中文版 | English
题名

环形压电超声换能器阵列的加工与研究

其他题名
Research and Fabrication of Ringlike Piezoelectric Micro-machined Ultrasonic Transducer Array
姓名
姓名拼音
YANG Lizhou
学号
12032263
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
于峰崎
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-23
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

压电式微型超声换能器PMUT(Piezoelectric Micro-machined Ultrasonic Transducer)是一种基于微机电技术的传感器,其可以通过压电薄膜的振动来产生或者接收声波,是集电学和声学于一体的微型系统。近年来超声技术的发展十分迅猛,如医学成像,超声刺激等领域对于高性能超声换能器的需求与日俱增。PMUT相比于传统的压电晶体换能器,具有体积小,集成度高,兼容数字电路工艺和易于阵列化控制等优点,具有重要的研究价值和实用意义。但是PMUT的小体积导致其能够产生的声压值较低,这是限制PMUT被更广泛应用的痛点,也是目前亟需解决的问题。

本文通过对传统PMUT声学结构的分析,提出一种能够改善声波远场指向性的双电极环形结构。通过仿真对其进行了参数调整,并基于微机电工艺制作了实验样品进行验证。最终,本文使用2微米厚的锆钛酸铅压电薄膜制作了封装后尺寸为0.8*0.8*0.3cmPMUT阵列器件。在空气中,驱动电压为10V时,该器件能在中心频率1.395MHz处产生130nm的振动位移,并验证了其振动模式。在水中,添加放大器后,该器件能够在1MHz频率处产生581kPa的声压,相比于传统结构有一倍以上的声压值提升。

通过对PMUT器件声压值的提升,希望在一些中低声波功率,且对器件尺寸要求苛刻的领域,PMUT能够逐渐取代压电晶体制作的换能器,成为超声应用的主流器件。

其他摘要

PMUT(Piezoelectric Micro-machined Ultrasonic Transducer) is a kind of sensor based on micro-electro-mechanical technology that can generate or receive sound waves through the vibration of piezoelectric film. It is a hybrid system that integrates electronics and acoustics. In recent years, the development of ultrasonic technology is very quick, such as medical imaging, ultrasonic stimulation and other fields demonstrated increasing demand for high-performance ultrasonic transducers. Compared to traditional piezoelectric transducers made by bulk materials, PMUT has many advantages, such as small size, higher integration, compatibility with digital circuit technology, and convenience of array control. It has significant value in research and application. However, the small size of PMUT results in a lower sound pressure, which is a point that limited the application of PMUT and a problem that we urgently need to deal with.

Based on the analysis of traditional PMUT structures, this paper proposed a ringlike structure with two electrode that can improve the far field directivity of acoustic waves. The parameters of the structure are optimized through simulation, and some test sample is fabricated based on micro-electro-mechanical technology. Finally, a PMUT array with a size of only 0.8*0.8*0.3cm after packaging based on a 2um PZT film is obtained. In air, with 10V driving voltage, the device has 130nm displacement in predicted vibration mode at the center frequency of 1.395 MHz. In water, with power amplifier, the sound pressure generated by PMUT is up to 581kPa at the frequency of 1 MHz, which is more than twice as much as the traditional structure.

Through the improvement of the sound pressure, it is hopeful to replace traditional bulk material transducer with PMUT in some special applications.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-07
参考文献列表

