[1] WANG Y X, YUE Y, CHENG F, et al. Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors[J]. ACS Nano, 2022, 2(16): 1734-1758.
[2] LI Y, GAO M, YANG L C, et al. Design of and Research on Industrial Measuring Devices Based on Internet of Things Technology[J]. Ad Hoc Networks, 2020, 102: 102072.
[3] MOMPAELER V G, PERIS M. Smart Sensors in Environmental/Water Quality Monitoring Using IoT and Cloud Services[J]. Trends in Environmental Analytical Chemistry, 2022, 35: e00173.
[4] LIU Y H. Intelligent Analysis Platform of Agricultural Sustainable Development Based on the Internet of Things and Machine Learning[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2021, 71(8): 718-731.
[5] ISLAM M M, RAHAMAN A, ISLAM M R. Development of Smart Healthcare Monitoring System in IoT Environment[J]. SN Computer Science, 2020, 1(3): 185.
[6] QIAO Y, LUO J, CUI T, et al. Soft Electronics for Health Monitoring Assisted by Machine Learning[J]. Nano-Micro Letters, 2023, 15(1): 66.
[7] WANG Y, ADAM M L, ZHAO Y, et al. Machine Learning-Enhanced Flexible Mechanical Sensing[J]. Nano-Micro Letters, 2023, 15(1): 55.
[8] LI Z, ZOU L, CHU C, et al. Development of a Carbon‐Based Flexible Strain Sensor for Diverse Human Motion Monitoring[J]. Physica Status Solidi (A), 2022, 220(2): 2200617.
[9] YANG K, XIA X, ZHANG F, et al. Implementation of a Sponge-Based Flexible Electronic Skin for Safe Human-Robot Interaction[J]. Micromachines, 2022, 13(8): 1344.
[10] DONG H, ZHANG L, WU T, et al. Flexible Pressure Sensor with High Sensitivity and Fast Response for Electronic Skin Using Near-Field Electrohydrodynamic Direct Writing[J]. Organic Electronics, 2021, 89: 106044.
[11] FULKERSON M. The First Sense: A Philosophical Study of Human Touch[M]. 20110405. London, UK: MIT Press, 2014: 24-31.
[12] 程龙, 刘泽宇. 柔性触觉传感技术及其在医疗康复机器人的应用[J]. 控制与决策, 2022, 37(6): 1410-1432.
[13] 徐铭, 姚理文, 胡珊, 等. 基于深度学习的消化内镜检查辅助质量控制系统研究[J]. 中华消化内镜杂志, 2021, 38(2): 107-114.
[14] TAN Y, LIU X, TANG W, et al. Flexible Pressure Sensors Based on Bionic Microstructures: From Plants to Animals[J]. Advanced Materials Interfaces, 2022, 9(5): 2101312.
[15] LI F C, KONG Z, WU J H, et al. Advances in Flexible Piezoresistive Pressure Sensor[J]. Acta Physica Sinica, 2021, 70(10): 100703.
[16] SADIQ H, HUI H, HUANG S, et al. A Flexible Pressure Sensor Based on PDMS-CNTs Film for Multiple Applications[J]. IEEE Sensors Journal, 2022, 22(4): 3033-3039.
[17] JING M, ZHOU J, ZHANG P, et al. Porous AgNWs/Poly(vinylidene fluoride) Composite-Based Flexible Piezoresistive Sensor with High Sensitivity and Wide Pressure Ranges[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 55119-55129.
[18] WANG J C, KARMAKAR R S, LU Y J, et al. Miniaturized Flexible Piezoresistive Pressure Sensors: Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Copolymers Blended with Graphene Oxide for Biomedical Applications[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34305-34315.
[19] LI W, JIN X, HAN X, et al. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19211-19220.
[20] FORTUNATO M, BELLAGAMBA I, TAMBURRANO A, et al. Flexible Ecoflex/Graphene Nanoplatelet Foams for Highly Sensitive Low-Pressure Sensors[J]. Sensors, 2020, 20(16): 4406.
[21] XUE B, XIE H, ZHAO J, et al. Flexible Piezoresistive Pressure Sensor Based on Electrospun Rough Polyurethane Nanofibers Film for Human Motion Monitoring[J]. Nanomaterials, 2022, 12(4): 723.
