中文版 | English
题名

基于低频光热反射法的深埋界面接触热阻测量研究

其他题名
Investigation of the thermal contact resistance at deep-buried interfaces using a low- frequency thermoreflectance technique
姓名
姓名拼音
LI Anran
学号
12132532
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
孙蓉
导师单位
中国科学院深圳理工大学(筹)
论文答辩日期
2023-05-22
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着电子器件向小型化和高功率密度化的方向发展,其工作时产生的热量呈几何倍增。如何将这一部分热量及时散发出去,从而稳定电子元器件的运行温度,实现高效热管理已逐渐成为制约当前集成电路产业发展的重要挑战。在电子元器件热管理中,热界面材料常用于填充发热器件与热沉之间的缝隙,改善界面的传热效果。热界面材料的性能优劣直接决定了器件整体热管理效率。随着热界面材料的导热系数持续提升和使役条件下厚度逐渐降低,其与工作表面之间的接触热阻在散热表现中起到越来越重要的作用。因而,研究热界面材料与常见接触表面如硅、铜、铝之间的接触热阻对优化其散热性能具有重要意义。

针对上述问题,本文开发了一种较低调制频率的频域光热反射法,来测量被深埋在数十至上百微米厚度材料下的界面的接触热阻。通过硬件搭建、光路设计和程序开发,本文建立了一种新型的光热反射测量系统,能够同步从样品前表面和后表面提取出温度变化信号。采用这套系统测量得到的光热信号保持在10 μV以上、等效噪音在0.1 μV以下,信噪比达到了40 dB。通过系统的数据采集和处理,我们不仅能够从前表面的相位拟合出热界面材料的导热系数、体积比热和接触热阻,还能从后表面的相位拟合出更精确的热扩散系数和接触热阻,有效地排除了其它因素的串扰。

基于这套测量系统,本文测得一款导热凝胶与单晶硅之间的接触热阻为1.95 mm2K/W,精确度达到了0.1 mm2K/W,相对误差在±5%以内。此外,这套系统能够用于表征深埋界面的接触热阻分布,空间分辨率在1 mm以下。因此,本系统有望实现热界面材料和芯片及热沉之间接触热阻的精确测量,助力高性能热界面材料的研发。

其他摘要

With the miniaturization and growing power density of electronic devices, heat generation has increased exponentially. How to disperse heat in time and control the operating temperature of electronic devices have become a challenge for thermal management in the integrated circuit industry. In order to enhance heat dissipation at the interfaces, thermal interface material (TIM) is commonly applied to fill the gap between heating unit and heat sink. Thus, the performance of TIMs directly determines the efficiency of thermal management. With the increasing thermal conductivity (TC) and decreasing thickness of TIM, thermal contact resistance (TCR) between TIM and its working surfaces is becoming dominant. Therefore, insights into TCR between TIM and its common working surfaces such as silicon, copper and aluminum are significant to the optimization of the performance of TIMs.

Herein, this thesis developed a low-frequency frequency domain thermoreflectance (FDTR) to measure the TCR at interfaces buried by materials with thickness of tens to hundred micrometers. After carefully design of system elements, optical system and software programing, this new type of FDTR can simultaneously obtain the phase signals of temperature variations at both the front and back surface. With this new measurement system, photothermal signal is kept above 10μV and noise is suppressed below 0.1μV, realizing a signal noise ratio above 40dB. With the help of the data acquisition and processing software, TC, volume heat capacity and TCR of TIMs can be extracted from phase information at the front surface. While with phase information at the back surface, the thermal diffusivity and TCR can be extracted more precisely, which overcomes crosstalk from other factors. 