[1]LU Y P, HORSLEY D A. Modeling, Fabrication, and Characterization of Piezoelectric Micromachined Ultrasonic Transducer Arrays Based on Cavity SOI Wafers[J]. Journal of Microelectromechanical Systems, 2015, 24(4):1142-1149.
[2]LU Y P, SHELTON S, HORSLEY D A. HIGH FREQUENCY AND HIGH FILL FACTOR PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS BASED ON CAVITY SOI WAFERS[C]// 2014 Solid-State, Actuators, and Microsystems Workshop Technical Digest. Transducer Research Foundation, 2014.
[3]GONG D, CHIU Y, MA S, et al. Study on AlN micromachined ultrasonic transducer array with beamforming[C]// 2019 20th International Conference on Electronic Packaging Technology(ICEPT). 2019.
[4]WU, Z P, LIU, W J, TONG, Z H, et al. Tuning Characteristics of AlN-Based Piezoelectric Micromachined Ultrasonic Transducers Using DC Bias Voltage[J]. IEEE Transactions on Electron Devices, 2022, 69(2):729-735.
[5]LIU W J, XU W J, ZHOU J, et al. High Voltage Excitation and Nonlinear Transmission of a 16 MHz AlN-Based Piezoelectric Micro-Machined Ultrasonic Transducer[C]// 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018.
[6]GAO H, ROTTENBERG X, ROCHUS V, et al. Design of polymer-based PMUT array for multi-frequency ultrasound imaging[C]// 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019.
[7]LEDESMA E, ZAMORA I, TORRES F, et al. AlN Piezoelectric Micromachined Ultrasonic Transducer Array Monolithically Fabricated on Top of Pre-Processed CMOS Substrates[C]// International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019.
[8]JIA L C, SHI L, LIU C B, et al. Design and Characterization of an Aluminum Nitride-Based MEMS Hydrophone With Biologically Honeycomb Architecture[J]. IEEE Transactions on Electron Devices, 2021, 99:1-8.
[9]LEDESMA E, ZAMORA I, URANGA A, et al. Monolithic PMUT-on-CMOS Ultrasound System for Single Pixel Acoustic Imaging[C]// IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021.
[10]PRZYBYLA R J, TANG H Y, GUEDES A, et al. 3D Ultrasonic Rangefinder on a Chip[J]. IEEE Journal of Solid-State Circuits, 2014, 50(1):320-334.
[11]WU H, ZHANG M L, SHAO Z C, et al. An Ultrasound ASIC With Universal Energy Recycling for >7-m All-Weather Metamorphic Robotic Vision[J]. IEEE Journal of Solid-State Circuits, 2022, 57(10):3036-3047.
[12]GUO J Q, LI J M, YOO J. A 14V Hybrid Boost Converter With Scalable Conversion Ratio in 180nm Standard CMOS for an Ultrasound Imaging System[C]// 2022 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2022.
[13]WU L X, CHEN X Y, WANG G F, et al. Design of dual-frequency piezoelectric micromachined ultrasonic transducers[C]// 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019.
[14]LU Y P, TANG H, FUNG S, et al. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics[J]. Applied Physics Letters, 2015, 106(26):226.
[15]ROY K, GUPTA H, SHASTRI V, et al. Fluid Density Sensing Using PMUTs[C]// 2018 IEEE SENSORS. IEEE, 2018.
[16]ROZEN O, BLOCK S T, SHELTON S E, et al. Piezoelectric micromachined ultrasonic transducer with increased output pressure via concentric venting rings[C]// Transducers-international Conference on Solid-state Sensors. IEEE, 2015.
[17]EOVINO B E, AKHBARI S, LIN L. Ring-Shaped Piezoelectric Micromachined Ultrasonic Transducers (PMUT) With Increased Pressure Generation[C]// Solid-State, Actuators, and Microsystems Workshop, 2016.
[18]SURESH A, MAK K L, BENSERHIR J, et al. Air-coupled Ultrasonic Rangefinder with Meter-long Detection Range Based on a Dual-electrode PMUT Fabricated Using a Multi-user MEMS Process[C]// 2019 IEEE SENSORS. IEEE, 2019.
[19]PALA S, SHAO Z C, PENG Y D, et al. Ultrasond-Induced Haptic Sensations Via PMUTS[C]// 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021.
[20]ROBICHAUD A, CICEK P V, DESLANDES D, et al. Frequency Tuning Technique of Piezoelectric Ultrasonic Transducers for Ranging Applications[J]. Journal of Microelectromechanical Systems, 2018:1-10.
[21]LEDESMA E, ZAMORA I, URANGA A, et al. Tent-plate AlN PMUT with a piston-like shape under liquid operation[J]. IEEE Sensors Journal, 2020, PP(99):1-1.