[22] LI Q, LUO S, WANG Y, et al. Carbon Based Polyimide Nanocomposites Thin Film Strain Sensors Fabricated by Ink-Jet Printing Method[J]. Sensors and Actuators A: Physical, 2019, 300: 111664.
[23] YANG T, DENG W, CHU X, et al. Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics[J]. ACS Nano, 2021, 15(7): 11555-11563.
[24] DUAN S, WU J, XIA J, et al. Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors[J]. Sensors, 2020, 20(10): 1-25.
[25] LIU Y, ZHU L, XIANG Y, et al. Sensitivity Enhancement of the Tactile Sensor Based on Hydrothermally Grown ZnO Nanorods Modified by Catalytic Au Nanoparticles[J]. Materials Research Express, 2022, 9(4): 045004.
[26] ZHAO Q, YANG L, MA Y, et al. Highly Sensitive, Reliable and Flexible Pressure Sensor Based on Piezoelectric PVDF Hybrid Film Using MXene Nanosheet Reinforcement[J]. Journal of Alloys and Compounds, 2021, 886: 161069.
[27] YANG Y, PAN H, XIE G, et al. Flexible Piezoelectric Pressure Sensor Based on Polydopamine-Modified BaTiO3/PVDF Composite Film for Human Motion Monitoring[J]. Sensors and Actuators A: Physical, 2020, 301: 111789.
[28] TAN Y S, YANG K, WANG B, et al. High-Performance Textile Piezoelectric Pressure Sensor with Novel Structural Hierarchy Based on ZnO Nanorods Array for Wearable Application[J]. Nano Research, 2021, 14(11): 3969-3976.
[29] HOU X Y, GUO C F. Sensing Mechanisms and Applications of Flexible Pressure Sensors[J]. Acta Physica Sinica, 2020, 69(17): 178102.
[30] FAN F R, TIAN Z Q, WANG Z L. Flexible Triboelectric Generator[J]. Nano Energy, 2012, 1(2): 328-334.
[31] WANG J, CUI P, ZHANG J, et al. A Stretchable Self-Powered Triboelectric Tactile Sensor with EGaIn Alloy Electrode for Ultra-Low-Pressure Detection[J]. Nano Energy, 2021, 89: 106320.
[32] HU Y, ZHANG M, QIN C, et al. Transparent, Conductive Cellulose Hydrogel for Flexible Sensor and Triboelectric Nanogenerator at Subzero Temperature[J]. Carbohydrate Polymers, 2021, 265: 118078.
[33] CHUN S, CHOI I Y, SON W, et al. High-Output and Bending-Tolerant Triboelectric Nanogenerator Based on an Interlocked Array of Surface-Functionalized Indium Tin Oxide Nanohelixes[J]. ACS Energy Letters, 2019, 4(7): 1748-1754.
[34] SHIN Y E, LEE J E, PARK Y, et al. Sewing Machine Stitching of Polyvinylidene Fluoride Fibers: Programmable Textile Patterns for Wearable Triboelectric Sensors[J]. Journal of Materials Chemistry A, 2018, 6(45): 22879-22888.
[35] MAHARJAN P, BHATTA T, SALAUDDIN M, et al. A Human Skin-Inspired Self-Powered Flex Sensor with Thermally Embossed Microstructured Triboelectric Layers for Sign Language Interpretation[J]. Nano Energy, 2020, 76: 105071.
[36] YANG X, CHEN S, SHI Y, et al. A Flexible Highly Sensitive Capacitive Pressure Sensor[J]. Sensors and Actuators A: Physical, 2021, 324: 11629.
[37] YANG J, LUO S, ZHOU X, et al. Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006.
[38] SHUAI X, ZHU P, ZENG W, et al. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26314-26324.
[39] MA L, SHUAI X, HU Y, et al. A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on a Micro-Arrayed Polydimethylsiloxane Dielectric layer[J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-13240.
[40] SUN Z, FANG H, XU B, et al. Flexible Wireless Passive LC Pressure Sensor with Design Methodology and Cost-Effective Preparation[J]. Micromachines, 2021, 12(8): 976.
