[1]LU Y P, HORSLEY D A. Modeling, Fabrication, and Characterization of Piezoelectric Micromachined Ultrasonic Transducer Arrays Based on Cavity SOI Wafers[J]. Journal of Microelectromechanical Systems, 2015, 24(4):1142-1149.
[2]LU Y P, SHELTON S, HORSLEY D A. HIGH FREQUENCY AND HIGH FILL FACTOR PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS BASED ON CAVITY SOI WAFERS[C]// 2014 Solid-State, Actuators, and Microsystems Workshop Technical Digest. Transducer Research Foundation, 2014.
[3]GONG D, CHIU Y, MA S, et al. Study on AlN micromachined ultrasonic transducer array with beamforming[C]// 2019 20th International Conference on Electronic Packaging Technology(ICEPT). 2019.
[4]WU, Z P, LIU, W J, TONG, Z H, et al. Tuning Characteristics of AlN-Based Piezoelectric Micromachined Ultrasonic Transducers Using DC Bias Voltage[J]. IEEE Transactions on Electron Devices, 2022, 69(2):729-735.
[5]LIU W J, XU W J, ZHOU J, et al. High Voltage Excitation and Nonlinear Transmission of a 16 MHz AlN-Based Piezoelectric Micro-Machined Ultrasonic Transducer[C]// 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018.
[6]GAO H, ROTTENBERG X, ROCHUS V, et al. Design of polymer-based PMUT array for multi-frequency ultrasound imaging[C]// 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019.
[7]LEDESMA E, ZAMORA I, TORRES F, et al. AlN Piezoelectric Micromachined Ultrasonic Transducer Array Monolithically Fabricated on Top of Pre-Processed CMOS Substrates[C]// International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019.
[8]JIA L C, SHI L, LIU C B, et al. Design and Characterization of an Aluminum Nitride-Based MEMS Hydrophone With Biologically Honeycomb Architecture[J]. IEEE Transactions on Electron Devices, 2021, 99:1-8.
[9]LEDESMA E, ZAMORA I, URANGA A, et al. Monolithic PMUT-on-CMOS Ultrasound System for Single Pixel Acoustic Imaging[C]// IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021.
[10]PRZYBYLA R J, TANG H Y, GUEDES A, et al. 3D Ultrasonic Rangefinder on a Chip[J]. IEEE Journal of Solid-State Circuits, 2014, 50(1):320-334.
[11]WU H, ZHANG M L, SHAO Z C, et al. An Ultrasound ASIC With Universal Energy Recycling for >7-m All-Weather Metamorphic Robotic Vision[J]. IEEE Journal of Solid-State Circuits, 2022, 57(10):3036-3047.
[12]GUO J Q, LI J M, YOO J. A 14V Hybrid Boost Converter With Scalable Conversion Ratio in 180nm Standard CMOS for an Ultrasound Imaging System[C]// 2022 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2022.
[13]WU L X, CHEN X Y, WANG G F, et al. Design of dual-frequency piezoelectric micromachined ultrasonic transducers[C]// 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019.
[14]LU Y P, TANG H, FUNG S, et al. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics[J]. Applied Physics Letters, 2015, 106(26):226.
[15]ROY K, GUPTA H, SHASTRI V, et al. Fluid Density Sensing Using PMUTs[C]// 2018 IEEE SENSORS. IEEE, 2018.
[16]ROZEN O, BLOCK S T, SHELTON S E, et al. Piezoelectric micromachined ultrasonic transducer with increased output pressure via concentric venting rings[C]// Transducers-international Conference on Solid-state Sensors. IEEE, 2015.
[17]EOVINO B E, AKHBARI S, LIN L. Ring-Shaped Piezoelectric Micromachined Ultrasonic Transducers (PMUT) With Increased Pressure Generation[C]// Solid-State, Actuators, and Microsystems Workshop, 2016.
[18]SURESH A, MAK K L, BENSERHIR J, et al. Air-coupled Ultrasonic Rangefinder with Meter-long Detection Range Based on a Dual-electrode PMUT Fabricated Using a Multi-user MEMS Process[C]// 2019 IEEE SENSORS. IEEE, 2019.
[19]PALA S, SHAO Z C, PENG Y D, et al. Ultrasond-Induced Haptic Sensations Via PMUTS[C]// 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021.
[20]ROBICHAUD A, CICEK P V, DESLANDES D, et al. Frequency Tuning Technique of Piezoelectric Ultrasonic Transducers for Ranging Applications[J]. Journal of Microelectromechanical Systems, 2018:1-10.
