中文版 | English
题名

基于 PDMS 的柱面阵列式柔性力传感器研究

其他题名
RESEARCH ON CYLINDRICAL FLEXIBLE PRESSURE SENSOR ARRAY BASED ON PDMS
姓名
姓名拼音
SHI Yan
学号
12132565
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
熊璟
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-17
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
柔性压力传感器因其能够模仿人体皮肤的触觉功能,在电子皮肤、人机交互以及健康监测等领域得到了广泛研究。在普通外科诊疗中,医生常通过触摸患者的组织来对患者进行诊断;但在消化内镜手术中,医生无法通过触觉反馈来确定组织异常,缺乏触觉反馈可能对正常组织造成损伤,这极大增加了内镜诊疗的不确定性和风险。针对此问题,本文设计并制备了一种圆柱状的离-电式压力传感器阵列,可集成到消化内镜的前端,在诊疗过程中为医生提供触觉信息,提高内镜诊疗的效率和安全性。
离-电式压力传感器因具有高灵敏度、高信噪比以及便于信号采集等优点得到了广泛研究;在传感器中引入微结构可有效提高传感器的性能。因此,本文采用刮涂法制备了聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)/银浆柔性电极,并采用溶液浇铸法制备了无微结构、金字塔微结构以及圆柱微结构的聚偏氟乙烯-六氟丙烯(Polyvinylidene Fluoride-Hexafluoropropylene, PVDF-HFP)/离子液体(Ionic Liquid, IL)离子凝胶介电层,在消化内镜前端将电极和介电层以三明治结构进行组装形成柱面压力传感器阵列。对传感器的性能进行了测试,测试结果表明金字塔微结构的传感器具有较高灵敏度(0.39 kPa-1)、快速响应/恢复时间(46 ms)以及良好的循环稳定性(1200次加/卸载循环),满足消化道触觉感知的需求。
此外,本文设计了阵列式传感器数据采集系统,在消化道模型中进行了触觉感知实验,结果表明该柱面传感器阵列可以帮助医生获取触觉信息,这将有助于提高内镜诊疗的效率和安全性。所设计的传感器及触觉感知系统在医疗健康领域具有良好的应用前景和价值。
其他摘要
Flexible pressure sensors have been widely studied in the fields of electronic skin, human-computer interaction and health monitoring because of their ability to mimic the tactile function of human skin. In general surgery, doctors often diagnose patients by touching their tissues; however, in gastrointestinal endoscopy, doctors are unable to identify tissue abnormalities through tactile feedback, and the lack of tactile feedback may cause damage to normal tissues, which greatly increases the uncertainty and risk of endoscopic procedures. To address this problem, this paper designs and prepares a cylindrical iontronic pressure sensor array that can be integrated into the front end of a gastrointestinal endoscope to provide tactile information to the physician during treatment, improving the effectiveness and safety of endoscopic treatment.
Iontronic pressure sensors have been widely studied for their advantages of high sensitivity, high signal-to-noise ratio and ease of signal acquisition. The introduction of microstructures in the sensors can effectively improve the performance of the sensors. Therefore, in this paper, PDMS/silver paste flexible electrodes were prepared by the scrape coating method, and PVDF-HFP/IL ionic gel dielectric layers without microstructure, pyramidal microstructure and cylindrical microstructure were prepared by the solution casting method. The electrode and dielectric layer are assembled with a sandwich structure at the front end of the digestive endoscopy to form a cylindrical pressure sensor array. The performance of the sensors was tested and the results showed that the pyramidal microstructure had high sensitivity (0.39 kPa-1), fast response/recovery time (46 ms) and good cycling stability (1200 loading/unloading cycles), which meets the need of tactile perception of the digestive tract.
In addition, this paper designed an array sensor data acquisition system and performed haptic perception experiments in a digestive tract model, the results showed that the cylindrical sensor array can help doctors to obtain haptic information, which will help to improve the effectiveness and safety of endoscopic treatment. The designed sensor and haptic sensing system has good prospects and value for application in the medical and health field.
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] WANG Y X, YUE Y, CHENG F, et al. Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors[J]. ACS Nano, 2022, 2(16): 1734-1758.