[41] GUO Z, MO L, DING Y, et al. Printed and Flexible Capacitive Pressure Sensor with Carbon Nanotubes based Composite Dielectric Layer[J]. Micromachines, 2019, 10(11): 715-727.
[42] QIN J, YIN L J, HAO Y N, et al. Flexible and Stretchable Capacitive Sensors with Different Microstructures[J]. Advanced Materials, 2021, 33(34): 2008267.
[43] MANNSFELD S C, TEE B C, STOLTENBERG R M, et al. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers[J]. Nature Materials, 2010, 9(10): 859-864.
[44] LUO Z B, CHEN J, ZHU Z F, et al. High-Resolution and High-Sensitivity Flexible Capacitive Pressure Sensors Enhanced by a Transferable Electrode Array and a Micropillar-PVDF Film[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7635-7649.
[45] NIE B, XING S, BRANDT J D, et al. Droplet-Based Interfacial Capacitive Sensing[J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[46] NIE B, LI R, CAO J, et al. Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing[J]. Advanced Materials, 2015, 27(39): 6055-6062.
[47] XU D, DUAN L, YAN S, et al. Monolayer MoS2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range[J]. Micromachines, 2022, 13(5): 660.
[48] LIN X, XUE H, LI F, et al. All-Nanofibrous Ionic Capacitive Pressure Sensor for Wearable Applications[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31385-31395.
[49] CHANG Y, WANG L, LI R, et al. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins[J]. Advanced Materials, 2021, 33(7): 2003464.
[50] YANG Y, CUI T, LI D, et al. Breathable Electronic Skins for Daily Physiological Signal Monitoring[J]. Nano-Micro Letters, 2022, 14(1): 161.
[51] WEI D, GUO J, QIU Y, et al. Monitoring the Delicate Operations of Surgical Robots via Ultra-Sensitive Ionic Electronic Skin[J]. National Science Review, 2022, 9(12): nwac227.
[52] SUN X, SUN J, LI T, et al. Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites[J]. Nano-Micro Letters, 2019, 11(1): 57.
[53] BOUTRY C M, NEGRE M, JORDA M, et al. A Hierarchically Patterned, Bioinspired E-Skin Able to Detect the Direction of Applied Pressure for Robotics[J]. Science Robotics, 2018, 3(24): eaau6914.
[54] PYO S, LEE J, BAE K, et al. Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications[J]. Advanced Materials, 2021, 33(47): 2005902.
[55] WANG T, ZHAO Y, WANG Q. A Flexible Iontronic Capacitive Sensing Array for Hand Gesture Recognition Using Deep Convolutional Neural Networks[J]. Soft Robotics 2022: 1-11.
[56] ZHONG M, ZHANG L, LIU X, et al. Wide Linear Range and Highly Sensitive Flexible Pressure Sensor Based on Multistage Sensing Process for Health Monitoring and Human-Machine Interfaces[J]. Chemical Engineering Journal, 2021, 412: 128649.
[57] LIU X, WEI Y, QIU Y. Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring[J]. Micromachines, 2021, 12(6): 695-707.
[58] GUO X, ZHOU D, HONG W, et al. Biologically Emulated Flexible Sensors With High Sensitivity and Low Hysteresis: Toward Electronic Skin to a Sense of Touch[J]. Small, 2022, 18(32): 2203044.
[59] YIN T, CHENG Y, HOU Y, et al. 3D Porous Structure in MXene/PANI Foam for a High-Performance Flexible Pressure Sensor[J]. Small, 2022, 18(48): 2204806.
[60] XIONG Y, SHEN Y, TIAN L, et al. A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring[J]. Nano Energy, 2020, 70: 104436.
[61] ZHANG X, ZHONG Y, YAN Y. Electrical, Mechanical, and Electromagnetic Shielding Properties of Silver Nanowire-Based Transparent Conductive Films[J]. Physica Status Solidi A, 2018, 215(14): 180014.
[62] REN R, ZHONG Y, FAN Y. A High-Performance Electrode Based on Reduced Graphene Oxide/Lignosulfonate/Carbon Microspheres Film for Flexible Supercapacitors[J]. BioResources, 2022, 17(1): 1729-1744.