[21]LEDESMA E, ZAMORA I, URANGA A, et al. Tent-plate AlN PMUT with a piston-like shape under liquid operation[J]. IEEE Sensors Journal, 2020, PP(99):1-1.
[22]ZAMORA I, LEDESMA E, URANGA A, et al. Monolithic single PMUT-on-CMOS ultrasound system with +17 dB SNR for Imaging Applications[J]. IEEE Access, 2020, PP(99):1-1.
[23]GRATUZE M, ALAMEH A H, ROBICHAUD A, et al. A Nonlinear Pulse Shaping Method Using Resonant Piezoelectric MEMS Devices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(4):1515-1527.
[24]LEDESMA E, TZANOV V, ZAMORA I, et al. ALN Pmut with Crossed-Cavity for Better Acoustic Pressure Outputs in Liquid at High Frequency[C]// 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019.
[25]LEDESMA E, ZAMORA I, TZANOV V, et al. Liquid operable AlN PMUT with high output pressure capabilities[C]// IEEE International Ultrasonics Symposium (IUS). 2019.
[26]WANG T, SAWADA R, LEE C K, et al. A Piezoelectric Micromachined Ultrasonic Transducer Using Piston-Like Membrane Motion[J]. IEEE Electron Device Letters, 2015.
[27]CHEN X Y, CHEN D Y, LIU X X, et al. Transmitting Sensitivity Enhancement of Piezoelectric Micromachined Ultrasonic Transducers via Residual Stress Localization by Stiffness Modification[J]. IEEE Electron Device Letters, 2019:796-799.
[28]AKHBARI S, SAMMOURA F, SHELTON S, et al. Highly responsive curved aluminum nitride PMUT[C]// IEEE International Conference on Micro Electro Mechanical Systems. IEEE, 2014.
[29]LUO G L, WANG Q, KUSANO Y, et al. Increased Output-Pressure PMUTs with a Sloped Profile Fabricated via Surface Micromachining[C]// IEEE International Frequency Control Symposium (IFCS 2018). IEEE, 2018.
[30]WU S, WU T, LI X X, et al. An Aluminum-Nitride PMUT with Pre-Concaved Membrane for Large Deformation and High Quality-Factor Performance[C]// 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), 2021.
[31]ZHOU J, JI Z B, GUO Y H, et al. Strategy to minimize bending strain interference for flexible acoustic wave sensing platform[J]. npj Flexible Electronics, 2022, 6(1):9.
[32]JIN H, ZHOU J, HE X L, et al. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications[J]. Scientific Reports, 2013, 3(7):2140.
[33]ZHANG Q, WANG Y, LI D S, et al. Flexible multifunctional platform based on piezoelectric acoustics for human–machine interaction and environmental perception[J] Microsystems & nanoengineering, 2022, 8:99.
[34]ELLOIAN J, JADWISZCZAK J, ARSLAN V, et al. Flexible ultrasound transceiver array for non-invasive surface-conformable imaging enabled by geometric phase correction[J] Scientific reports, 2022, 12:16184.
[35]JIANG L M, LU G X, ZENG Y S, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses[J]. Nature communications, 2022, 13(1):3853.
[36]JIN H, KIM Y, YOUM W, et al. Highly pixelated, untethered tactile interfaces for an ultra-flexible on-skin telehaptic system[J]. npj Flexible Electronics, 2022, 6:1-11.
[37]WANG C H, QI B Y, LIN M Y, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays[J]. Nature Biomedical Engineering, 2021, 5:749–758.
[38]PLOCHOWIETZ A, WANG Y D, SHREVE M, et al. Programmable Micro-Object Assembly with Transfer[C]// 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019.
[39]CHOW E M, LU J P, BERT J A, et al. Micro-object assembly with an optically addressed array[C]// International Conference on Solid-state Sensors. IEEE, 2017.
[40]高鹏飞, 何常德, 张彦军, 等. 电容式微机械超声换能器振膜设计与声学辐射研究[J]. 传感器与微系统, 2022, 41(4):10-13.
[41]刘嘉俊. 高信噪比CMUT阵列的研发[D]. 中国科学院大学电子与通信工程硕士学位论文, 2020.
[42]Dangi A, Cheng C Y, Agrawal S, et al. A Photoacoustic Imaging Device Using Piezoelectric Micromachined Ultrasound Transducers (PMUTs)[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2019, PP(99):1-1.
[43]Kook G, Jo Y, Oh C, et al. Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography[J]. Microsyst Nanoeng, 2023, 9(45).
修改评论