[2] LI Y, GAO M, YANG L C, et al. Design of and Research on Industrial Measuring Devices Based on Internet of Things Technology[J]. Ad Hoc Networks, 2020, 102: 102072.
[3] MOMPAELER V G, PERIS M. Smart Sensors in Environmental/Water Quality Monitoring Using IoT and Cloud Services[J]. Trends in Environmental Analytical Chemistry, 2022, 35: e00173.
[4] LIU Y H. Intelligent Analysis Platform of Agricultural Sustainable Development Based on the Internet of Things and Machine Learning[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2021, 71(8): 718-731.
[5] ISLAM M M, RAHAMAN A, ISLAM M R. Development of Smart Healthcare Monitoring System in IoT Environment[J]. SN Computer Science, 2020, 1(3): 185.
[6] QIAO Y, LUO J, CUI T, et al. Soft Electronics for Health Monitoring Assisted by Machine Learning[J]. Nano-Micro Letters, 2023, 15(1): 66.
[7] WANG Y, ADAM M L, ZHAO Y, et al. Machine Learning-Enhanced Flexible Mechanical Sensing[J]. Nano-Micro Letters, 2023, 15(1): 55.
[8] LI Z, ZOU L, CHU C, et al. Development of a Carbon‐Based Flexible Strain Sensor for Diverse Human Motion Monitoring[J]. Physica Status Solidi (A), 2022, 220(2): 2200617.
[9] YANG K, XIA X, ZHANG F, et al. Implementation of a Sponge-Based Flexible Electronic Skin for Safe Human-Robot Interaction[J]. Micromachines, 2022, 13(8): 1344.
[10] DONG H, ZHANG L, WU T, et al. Flexible Pressure Sensor with High Sensitivity and Fast Response for Electronic Skin Using Near-Field Electrohydrodynamic Direct Writing[J]. Organic Electronics, 2021, 89: 106044.
[11] FULKERSON M. The First Sense: A Philosophical Study of Human Touch[M]. 20110405. London, UK: MIT Press, 2014: 24-31.
[12] 程龙, 刘泽宇. 柔性触觉传感技术及其在医疗康复机器人的应用[J]. 控制与决策, 2022, 37(6): 1410-1432.
[13] 徐铭, 姚理文, 胡珊, 等. 基于深度学习的消化内镜检查辅助质量控制系统研究[J]. 中华消化内镜杂志, 2021, 38(2): 107-114.
[14] TAN Y, LIU X, TANG W, et al. Flexible Pressure Sensors Based on Bionic Microstructures: From Plants to Animals[J]. Advanced Materials Interfaces, 2022, 9(5): 2101312.
[15] LI F C, KONG Z, WU J H, et al. Advances in Flexible Piezoresistive Pressure Sensor[J]. Acta Physica Sinica, 2021, 70(10): 100703.
[16] SADIQ H, HUI H, HUANG S, et al. A Flexible Pressure Sensor Based on PDMS-CNTs Film for Multiple Applications[J]. IEEE Sensors Journal, 2022, 22(4): 3033-3039.
[17] JING M, ZHOU J, ZHANG P, et al. Porous AgNWs/Poly(vinylidene fluoride) Composite-Based Flexible Piezoresistive Sensor with High Sensitivity and Wide Pressure Ranges[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 55119-55129.
[18] WANG J C, KARMAKAR R S, LU Y J, et al. Miniaturized Flexible Piezoresistive Pressure Sensors: Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Copolymers Blended with Graphene Oxide for Biomedical Applications[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34305-34315.
[19] LI W, JIN X, HAN X, et al. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19211-19220.
[20] FORTUNATO M, BELLAGAMBA I, TAMBURRANO A, et al. Flexible Ecoflex/Graphene Nanoplatelet Foams for Highly Sensitive Low-Pressure Sensors[J]. Sensors, 2020, 20(16): 4406.
[21] XUE B, XIE H, ZHAO J, et al. Flexible Piezoresistive Pressure Sensor Based on Electrospun Rough Polyurethane Nanofibers Film for Human Motion Monitoring[J]. Nanomaterials, 2022, 12(4): 723.