[63] LV Z, WANG C, WAN C, et al. Strain-Driven Auto-Detachable Patterning of Flexible Electrodes[J]. Advanced Materials, 2022, 34(30): 2202877.
[64] ZHANG L, SONG T, SHI L, et al. Recent Progress for Silver Nanowires Conducting Film for Flexible Electronics[J]. Journal of Nanostructure in Chemistry, 2021, 11(3): 323-341.
[65] WANG F, ZHAO H, LIANG J, et al. Magnetron Sputtering Enabled Synthesis of Nanostructured Materials for Electrochemical Energy Storage[J]. Journal of Materials Chemistry A, 2020, 8(39): 20260-20285.
[66] WU J, GAO X, YU H, et al. A Scalable Free-Standing V2O5/CNT Film Electrode for Supercapacitors with a Wide Operation Voltage (1.6 V) in an Aqueous Electrolyte[J]. Advanced Functional Materials, 2016, 26(33): 6114-6120.
[67] GAO Y, XIAO T, LI Q, et al. Flexible Microstructured Pressure Sensors: Design, Fabrication and Applications[J]. Nanotechnology, 2022, 33(32): 322002.
[68] ZHANG D, LIU X, QIU J. 3D Printing of Glass by Additive Manufacturing Techniques: a Review[J]. Frontiers of Optoelectronics, 2021, 14(3): 263-277.
[69] YIN X Y, ZHANG Y, XIAO J F, et al. Monolithic Dual‐Material 3D Printing of Ionic Skins with Long‐Term Performance Stability[J]. Advanced Functional Materials, 2019, 29(39): 1904716.
[70] YANG C, ABODUREXITI A, MAIMAITIYIMING X. Flexible Humidity and Pressure Sensors Realized by Molding and Inkjet Printing Processes with Sandwich Structure[J]. Macromolecular Materials and Engineering, 2020, 305(8): 2000287.
[71] THOUTI E, NAGARAJU A, CHANDRAN A, et al. Tunable Flexible Capacitive Pressure Sensors Using Arrangement of Polydimethylsiloxane Micro-Pyramids for Bio-Signal Monitoring[J]. Sensors and Actuators A: Physical, 2020, 314: 112251.
[72] WAN Y, WANG Y, GUO C F. Recent Progresses on Flexible Tactile Sensors[J]. Materials Today Physics, 2017, 1: 61-73.
[73] JI C, ZHANG Q, LI Q, et al. A Graphical Pressure Sensor Array with Multilayered Structure Based on Graphene and Paper Substrate[J]. Macromolecular Materials and Engineering, 2021, 307(2): 2100643.
[74] ZHAO G, LV B, WANG H, et al. Ionogel-Based Flexible Stress and Strain Sensors[J]. International Journal of Smart and Nano Materials, 2021, 12(3): 307-336.
[75] HYUN W J, THOMAS C M, LUU N S, et al. Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries[J]. Advanced Materials, 2021, 33(13): 2007864.
[76] LIU X, WU B, BRANDON N, et al. Tough Ionogel-in-Mask Hybrid Gel Electrolytes in Supercapacitors with Durable Pressure and Thermal Tolerances[J]. Energy Technology, 2017, 5(2): 1-5.
[77] ZHANG Y, XU J, WANG H. Bio-Based, Self-Adhesive, and Self-Healing Ionogel with Excellent Mechanical Properties for Flexible Strain Sensor[J]. RSC Advances, 2021, 11(59): 37661-37666.
[78] 刘如亮, 高兴远, 尹伟, 等. PVDF-HFP基凝胶固态聚合物电解质的合成与锂离子电池性能[J]. 储能科学与技术, 2021, 10(6): 2077-2081.
[79] QIU Z, WAN Y, ZHOU W, et al. Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine Leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[80] 孙一心. 基于分布式电容的新型柔性触觉传感器的设计与研究[D]. 天津: 天津大学, 2014: 33-42.
[81] 蔡成涛, 郑佳, 韩光照. 多段电容式锅炉液位测量系统设计[J]. 计算机测量与控制, 2016, 24(7): 35-38.
修改评论