NMOS Low Dropout Regulator With Integrated Low-Power Oscillator-Driven Charge-Pump and Switched-Capacitor Pole Tracking Compensation[J]. IEEE Journal of Solid-State Circuits, 2018, 53(8):2356-2367.
[60] LIM Y, LEE J, PARK S, et al. An External Capacitorless Low-Dropout Regulator With High PSR at All Frequencies From 10 kHz to 1 GHz Using an Adaptive Supply-Ripple Cancellation Technique[J]. IEEE Journal of SolidState Circuits, 2018, 53(9):2675-2685.
[61] ADORNI N, STANZIONE S and BONI A. A 10-mA LDO With 16-nA IQ and Operating From 800-mV Supply[J]. IEEE Journal of Solid-State Circuits, 2020, 55(2):404-413.124
[62] LI K, YANG C, GUO T, et al. A Multi-Loop Slew-Rate-Enhanced NMOS LDO Handling 1-A-Load-Current Step With Fast Transient for 5G Applications[J]. IEEE Journal of Solid-State Circuits, 2020, 55(11):3076-3086.
[63] JOSHI K, MANANDHAR S and BAKKALOGLU B. A 5.6 μ A Wide Bandwidth, High Power Supply Rejection Linear Low-Dropout Regulator With 68 dB of PSR Up To 2 MHz[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8):2151-2160.
[64] WANG X and MERCIER P P. A Dynamically High-Impedance Charge-PumpBased LDO With Digital-LDO-Like Properties Achieving a Sub-4-fs FoM[J]. IEEE Journal of Solid-State Circuits, 2020, 55(3):719-730.
[65] ZHOU D, JIANG J, LIU Q, et al. A 245-mA Digitally Assisted Dual-Loop Low-Dropout Regulator[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8):2140-2150.
[66] RINCON-MORA G A and ALLEN P E. A low-voltage, low quiescent current, low drop-out regulator[J]. IEEE Journal of Solid-State Circuits, 1998, 33(1):36-44.
[67] MAO X, LU Y and MARTINS R P. A Scalable High-Current High-Accuracy Dual-Loop Four-Phase Switching LDO for Microprocessors[J]. IEEE Journal of Solid-State Circuits, 2022, 57(6):1841-1853.
[68] LIU X S, KRISHNAMURTHY H K, NA T, et al. A Universal Modular Hybrid LDO With Fast Load Transient Response and Programmable PSRR in 14-nm CMOS Featuring Dynamic Clamp Strength Tuning[J]. IEEE Journal of SolidState Circuits, 2021, 56(8):2402-2415.
[69] ZHAO J, GAO Y, ZHANG T T, et al. A 310-nA Quiescent Current 3-fs-FoM Fully Integrated Capacitorless Time-Domain LDO With Event-Driven Charge Pump and Feedforward Transient Enhancement[J]. IEEE Journal of SolidState Circuits, 2021, 56(10):2924-2933.
[70] JANG J H, GWON H D, KONG T H, et al. A 0.5–1 V, −68 dB Power Supply Rejection Capacitorless Analog LDO Using Voltage-to-Time Conversion in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2022, 57(8):2462-2473.
[71] GUO T, KANG W and ROH J. A 0.9-μA Quiescent Current High PSRR Low Dropout Regulator Using a Capacitive Feed-Forward Ripple Cancellation Technique[J]. IEEE Journal of Solid-State Circuits, 2022, 57(10):3139-3149.
[72] HWANG Y H, OH J, CHOI W S, et al. A Residue-Current-Locked Hybrid Low-Dropout Regulator Supporting Ultralow Dropout of Sub-50 mV With Fast Settling Time Below 10 ns[J]. IEEE Journal of Solid-State Circuits, 2022, 57(7):2236-2249, July 2022.125
[73] GREGORIAN R, WEGNER G A and NICHOLSON W E. An integrated singlechip PCM voice codec with filters[J]. IEEE Journal of Solid-State Circuits, 1981, 16(4):322-333.