[22] LI Q, LUO S, WANG Y, et al. Carbon Based Polyimide Nanocomposites Thin Film Strain Sensors Fabricated by Ink-Jet Printing Method[J]. Sensors and Actuators A: Physical, 2019, 300: 111664.
[23] YANG T, DENG W, CHU X, et al. Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics[J]. ACS Nano, 2021, 15(7): 11555-11563.
[24] DUAN S, WU J, XIA J, et al. Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors[J]. Sensors, 2020, 20(10): 1-25.
[25] LIU Y, ZHU L, XIANG Y, et al. Sensitivity Enhancement of the Tactile Sensor Based on Hydrothermally Grown ZnO Nanorods Modified by Catalytic Au Nanoparticles[J]. Materials Research Express, 2022, 9(4): 045004.
[26] ZHAO Q, YANG L, MA Y, et al. Highly Sensitive, Reliable and Flexible Pressure Sensor Based on Piezoelectric PVDF Hybrid Film Using MXene Nanosheet Reinforcement[J]. Journal of Alloys and Compounds, 2021, 886: 161069.
[27] YANG Y, PAN H, XIE G, et al. Flexible Piezoelectric Pressure Sensor Based on Polydopamine-Modified BaTiO3/PVDF Composite Film for Human Motion Monitoring[J]. Sensors and Actuators A: Physical, 2020, 301: 111789.
[28] TAN Y S, YANG K, WANG B, et al. High-Performance Textile Piezoelectric Pressure Sensor with Novel Structural Hierarchy Based on ZnO Nanorods Array for Wearable Application[J]. Nano Research, 2021, 14(11): 3969-3976.
[29] HOU X Y, GUO C F. Sensing Mechanisms and Applications of Flexible Pressure Sensors[J]. Acta Physica Sinica, 2020, 69(17): 178102.
[30] FAN F R, TIAN Z Q, WANG Z L. Flexible Triboelectric Generator[J]. Nano Energy, 2012, 1(2): 328-334.
[31] WANG J, CUI P, ZHANG J, et al. A Stretchable Self-Powered Triboelectric Tactile Sensor with EGaIn Alloy Electrode for Ultra-Low-Pressure Detection[J]. Nano Energy, 2021, 89: 106320.
[32] HU Y, ZHANG M, QIN C, et al. Transparent, Conductive Cellulose Hydrogel for Flexible Sensor and Triboelectric Nanogenerator at Subzero Temperature[J]. Carbohydrate Polymers, 2021, 265: 118078.
[33] CHUN S, CHOI I Y, SON W, et al. High-Output and Bending-Tolerant Triboelectric Nanogenerator Based on an Interlocked Array of Surface-Functionalized Indium Tin Oxide Nanohelixes[J]. ACS Energy Letters, 2019, 4(7): 1748-1754.
[34] SHIN Y E, LEE J E, PARK Y, et al. Sewing Machine Stitching of Polyvinylidene Fluoride Fibers: Programmable Textile Patterns for Wearable Triboelectric Sensors[J]. Journal of Materials Chemistry A, 2018, 6(45): 22879-22888.
[35] MAHARJAN P, BHATTA T, SALAUDDIN M, et al. A Human Skin-Inspired Self-Powered Flex Sensor with Thermally Embossed Microstructured Triboelectric Layers for Sign Language Interpretation[J]. Nano Energy, 2020, 76: 105071.
[36] YANG X, CHEN S, SHI Y, et al. A Flexible Highly Sensitive Capacitive Pressure Sensor[J]. Sensors and Actuators A: Physical, 2021, 324: 11629.
[37] YANG J, LUO S, ZHOU X, et al. Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006.
[38] SHUAI X, ZHU P, ZENG W, et al. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26314-26324.
[39] MA L, SHUAI X, HU Y, et al. A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on a Micro-Arrayed Polydimethylsiloxane Dielectric layer[J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-13240.
[40] SUN Z, FANG H, XU B, et al. Flexible Wireless Passive LC Pressure Sensor with Design Methodology and Cost-Effective Preparation[J]. Micromachines, 2021, 12(8): 976.
[41] GUO Z, MO L, DING Y, et al. Printed and Flexible Capacitive Pressure Sensor with Carbon Nanotubes based Composite Dielectric Layer[J]. Micromachines, 2019, 10(11): 715-727.
