[1] 雍国清, 张碧, 王永康, 等. 后摩尔时代芯片结构材料的热设计与表征[J]. 电子机械工程, 2021, 37(5): 1-13.
[2] LEE D W, MAYBERRY R, MACKIE A, et al. Optimizing reflowed solder TIM (sTIMs) processes for emerging heterogeneous integrated packages[C]//IEEE 72nd Electronic Components and Technology Conference, 2022: 1228-1237.
[3] PANZER M, ZHANG G, MANN D, et al. Thermal properties of metal-coated vertically-aligned single wall nanotube films[C]//Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006: 1306-1313.
[4] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展[J]. 物理学报, 2020, 69: 196602.
[5] ZHAO Y, CHU R S, MAJUMDAR A. Transient thermo-reflectance method for characterization of thermal interface material based on carbon nanotube array[C]// ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, 2009: 435-442.
[6] 潘东楷, 宗志成, 杨诺. 纳米尺度热物理中的声子弱耦合问题[J]. 物理学报, 2022, 71(08): 284-288.
[7] LYEO H K, CAHILL D G. Thermal conductance of interfaces between highly dissimilar materials[J]. Physical Review: B, Condensed Matter and Materials Physics, 2006, 73(14): 144301.
[8] LI X, PARK W, CHEN Y P, et al. Thermal interfacial resistance reduction between metal and dielectric materials by inserting intermediate metal layer[C]// ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, 2016: 1-5.
[9] CHOU C Y, CHANG T J, WANG C I, et al. Dielectric properties and reliability enhancement of atomic layer deposited thin films by in situ atomic layer substrate biasing[J]. Journal of Materials Chemistry C, 2020, 8(37): 13025-13032.
[10] CHEN X, ZHU J, YIN G, et al. Thermal diffusivity of surface-microstructured silicon measured by photothermal deflection technique[J]. Materials Letters, 2006, 60(1): 63-66.
[11] 宋成轶, 栾添, 邬剑波, 等. 聚合物基热界面材料界面接触热阻的研究进展[J].集成技术, 2019, 8(1): 54-67.
[12] ZHANG Z, KULKARNI P A, DAEUMER M, et al. Spatial thermal conductivity variation of particulate-filled thermal interface materials[C]//IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2022: 1.
[13] ANISUR R M, CHRISTOPHER B, SIRUI G, et al. Design of tough adhesive from commodity thermoplastics through dynamic crosslinking[J]. Science Advances, 2021, 7(42): 261-394.
[14] LEE E, MENUMEROV E, HUGHES R A, et al. Low-cost nanostructures from nanoparticle-assisted large-scale lithography significantly enhance thermal energy transport across solid interfaces[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34690-34698.
[15] CHEN J, XU X, ZHOU J, et al. Interfacial thermal resistance: Past, present, and future[J]. Review of Modern Physics, 2022, 94(2): 025002.
[16] SMITH B, BRUNSCHWILER T, MICHEL B. Comparison of transient and static test methods for chip-to-sink thermal interface characterization[J]. Microelectronics Journal, 2009, 40(9): 1379.
[17] SMITH A N, HARRIS M, WARZOHA R J. Maximum resolution of a probe-based, steady-state thermal interface material characterization instrument[J]. Journal of Electronic Packaging, 2016, 139(1): 011004.
[18] BOURASSIA B, BRAHIM B. Analysis of the evolution of the structure of a surface with pyramidal asperities in contact with a hard and smooth plane[J]. Journal of Heat Transfer, 2019, 142(1): 2-7.
[19] SHI L, LI D, YU C, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device[J]. Journal of Heat Transfer, 2003, 125(5).
[20] AIYITI A, BAI X, WU J, et al. Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS2 using electron beam self-heating technique[J]. Science Bulletin, 2018, 63(7): 452-458.
[21] HART T R, AGGARWAL R L, LAX B. Temperature dependence of Raman scattering in silicon[J]. Physical Review B, 1970, 1(2): 638.
[22] GU X, WEI Y, YIN X, et al. Colloquium: Phononic thermal properties of two-dimensional materials[J]. Reviews of Modern Physics, 2018, 90(4): 041002.
[23] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters, 2008, 8(3): 902-907.
[24] LIU D, XIE R, YANG N, et al. Profiling nanowire thermal resistance with a spatial resolution of nanometers[J]. Nano Lett., 2014, 14(7): 806-812.
[25] 樊傲然, 马维刚, 王海东, 等. 双波长闪光拉曼热测量系统研发及应用. 清华大学学报(自然科学版)[J], 2021, 61(12): 1379-1388.
[26] REPARAZ1 J S, E C A, WAGNER M R, et al. A novel contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry[J]. Review of Scientific Instruments, 2014, 85: 034901.
[27] XU X, FAN A, WANG H, et al. Raman-based nanoscale thermal transport characterization: a critical review[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119751.
[28] LIU J, HAN M, WANG R, et al. Photothermal phenomenon: Extended ideas for thermophysical properties characterization[J]. Journal of Applied Physics, 2022, 131(6): 065107.