Using this low-frequency FDTR system, the TCR between a thermal gel and polished silicon is measured at 1.95 mm2K/W with an accuracy of 0.1 mm2K/W and an acceptable error of ±5%. Meanwhile, the TCR at different location can be determined with a spatial resolution below 1 mm. Thus, this new system has potential application on accurate measurement of TCR between TIMs and chip or heat sink, which will facilitate the research and development of TIMs with high performances.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 雍国清, 张碧, 王永康, 等. 后摩尔时代芯片结构材料的热设计与表征[J]. 电子机械工程, 2021, 37(5): 1-13.
[2] LEE D W, MAYBERRY R, MACKIE A, et al. Optimizing reflowed solder TIM (sTIMs) processes for emerging heterogeneous integrated packages[C]//IEEE 72nd Electronic Components and Technology Conference, 2022: 1228-1237.
[3] PANZER M, ZHANG G, MANN D, et al. Thermal properties of metal-coated vertically-aligned single wall nanotube films[C]//Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006: 1306-1313.
[4] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展[J]. 物理学报, 2020, 69: 196602.
[5] ZHAO Y, CHU R S, MAJUMDAR A. Transient thermo-reflectance method for characterization of thermal interface material based on carbon nanotube array[C]// ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, 2009: 435-442.
[6] 潘东楷, 宗志成, 杨诺. 纳米尺度热物理中的声子弱耦合问题[J]. 物理学报, 2022, 71(08): 284-288.
[7] LYEO H K, CAHILL D G. Thermal conductance of interfaces between highly dissimilar materials[J]. Physical Review: B, Condensed Matter and Materials Physics, 2006, 73(14): 144301.
[8] LI X, PARK W, CHEN Y P, et al. Thermal interfacial resistance reduction between metal and dielectric materials by inserting intermediate metal layer[C]// ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, 2016: 1-5.
[9] CHOU C Y, CHANG T J, WANG C I, et al. Dielectric properties and reliability enhancement of atomic layer deposited thin films by in situ atomic layer substrate biasing[J]. Journal of Materials Chemistry C, 2020, 8(37): 13025-13032.
[10] CHEN X, ZHU J, YIN G, et al. Thermal diffusivity of surface-microstructured silicon measured by photothermal deflection technique[J]. Materials Letters, 2006, 60(1): 63-66.
[11] 宋成轶, 栾添, 邬剑波, 等. 聚合物基热界面材料界面接触热阻的研究进展[J].集成技术, 2019, 8(1): 54-67.
[12] ZHANG Z, KULKARNI P A, DAEUMER M, et al. Spatial thermal conductivity variation of particulate-filled thermal interface materials[C]//IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2022: 1.
[13] ANISUR R M, CHRISTOPHER B, SIRUI G, et al. Design of tough adhesive from commodity thermoplastics through dynamic crosslinking[J]. Science Advances, 2021, 7(42): 261-394.
[14] LEE E, MENUMEROV E, HUGHES R A, et al. Low-cost nanostructures from nanoparticle-assisted large-scale lithography significantly enhance thermal energy transport across solid interfaces[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34690-34698.
[15] CHEN J, XU X, ZHOU J, et al. Interfacial thermal resistance: Past, present, and future[J]. Review of Modern Physics, 2022, 94(2): 025002.
[16] SMITH B, BRUNSCHWILER T, MICHEL B. Comparison of transient and static test methods for chip-to-sink thermal interface characterization[J]. Microelectronics Journal, 2009, 40(9): 1379.
[17] SMITH A N, HARRIS M, WARZOHA R J. Maximum resolution of a probe-based, steady-state thermal interface material characterization instrument[J]. Journal of Electronic Packaging, 2016, 139(1): 011004.
[18] BOURASSIA B, BRAHIM B. Analysis of the evolution of the structure of a surface with pyramidal asperities in contact with a hard and smooth plane[J]. Journal of Heat Transfer, 2019, 142(1): 2-7.
[19] SHI L, LI D, YU C, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device[J]. Journal of Heat Transfer, 2003, 125(5).
[20] AIYITI A, BAI X, WU J, et al. Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS2 using electron beam self-heating technique[J]. Science Bulletin, 2018, 63(7): 452-458.
[21] HART T R, AGGARWAL R L, LAX B. Temperature dependence of Raman scattering in silicon[J]. Physical Review B, 1970, 1(2): 638.
[22] GU X, WEI Y, YIN X, et al. Colloquium: Phononic thermal properties of two-dimensional materials[J]. Reviews of Modern Physics, 2018, 90(4): 041002.
[23] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters, 2008, 8(3): 902-907.
[24] LIU D, XIE R, YANG N, et al. Profiling nanowire thermal resistance with a spatial resolution of nanometers[J]. Nano Lett., 2014, 14(7): 806-812.
[25] 樊傲然, 马维刚, 王海东, 等. 双波长闪光拉曼热测量系统研发及应用. 清华大学学报(自然科学版)[J], 2021, 61(12): 1379-1388.
[26] REPARAZ1 J S, E C A, WAGNER M R, et al. A novel contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry[J]. Review of Scientific Instruments, 2014, 85: 034901.