[22]ZAMORA I, LEDESMA E, URANGA A, et al. Monolithic single PMUT-on-CMOS ultrasound system with +17 dB SNR for Imaging Applications[J]. IEEE Access, 2020, PP(99):1-1.
[23]GRATUZE M, ALAMEH A H, ROBICHAUD A, et al. A Nonlinear Pulse Shaping Method Using Resonant Piezoelectric MEMS Devices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(4):1515-1527.
[24]LEDESMA E, TZANOV V, ZAMORA I, et al. ALN Pmut with Crossed-Cavity for Better Acoustic Pressure Outputs in Liquid at High Frequency[C]// 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019.
[25]LEDESMA E, ZAMORA I, TZANOV V, et al. Liquid operable AlN PMUT with high output pressure capabilities[C]// IEEE International Ultrasonics Symposium (IUS). 2019.
[26]WANG T, SAWADA R, LEE C K, et al. A Piezoelectric Micromachined Ultrasonic Transducer Using Piston-Like Membrane Motion[J]. IEEE Electron Device Letters, 2015.
[27]CHEN X Y, CHEN D Y, LIU X X, et al. Transmitting Sensitivity Enhancement of Piezoelectric Micromachined Ultrasonic Transducers via Residual Stress Localization by Stiffness Modification[J]. IEEE Electron Device Letters, 2019:796-799.
[28]AKHBARI S, SAMMOURA F, SHELTON S, et al. Highly responsive curved aluminum nitride PMUT[C]// IEEE International Conference on Micro Electro Mechanical Systems. IEEE, 2014.
[29]LUO G L, WANG Q, KUSANO Y, et al. Increased Output-Pressure PMUTs with a Sloped Profile Fabricated via Surface Micromachining[C]// IEEE International Frequency Control Symposium (IFCS 2018). IEEE, 2018.
[30]WU S, WU T, LI X X, et al. An Aluminum-Nitride PMUT with Pre-Concaved Membrane for Large Deformation and High Quality-Factor Performance[C]// 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), 2021.
[31]ZHOU J, JI Z B, GUO Y H, et al. Strategy to minimize bending strain interference for flexible acoustic wave sensing platform[J]. npj Flexible Electronics, 2022, 6(1):9.
[32]JIN H, ZHOU J, HE X L, et al. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications[J]. Scientific Reports, 2013, 3(7):2140.
[33]ZHANG Q, WANG Y, LI D S, et al. Flexible multifunctional platform based on piezoelectric acoustics for human–machine interaction and environmental perception[J] Microsystems & nanoengineering, 2022, 8:99.
[34]ELLOIAN J, JADWISZCZAK J, ARSLAN V, et al. Flexible ultrasound transceiver array for non-invasive surface-conformable imaging enabled by geometric phase correction[J] Scientific reports, 2022, 12:16184.
[35]JIANG L M, LU G X, ZENG Y S, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses[J]. Nature communications, 2022, 13(1):3853.
[36]JIN H, KIM Y, YOUM W, et al. Highly pixelated, untethered tactile interfaces for an ultra-flexible on-skin telehaptic system[J]. npj Flexible Electronics, 2022, 6:1-11.
[37]WANG C H, QI B Y, LIN M Y, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays[J]. Nature Biomedical Engineering, 2021, 5:749–758.
[38]PLOCHOWIETZ A, WANG Y D, SHREVE M, et al. Programmable Micro-Object Assembly with Transfer[C]// 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019.
[39]CHOW E M, LU J P, BERT J A, et al. Micro-object assembly with an optically addressed array[C]// International Conference on Solid-state Sensors. IEEE, 2017.
[40]高鹏飞, 何常德, 张彦军, 等. 电容式微机械超声换能器振膜设计与声学辐射研究[J]. 传感器与微系统, 2022, 41(4):10-13.
[41]刘嘉俊. 高信噪比CMUT阵列的研发[D]. 中国科学院大学电子与通信工程硕士学位论文, 2020.
[42]Dangi A, Cheng C Y, Agrawal S, et al. A Photoacoustic Imaging Device Using Piezoelectric Micromachined Ultrasound Transducers (PMUTs)[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2019, PP(99):1-1.
[43]Kook G, Jo Y, Oh C, et al. Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography[J]. Microsyst Nanoeng, 2023, 9(45).

所在学位评定分委会
电子科学与技术
国内图书分类号
TB552
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545140
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
杨立洲. 环形压电超声换能器阵列的加工与研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032263-杨立洲-中国科学院深圳(3696KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨立洲]的文章
百度学术
百度学术中相似的文章
[杨立洲]的文章
必应学术
必应学术中相似的文章
[杨立洲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。