[29] CHIU C P, MAVEETY J G, TRAN Q A. Characterization of solder interfaces using laser flash metrology[J]. Microelectronics Reliability, 2002, 42(1): 93-100.
[30] CORBIN S F, TURRIFF D M. Thermal diffusivity by the laser flash technique[J]. Characterization of Materials, 2012, 1: 10.
[31] VEGA-FLICK A, DUNCAN R A, ELIASON J K, et al. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings[J]. AIP Advances, 2016, 6(1): 121903.
[32] KÄDING O W, SKURK H, MAZNEV A A, et al. Transient thermal gratings at surfaces for thermal characterization of bulk materials and thin films[J]. Applied Physics A. 1995. 61(3): 253-261.
[33] YUE S, TIAN F, M M, et al. High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopy[J]. Science, 2022, 377(6604): 433-436.
[34] CHEN K, SONG B, RAVICHANDRAN N K, et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride[J]. Science, 2020, 367(6477): 555-559.
[35] HOPKINS P E, SERRANO J R, PHINNEY L M. Comparison of thermal conductivity and thermal boundary conductance sensitivities in continuous-wave and ultrashort-pulsed thermoreflectance analyses[J]. International Journal of Thermophysics, 2010, 31(11): 2380-2393.
[36] WEI C, ZHENG X, CAHILL D G, et al. Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance[J]. The Review of Scientific Instruments, 2013, 84(7): 071301.
[37] BOUGHER T L, TAPHOUSE J H, COLA B A. Characterization of carbon nanotube forest interfaces using time domain thermoreflectance[C]//International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the International Conference on Nanochannels, Microchannels, and Minichannels, 2015: 1.
[38] ZHU J, TANG D, WANG W, et al. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films[J]. Journal of Applied Physics, 2010, 108(9): 094315.
[39] BURZO M G, KOMAROV P L, RAAD P E. Thermal transport properties of gold-covered thin-film silicon dioxide[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2003, 26(1): 80-88.
[40] FUJISHIRO H, IKEBE M, KASHIMA T, et al. Thermal conductivity and diffusivity of high-strength polymer fibers[J]. Japanese Journal of Applied Physics, 1997, 36(9A): 5633-5637.
[41] BALAGEAS D L, Schmidt A J, CHEN X. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance[J]. The Review of Scientific Instruments, 2008, 79(11): 452-458.
[42] KRAPEZ C, CIELO P. Pulsed photothermal modeling of layered materials[J]. Journal of Applied Physics, 1986, 59(2): 348-357.
[43] CHEN G, HUI P. Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction[J]. Thin Solid Films, 1999, 339(1): 58.
[44] ZHAO Y, ZHU C, WANG S, et al. Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films[J]. Journal of Applied Physics, 2004, 96(8): 4563-4568.
[45] KAADING O W, SKURK H, GOODSON K E. Thermal conduction in metallized silicon-dioxide layers on silicon[J]. Applied Physics Letters, 1998, 65(13): 1629-1631.
[46] JIANG P, WANG D, XIANG Z, et al. A new spatial-domain thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122849.
[47] WANG L, CHEAITO R, BRAUN J L, et al. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer[J]. Review of Scientific Instruments, 2016, 87(9): 094902.
[48] ZHAO D, XIN Q, GU X, et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials[J]. Journal of Electronic Packaging. 2016, 138(4): 040802.
[49] SCOTT E A, PEREZ C, SALTONSTALL C, et al. Simultaneous thickness and thermal conductivity measurements of thinned silicon from 100 nm to 17 μm[J]. Applied Physics Letters, 2021, 118(20): 202108.
[50] KIM S, LEE M, HONG C, et al. A band-gap database for semiconducting inorganic materials calculated with hybrid functional[J]. Scientific Data, 2020, 7(1): 387.
[51] HERMINGHAUS S, LEIDERER P. Surface plasmon enhanced transient thermoreflectance[J]. Applied Physics A, 1990, 51(4): 350-353.
[52] HUANG Y H, HO H P, WU S Y, et al. Detecting phase shifts in surface plasmon resonance: A review[J]. Advances in Optical Technologies, 2011: 12.
[53] Tan C Z. Dependence of the refractive index on density, temperature, and the wavelength of the incident light[J]. The European Physical Journal B, 2021, 94(7): 11.
[54] LI H H. Refractive index of silicon and germanium and its wavelength and temperature derivatives[J]. Journal of Physical and Chemical Reference Data, 2009, 9(3): 561-658.
[55] HANDA T, TAHARA H, AHAREN T, et al. Large negative thermo-optic coefficients of a lead halide perovskite[J]. Science Advances, 2019, 5(7): 0786.
[56] LUIGI M, MARIO I, FRANCESCO G, et al. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515K in the visible and infrared regions[J]. Journal of Applied Physics, 2005, 98(3): 036101.