[42] QIN J, YIN L J, HAO Y N, et al. Flexible and Stretchable Capacitive Sensors with Different Microstructures[J]. Advanced Materials, 2021, 33(34): 2008267.
[43] MANNSFELD S C, TEE B C, STOLTENBERG R M, et al. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers[J]. Nature Materials, 2010, 9(10): 859-864.
[44] LUO Z B, CHEN J, ZHU Z F, et al. High-Resolution and High-Sensitivity Flexible Capacitive Pressure Sensors Enhanced by a Transferable Electrode Array and a Micropillar-PVDF Film[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7635-7649.
[45] NIE B, XING S, BRANDT J D, et al. Droplet-Based Interfacial Capacitive Sensing[J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[46] NIE B, LI R, CAO J, et al. Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing[J]. Advanced Materials, 2015, 27(39): 6055-6062.
[47] XU D, DUAN L, YAN S, et al. Monolayer MoS2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range[J]. Micromachines, 2022, 13(5): 660.
[48] LIN X, XUE H, LI F, et al. All-Nanofibrous Ionic Capacitive Pressure Sensor for Wearable Applications[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31385-31395.
[49] CHANG Y, WANG L, LI R, et al. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins[J]. Advanced Materials, 2021, 33(7): 2003464.
[50] YANG Y, CUI T, LI D, et al. Breathable Electronic Skins for Daily Physiological Signal Monitoring[J]. Nano-Micro Letters, 2022, 14(1): 161.
[51] WEI D, GUO J, QIU Y, et al. Monitoring the Delicate Operations of Surgical Robots via Ultra-Sensitive Ionic Electronic Skin[J]. National Science Review, 2022, 9(12): nwac227.
[52] SUN X, SUN J, LI T, et al. Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites[J]. Nano-Micro Letters, 2019, 11(1): 57.
[53] BOUTRY C M, NEGRE M, JORDA M, et al. A Hierarchically Patterned, Bioinspired E-Skin Able to Detect the Direction of Applied Pressure for Robotics[J]. Science Robotics, 2018, 3(24): eaau6914.
[54] PYO S, LEE J, BAE K, et al. Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications[J]. Advanced Materials, 2021, 33(47): 2005902.
[55] WANG T, ZHAO Y, WANG Q. A Flexible Iontronic Capacitive Sensing Array for Hand Gesture Recognition Using Deep Convolutional Neural Networks[J]. Soft Robotics 2022: 1-11.
[56] ZHONG M, ZHANG L, LIU X, et al. Wide Linear Range and Highly Sensitive Flexible Pressure Sensor Based on Multistage Sensing Process for Health Monitoring and Human-Machine Interfaces[J]. Chemical Engineering Journal, 2021, 412: 128649.
[57] LIU X, WEI Y, QIU Y. Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring[J]. Micromachines, 2021, 12(6): 695-707.
[58] GUO X, ZHOU D, HONG W, et al. Biologically Emulated Flexible Sensors With High Sensitivity and Low Hysteresis: Toward Electronic Skin to a Sense of Touch[J]. Small, 2022, 18(32): 2203044.
[59] YIN T, CHENG Y, HOU Y, et al. 3D Porous Structure in MXene/PANI Foam for a High-Performance Flexible Pressure Sensor[J]. Small, 2022, 18(48): 2204806.
[60] XIONG Y, SHEN Y, TIAN L, et al. A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring[J]. Nano Energy, 2020, 70: 104436.
[61] ZHANG X, ZHONG Y, YAN Y. Electrical, Mechanical, and Electromagnetic Shielding Properties of Silver Nanowire-Based Transparent Conductive Films[J]. Physica Status Solidi A, 2018, 215(14): 180014.
[62] REN R, ZHONG Y, FAN Y. A High-Performance Electrode Based on Reduced Graphene Oxide/Lignosulfonate/Carbon Microspheres Film for Flexible Supercapacitors[J]. BioResources, 2022, 17(1): 1729-1744.
[63] LV Z, WANG C, WAN C, et al. Strain-Driven Auto-Detachable Patterning of Flexible Electrodes[J]. Advanced Materials, 2022, 34(30): 2202877.