[27] XU X, FAN A, WANG H, et al. Raman-based nanoscale thermal transport characterization: a critical review[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119751.
[28] LIU J, HAN M, WANG R, et al. Photothermal phenomenon: Extended ideas for thermophysical properties characterization[J]. Journal of Applied Physics, 2022, 131(6): 065107.
[29] CHIU C P, MAVEETY J G, TRAN Q A. Characterization of solder interfaces using laser flash metrology[J]. Microelectronics Reliability, 2002, 42(1): 93-100.
[30] CORBIN S F, TURRIFF D M. Thermal diffusivity by the laser flash technique[J]. Characterization of Materials, 2012, 1: 10.
[31] VEGA-FLICK A, DUNCAN R A, ELIASON J K, et al. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings[J]. AIP Advances, 2016, 6(1): 121903.
[32] KÄDING O W, SKURK H, MAZNEV A A, et al. Transient thermal gratings at surfaces for thermal characterization of bulk materials and thin films[J]. Applied Physics A. 1995. 61(3): 253-261.
[33] YUE S, TIAN F, M M, et al. High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopy[J]. Science, 2022, 377(6604): 433-436.
[34] CHEN K, SONG B, RAVICHANDRAN N K, et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride[J]. Science, 2020, 367(6477): 555-559.
[35] HOPKINS P E, SERRANO J R, PHINNEY L M. Comparison of thermal conductivity and thermal boundary conductance sensitivities in continuous-wave and ultrashort-pulsed thermoreflectance analyses[J]. International Journal of Thermophysics, 2010, 31(11): 2380-2393.
[36] WEI C, ZHENG X, CAHILL D G, et al. Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance[J]. The Review of Scientific Instruments, 2013, 84(7): 071301.
[37] BOUGHER T L, TAPHOUSE J H, COLA B A. Characterization of carbon nanotube forest interfaces using time domain thermoreflectance[C]//International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the International Conference on Nanochannels, Microchannels, and Minichannels, 2015: 1.
[38] ZHU J, TANG D, WANG W, et al. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films[J]. Journal of Applied Physics, 2010, 108(9): 094315.
[39] BURZO M G, KOMAROV P L, RAAD P E. Thermal transport properties of gold-covered thin-film silicon dioxide[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2003, 26(1): 80-88.
[40] FUJISHIRO H, IKEBE M, KASHIMA T, et al. Thermal conductivity and diffusivity of high-strength polymer fibers[J]. Japanese Journal of Applied Physics, 1997, 36(9A): 5633-5637.
[41] BALAGEAS D L, Schmidt A J, CHEN X. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance[J]. The Review of Scientific Instruments, 2008, 79(11): 452-458.
[42] KRAPEZ C, CIELO P. Pulsed photothermal modeling of layered materials[J]. Journal of Applied Physics, 1986, 59(2): 348-357.
[43] CHEN G, HUI P. Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction[J]. Thin Solid Films, 1999, 339(1): 58.
[44] ZHAO Y, ZHU C, WANG S, et al. Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films[J]. Journal of Applied Physics, 2004, 96(8): 4563-4568.
[45] KAADING O W, SKURK H, GOODSON K E. Thermal conduction in metallized silicon-dioxide layers on silicon[J]. Applied Physics Letters, 1998, 65(13): 1629-1631.
[46] JIANG P, WANG D, XIANG Z, et al. A new spatial-domain thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122849.
[47] WANG L, CHEAITO R, BRAUN J L, et al. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer[J]. Review of Scientific Instruments, 2016, 87(9): 094902.
[48] ZHAO D, XIN Q, GU X, et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials[J]. Journal of Electronic Packaging. 2016, 138(4): 040802.
[49] SCOTT E A, PEREZ C, SALTONSTALL C, et al. Simultaneous thickness and thermal conductivity measurements of thinned silicon from 100 nm to 17 μm[J]. Applied Physics Letters, 2021, 118(20): 202108.
[50] KIM S, LEE M, HONG C, et al. A band-gap database for semiconducting inorganic materials calculated with hybrid functional[J]. Scientific Data, 2020, 7(1): 387.
[51] HERMINGHAUS S, LEIDERER P. Surface plasmon enhanced transient thermoreflectance[J]. Applied Physics A, 1990, 51(4): 350-353.
[52] HUANG Y H, HO H P, WU S Y, et al. Detecting phase shifts in surface plasmon resonance: A review[J]. Advances in Optical Technologies, 2011: 12.
[53] Tan C Z. Dependence of the refractive index on density, temperature, and the wavelength of the incident light[J]. The European Physical Journal B, 2021, 94(7): 11.
[54] LI H H. Refractive index of silicon and germanium and its wavelength and temperature derivatives[J]. Journal of Physical and Chemical Reference Data, 2009, 9(3): 561-658.
[55] HANDA T, TAHARA H, AHAREN T, et al. Large negative thermo-optic coefficients of a lead halide perovskite[J]. Science Advances, 2019, 5(7): 0786.
[56] LUIGI M, MARIO I, FRANCESCO G, et al. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515K in the visible and infrared regions[J]. Journal of Applied Physics, 2005, 98(3): 036101.