[57] PALIK E D, GHOSH G C. Handbook of thermo-optic coefficients of optical materials with applications[M]. Tsukuba Japan: Academic Press, 1997.
[58] HOYLAND J D, SANDS D. Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating[J]. Journal of Applied Physics, 2006, 99(6): 063516.
[59] PENG W, WILSON R B. Nanoscale laser flash measurements of diffusion transport in amorphous Ge and Si[J]. APL Materials, 2022, 10(4): 041111.
[60] BURZOM M G, KOMAROV P L, RAAD P E. Optimized thermo-reflectance system for measuring the thermal properties of thin-films and their interfaces[C]//IEEE Semiconductor Thermal Measurement and Management Symposium, 2006: 87-94.
[61] OHSONE Y, WU G, DRYDEN J, et al. Optical measurement of thermal contact conductance between wafer-like thin solid samples[J]. Journal of Heat Transfer, 1999, 121(4): 954-963.
[62] TONG T, ZHAO Y, DELZEIT L, et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials[J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(1): 96.
[63] FENG X, KING C, DEVOTO D, et al. Investigation of thermal interface materials using phase-sensitive transient thermoreflectance technique[C]//Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2014: 27-30.
[64] POOPAKDEE N, ABDALLAH Z, POMEROY J W, et al. In situ thermoreflectance characterization of thermal resistance in multilayer electronics packaging[J]. ACS Applied Electronic Materials, 2022, 4(4): 1558-1566.
[65] REGNER K T, WEI L C, MALEN J A. Interpretation of thermoreflectance measurements with a two-temperatures model including non-surface heat deposition[J]. Journal of Applied Physics, 2015, 118(23): 06493.
[66] FELDMAN A. Algorithm for solutions of the thermal diffusion equation in a stratified mediumwith a modulated heating source[J]. High Temperature -High Pressures,1999, 31(3): 293-298.
[67] ZOLTÁN S, WOLFGANG K, ANDREASCC K, et al. Evaluation of reflectivity of metal parts by a thermo-camera[C]//Infrared Camera Applications Conference, 2010:3.
[68] BERAN A. The reflectance behaviour of gold at temperatures up to 500°C[J]. Tschermaks Mineralogische und Petrogrsaphische Mitteilungen. 1985, 34(3): 211-215.
[69] TANG L, DAMES C. Anisotropic thermal conductivity tensor measurements using beam-offset frequency domain thermoreflectance (BO-FDTR) for materials lacking in-plane symmetry[J]. International Journal of Heat and Mass Transfer, 2021, 164: 1-10.
[70] CHEN Z J, FANG J W, ZHANG S Y. Thermal characterization of film-on-substrate system by photothermal method and genetic algorithm[J]. The European Physical Journal Special Topics, 2008, 153(1): 195-198.
[71] GONG W, LI P, ZHANG Y, et al. Ultracompliant heterogeneous copper–tin nanowire arrays making a supersolder[J]. Nano Letters, 2018, 18(6): 3586.
[72] 王刘鑫. 基于光热法的热界面材料接触热阻研究[D]. 广东:南方科技大学, 2022.
[73] CHEN C W, JAU H C, LEE C H, et al. Temperature dependence of refractive index in blue phase liquid crystals[J]. Optical Materials Express, 2013, 3(5): 527-532.
[74] DILHAIRE S, GRAUBY S, CLAEYS W. Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions[J]. Applied Physics Letters, 2004, 84(5): 822-824.
[75] 王梦宇. 基于纳米管/线的热界面材料热性能研究[D]. 安徽:中国科学技术大学, 2017.
[76] DURAN S S F, ZHANG D, LIM W Y S, et al. Potential of recycled silicon and silicon-based thermoelectrics for power generation[J]. Crystals, 2022, 12(3): 307.
[77] 王镇, 莫德锋, 汪洋, 等. 界面热阻测量方法及影响因素研究进展[J]. 工程热物理学报, 2020, 41(10): 2580-2588.
[78] YANG J, MARAGLIANO C, SCHMIDT A J. Thermal property microscopy with frequency domain thermoreflectance[J]. Review of Scientific Instruments, 2013, 84(104904): 1-9.
[79] Tu J, ONG W L. A universal sensitivity matrix reduction technique (SMART) to uncover governing thermal transport relationships[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123949.
[80] TU J, HAQUE M A, BARAN D, et al. Logarithmic sensitivity ratio elucidates thermal transport physics in multivariate thermoreflectance[J]. Fundamental Research, 2023, 3(2): 1-7.
[81] 陈烈. 垂向碳纳米管阵列的界面粘附力学与传热性能的应用研究[D]. 中国科学技术大学, 2018.
[82] NAGABANDI N, YEGIN C, FENG X, et al. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials[J]. Nanotechnology, 2018, 29(10): 105706.
[83] KASAROVA S N, SULTANOVA N G, NIKOLOV I D. Temperature dependence of refractive characteristics of optical plastics[J]. Journal of Physics: Conference Series, 2010, 253(1): 1-6.
修改评论