[74] NEUTEBOOM H, KUP B M J and JANSSENS M. A DSP-based hearing instrument IC[J]. IEEE Journal of Solid-State Circuits, 1997, 32(11):1790-1806.
[75] BANBA H, SHIGA H, UMEZAWA A, et al. A CMOS bandgap reference circuit with sub-1-V operation[J]. IEEE Journal of Solid-State Circuits, 1999, 34(5):670-674.
[76] LEE J and CHO S. A 210 nW 29.3 ppm/°C 0.7 V voltage reference with a temperature range of −50 to 130 °C in 0.13 µm CMOS[C]// IEEE Symposium on VLSI Circuits, Kyoto, Japan, 2011.
[77] JING X, MOK P K T, HUANG C, et al. A 0.5V nanoWatt CMOS voltage reference with two high PSRR outputs[C]// IEEE International Symposium on Circuits and Systems, Seoul, Korea (South), 2012.
[78] WANG Y, ZHU Z, YAO J, et al. A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(7):621-625.
[79] OLIVEIRA A C, CORDOVA D, KLIMACH H, et al. Picowatt, 0.45–0.6 V Self-Biased Subthreshold CMOS Voltage Reference[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(12):3036-3046.
[80] AZAM A, BAI Z, KORTH D, et al. A 0.35V 12.9pW 8.3ppm°C 0.012%/V Feedback controlled Voltage Reference in 65 nm CMOS[C]//IEEE International New Circuits and Systems Conference, Montreal, QC, Canada, 2018.
[81] WANG Y, SUN Q, LUO H, et al. A 48 pW, 0.34 V, 0.019%/V Line Sensitivity Self-Biased Subthreshold Voltage Reference With DIBL Effect Compensation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(2):611-621.
[82] LAM Y H, KI W H and TSUI C Y. Adaptively-biased capacitor-less CMOS low dropout regulator with direct current feedback[C]//IEEE Asia and South Pacific Conference on Design Automation, Yokohama, Japan, 2006.
[83] LAM Y H and KI W H. A 0.9V 0.35 μm Adaptively Biased CMOS LDO Regulator with Fast Transient Response[C]//IEEE International Solid-State Circuits Conference, San Francisco, USA, 2008.
[84] ZHAN C C and KI W H. Output-Capacitor-Free Adaptively Biased Low-Dropout Regulator for System-on-Chips[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(5):1017-1028.
[85] HUANG Y, LU Y, MALOBERTI F, et al. Nano-Ampere Low-Dropout Regulator Designs for IoT Devices[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(11):4017-4026.126
[86] MAN T Y, LEUNG K N, LEUNG C Y, et al. Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(5):1392-1401.
[87] LU Y, WANG Y, PAN Q, et al. A Fully-Integrated Low-Dropout Regulator With Full-Spectrum Power Supply Rejection[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(3):707-716.
[88] CHEN N and OKADA M. Toward 6G Internet of Things and the Convergence With RoF System[J]. IEEE Internet of Things Journal, 2021, 8(11):8719-8733.
[89] LETAIEF K B, SHI Y, LU J, et al. Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications[J]. IEEE Journal on selected area in communications, 2022, 40(1):5-36.
[90] NGUYEN D C, DING M, PATHIRANA P N, et al. 6G Internet of Things: A Comprehensive Survey[J]. IEEE Internet of Things Journal, 2022, 9(1):359-383.
[91] LIN L Y, JAIN S and ALIOTO M. Multi-Sensor Platform with Five-Orderof-Magnitude System Power Adaptation down to 3.1nW and Sustained Operation under Moonlight Harvesting[C]//IEEE Symposium on VLSI Circuits, Honolulu, USA, 2020.
[92] WANG S and MOK P K T. An 8-nW Resistor-Less Bandgap Reference Based on a Single-Branch Floating PTAT Voltage[J]. IEEE Solid-State Circuits Letters, 2020, 3:74-77.