[57] PALIK E D, GHOSH G C. Handbook of thermo-optic coefficients of optical materials with applications[M]. Tsukuba Japan: Academic Press, 1997.
[58] HOYLAND J D, SANDS D. Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating[J]. Journal of Applied Physics, 2006, 99(6): 063516.
[59] PENG W, WILSON R B. Nanoscale laser flash measurements of diffusion transport in amorphous Ge and Si[J]. APL Materials, 2022, 10(4): 041111.
[60] BURZOM M G, KOMAROV P L, RAAD P E. Optimized thermo-reflectance system for measuring the thermal properties of thin-films and their interfaces[C]//IEEE Semiconductor Thermal Measurement and Management Symposium, 2006: 87-94.
[61] OHSONE Y, WU G, DRYDEN J, et al. Optical measurement of thermal contact conductance between wafer-like thin solid samples[J]. Journal of Heat Transfer, 1999, 121(4): 954-963.
[62] TONG T, ZHAO Y, DELZEIT L, et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials[J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(1): 96.
[63] FENG X, KING C, DEVOTO D, et al. Investigation of thermal interface materials using phase-sensitive transient thermoreflectance technique[C]//Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2014: 27-30.
[64] POOPAKDEE N, ABDALLAH Z, POMEROY J W, et al. In situ thermoreflectance characterization of thermal resistance in multilayer electronics packaging[J]. ACS Applied Electronic Materials, 2022, 4(4): 1558-1566.
[65] REGNER K T, WEI L C, MALEN J A. Interpretation of thermoreflectance measurements with a two-temperatures model including non-surface heat deposition[J]. Journal of Applied Physics, 2015, 118(23): 06493.
[66] FELDMAN A. Algorithm for solutions of the thermal diffusion equation in a stratified mediumwith a modulated heating source[J]. High Temperature -High Pressures,1999, 31(3): 293-298.
[67] ZOLTÁN S, WOLFGANG K, ANDREASCC K, et al. Evaluation of reflectivity of metal parts by a thermo-camera[C]//Infrared Camera Applications Conference, 2010:3.
[68] BERAN A. The reflectance behaviour of gold at temperatures up to 500°C[J]. Tschermaks Mineralogische und Petrogrsaphische Mitteilungen. 1985, 34(3): 211-215.
[69] TANG L, DAMES C. Anisotropic thermal conductivity tensor measurements using beam-offset frequency domain thermoreflectance (BO-FDTR) for materials lacking in-plane symmetry[J]. International Journal of Heat and Mass Transfer, 2021, 164: 1-10.
[70] CHEN Z J, FANG J W, ZHANG S Y. Thermal characterization of film-on-substrate system by photothermal method and genetic algorithm[J]. The European Physical Journal Special Topics, 2008, 153(1): 195-198.
[71] GONG W, LI P, ZHANG Y, et al. Ultracompliant heterogeneous copper–tin nanowire arrays making a supersolder[J]. Nano Letters, 2018, 18(6): 3586.
[72] 王刘鑫. 基于光热法的热界面材料接触热阻研究[D]. 广东:南方科技大学, 2022.
[73] CHEN C W, JAU H C, LEE C H, et al. Temperature dependence of refractive index in blue phase liquid crystals[J]. Optical Materials Express, 2013, 3(5): 527-532.
[74] DILHAIRE S, GRAUBY S, CLAEYS W. Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions[J]. Applied Physics Letters, 2004, 84(5): 822-824.
[75] 王梦宇. 基于纳米管/线的热界面材料热性能研究[D]. 安徽:中国科学技术大学, 2017.
[76] DURAN S S F, ZHANG D, LIM W Y S, et al. Potential of recycled silicon and silicon-based thermoelectrics for power generation[J]. Crystals, 2022, 12(3): 307.
[77] 王镇, 莫德锋, 汪洋, 等. 界面热阻测量方法及影响因素研究进展[J]. 工程热物理学报, 2020, 41(10): 2580-2588.
[78] YANG J, MARAGLIANO C, SCHMIDT A J. Thermal property microscopy with frequency domain thermoreflectance[J]. Review of Scientific Instruments, 2013, 84(104904): 1-9.
[79] Tu J, ONG W L. A universal sensitivity matrix reduction technique (SMART) to uncover governing thermal transport relationships[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123949.
[80] TU J, HAQUE M A, BARAN D, et al. Logarithmic sensitivity ratio elucidates thermal transport physics in multivariate thermoreflectance[J]. Fundamental Research, 2023, 3(2): 1-7.
[81] 陈烈. 垂向碳纳米管阵列的界面粘附力学与传热性能的应用研究[D]. 中国科学技术大学, 2018.
[82] NAGABANDI N, YEGIN C, FENG X, et al. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials[J]. Nanotechnology, 2018, 29(10): 105706.
[83] KASAROVA S N, SULTANOVA N G, NIKOLOV I D. Temperature dependence of refractive characteristics of optical plastics[J]. Journal of Physics: Conference Series, 2010, 253(1): 1-6.

所在学位评定分委会
材料与化工
国内图书分类号
TK3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545146
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
李安然. 基于低频光热反射法的深埋界面接触热阻测量研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132532-李安然-中国科学院深圳(4950KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李安然]的文章
百度学术
百度学术中相似的文章
[李安然]的文章
必应学术
必应学术中相似的文章
[李安然]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。