[64] ZHANG L, SONG T, SHI L, et al. Recent Progress for Silver Nanowires Conducting Film for Flexible Electronics[J]. Journal of Nanostructure in Chemistry, 2021, 11(3): 323-341.
[65] WANG F, ZHAO H, LIANG J, et al. Magnetron Sputtering Enabled Synthesis of Nanostructured Materials for Electrochemical Energy Storage[J]. Journal of Materials Chemistry A, 2020, 8(39): 20260-20285.
[66] WU J, GAO X, YU H, et al. A Scalable Free-Standing V2O5/CNT Film Electrode for Supercapacitors with a Wide Operation Voltage (1.6 V) in an Aqueous Electrolyte[J]. Advanced Functional Materials, 2016, 26(33): 6114-6120.
[67] GAO Y, XIAO T, LI Q, et al. Flexible Microstructured Pressure Sensors: Design, Fabrication and Applications[J]. Nanotechnology, 2022, 33(32): 322002.
[68] ZHANG D, LIU X, QIU J. 3D Printing of Glass by Additive Manufacturing Techniques: a Review[J]. Frontiers of Optoelectronics, 2021, 14(3): 263-277.
[69] YIN X Y, ZHANG Y, XIAO J F, et al. Monolithic Dual‐Material 3D Printing of Ionic Skins with Long‐Term Performance Stability[J]. Advanced Functional Materials, 2019, 29(39): 1904716.
[70] YANG C, ABODUREXITI A, MAIMAITIYIMING X. Flexible Humidity and Pressure Sensors Realized by Molding and Inkjet Printing Processes with Sandwich Structure[J]. Macromolecular Materials and Engineering, 2020, 305(8): 2000287.
[71] THOUTI E, NAGARAJU A, CHANDRAN A, et al. Tunable Flexible Capacitive Pressure Sensors Using Arrangement of Polydimethylsiloxane Micro-Pyramids for Bio-Signal Monitoring[J]. Sensors and Actuators A: Physical, 2020, 314: 112251.
[72] WAN Y, WANG Y, GUO C F. Recent Progresses on Flexible Tactile Sensors[J]. Materials Today Physics, 2017, 1: 61-73.
[73] JI C, ZHANG Q, LI Q, et al. A Graphical Pressure Sensor Array with Multilayered Structure Based on Graphene and Paper Substrate[J]. Macromolecular Materials and Engineering, 2021, 307(2): 2100643.
[74] ZHAO G, LV B, WANG H, et al. Ionogel-Based Flexible Stress and Strain Sensors[J]. International Journal of Smart and Nano Materials, 2021, 12(3): 307-336.
[75] HYUN W J, THOMAS C M, LUU N S, et al. Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries[J]. Advanced Materials, 2021, 33(13): 2007864.
[76] LIU X, WU B, BRANDON N, et al. Tough Ionogel-in-Mask Hybrid Gel Electrolytes in Supercapacitors with Durable Pressure and Thermal Tolerances[J]. Energy Technology, 2017, 5(2): 1-5.
[77] ZHANG Y, XU J, WANG H. Bio-Based, Self-Adhesive, and Self-Healing Ionogel with Excellent Mechanical Properties for Flexible Strain Sensor[J]. RSC Advances, 2021, 11(59): 37661-37666.
[78] 刘如亮, 高兴远, 尹伟, 等. PVDF-HFP基凝胶固态聚合物电解质的合成与锂离子电池性能[J]. 储能科学与技术, 2021, 10(6): 2077-2081.
[79] QIU Z, WAN Y, ZHOU W, et al. Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine Leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[80] 孙一心. 基于分布式电容的新型柔性触觉传感器的设计与研究[D]. 天津: 天津大学, 2014: 33-42.
[81] 蔡成涛, 郑佳, 韩光照. 多段电容式锅炉液位测量系统设计[J]. 计算机测量与控制, 2016, 24(7): 35-38.

所在学位评定分委会
材料与化工
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545145
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
史妍. 基于 PDMS 的柱面阵列式柔性力传感器研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132565-史妍-中国科学院深圳理(3857KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史妍]的文章
百度学术
百度学术中相似的文章
[史妍]的文章
必应学术
必应学术中相似的文章
[史妍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。