[93] KIM M and CHO S. A Single BJT Bandgap Reference With Frequency Compensation Exploiting Mirror Pole[J]. IEEE Journal of Solid-State Circuits, 2021, 56(10):2902-2912.
[94] ZHU Z, HU J and WANG Y. A 0.45 V, Nano-Watt 0.033% Line Sensitivity MOSFET-Only Sub-Threshold Voltage Reference With no Amplifiers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(9):1370-1380.
[95] OLIVEIRA A C, CORDOVA D, KLIMACH H, et al. A 0.12–0.4 V, Versatile 3-Transistor CMOS Voltage Reference for Ultra-Low Power Systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(11):3790-3799.
[96] FASSIO L, LIN L Y, ROSE R D, et al. Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW[J]. IEEE Journal of Solid-State Circuits, 2021, 56(10):3134-3144.
[97] ALIOTO M. Enabling the Internet of Things—From Integrated Circuits to Integrated System[M]. Switzerland: Springer, 2017.
[98] TSIVIDIS Y. Operational Modeling of the MOS Transistor[M]. New York: McGraw-Hill, 1999.127
[99] LEE I, SYLVESTER D and BLAAUW D. A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT Systems[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5):1443-1449.
[100] TAUR Y and NING T H. Fundamentals of Modern VLSI Devices[M]. New York: Cambridge University Press, 2009.
[101] XIE Q, XU J and TAUR Y. Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold[J]. IEEE Transactions on Electron Devices, 2012, 59(6):1569-1579.
[102]JI Y, LEE J, KIM B, et al. A 192-pW Voltage Reference Generating BandgapVth With Process and Temperature Dependence Compensation[J]. IEEE Journal of Solid-State Circuits, 2019, 54(12):3281-3291.
[103] PARISI A, FINOCCHIARO A, PAPOTTO G, et al. Nano-Power CMOS Voltage Reference for RF-Powered Systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(10):1425-1429.
[104] LIN J, WANG L D, ZHAN C C, et al. A 1-nW Ultra-Low Voltage Subthreshold CMOS Voltage Reference With 0.0154%/V Line Sensitivity[J]. IEEETransactions on Circuits and Systems II: Express Briefs, 2019, 66(10):1653-1657.
[105]WANG L D, ZHAN C C. A 0.7-V 28-nW CMOS Subthreshold Voltage and Current Reference in One Simple Circuit[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(9):3457-3466.
[106] NGUYEN V, SCHEMBARI F and STASZEWSKI R B. A Deep-Subthreshold Variation-Aware 0.2-V Open-Loop VCO-Based ADC[J]. IEEE Journal of Solid-State Circuits, 2022, 57(6):1684-1699.
[107] YANG S, YIN J, YI H, et al. A 0.2-V Energy-Harvesting BLE Transmitter With a Micropower Manager Achieving 25% System Efficiency at 0-dBm Output and 5.2-nW Sleep Power in 28-nm CMOS[J]. IEEE Journal of SolidState Circuits, 2019, 54(5):1351-1362.
[108] HAZUCHA P, KARNIK T, BLOECHEL B A, et al. Area-efficient linear regulator with ultra-fast load regulation[J]. IEEE Journal of Solid-State Circuits, 2005, 40(4):933-940.
[109] LI G, QIAN H, GUO J P, et al. Dual Active-Feedback Frequency Compensation for Output-Capacitorless LDO With Transient and Stability Enhancement in 65-nm CMOS[J]. IEEE Transactions on Power Electronics, 2020, 35(1):415-429.
[110] LI H, ZHAN C C and ZHANG N. A Fully on-Chip Digitally Assisted LDO Regulator With Improved Regulation and Transient Responses[J]. IEEETransactions on Circuits and Systems I: Regular Papers, 2018, 65(11):4027-4034.128
[111]W. XU, Y. LI, Z. Hong and D. Killat. A 90% peak efficiency single-inductor dual-output buck-boost converter with extended-PWM control[C]//IEEE International Solid-State Circuits Conference, San Francisco, USA, 2011.
[112] LIN J, LU Y, ZHAN C C, et al. A Single-Stage Dual-Output Regulating Rectifier With Hysteretic Current-Wave Modulation[J]. IEEE Journal of SolidState Circuits, 2021, 56(9):2770-2780.
[113]CHONG S and CHAN P K. A 0.9μA Quiescent Current Output-Capacitorless LDO Regulator With Adaptive Power Transistors in 65-nm CMOS[J]. IEEETransactions on Circuits and Systems I: Regular Papers, 2013, 60(4):1072-1081.
[114] LEE H, MOK P K T and LEUNG K N. Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 52(9):563-567.
[115]BABANEZHAD J N. A rail-to-rail CMOS op amp[J]. IEEE Journal of SolidState Circuits, 1988, 23(6):1414-1417.
[116] PEREIRA-RIAL Ó, LÓPEZ P and CARRILLO J M. 0.6-V-VIN 7.0-nA-IQ 0.75-mA-IL CMOS Capacitor-Less LDO for Low-Voltage Micro-Energy-Harvested Supplies[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(2):599-608.
[117]BUSS D D. Technology in the Internet age[C]//IEEE International Solid-State Circuits Conference, San Francisco, USA, 2002.
[118]RAZAVI B. Design of Analog CMOS Integrated Circuits[M]. New York: McGraw-Hill, 2001.
[119] MILLIKEN R J, SILVA-MARTINEZ J and SANCHEZ-SINENCIO E. Full OnChip CMOS Low-Dropout Voltage Regulator[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, 54(9):1879-1890.
[120] GUPTA V and RINCON-MORA G A. A 5mA 0.6μm CMOS Miller-Compensated LDO Regulator with -27dB Worst-Case Power-Supply Rejection Using 60pF of On-Chip Capacitance[C]//IEEE International Solid-State Circuits Conference, San Francisco, USA, 2007.
[121] PÉREZ-BAILÓN J, MÁRQUEZ A, CALVO B, et al. Transient-enhanced output-capacitorless CMOS LDO regulator for battery-operated systems[C]//IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017.
[122] YADAV B B, MOUNIKA K, DE K, et al. Low Quiescent Current, CapacitorLess LDO with Adaptively Biased Power Transistors and Load Aware Feedback Resistance[C]//IEEE International Symposium on Circuits and Systems, Seville, Spain, 2020.129
[123] YU K, ZHOU Y, LI S, et al. A 23-pW NMOS-Only Voltage Reference With Optimum Body Selection for Process Compensation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(11):4213-4217.
[124] LI Y and LEE I. A 36pW CMOS Voltage Reference With Independent TC and Output Level Calibration for Miniature Low-Power Systems[C]//IEEE Inter national Symposium on Circuits and Systems, Austin, USA, 2022.
[125]WANG J, SUN X and CHENG L. A Picowatt CMOS Voltage Reference Oper ating at 0.5-V Power Supply With Process and Temperature Compensation for Low-Power IoT Systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(4):1336-1340.
[126] ZHAO J and GAO Y. A 0.5-to-1.2V, 310nA Quiescent Current, 3fs-FoM Time-Domain Output-Capacitorless LDO with Propagation-Delay-Triggered Edge Detector[C]//IEEE Asian Solid-State Circuits Conference, Hiroshima, Japan, 2020.
[127]CHEN B H, WU T Y, ZHENG K L, et al. A Feedforward Controlled Digital Low-Dropout Regulator With Weight Redistribution Algorithm and Body Voltage Control for Improving Line Regulation With 99.99% Current Effi ciency and 0.5-mV Output Voltage Ripple[J]. IEEE Journal of Solid-State Circuits, 2023, 58(2):486-496.
修改评论