[1] SHOU Y, CHEN J, GUO X, et al. A dynamic individual risk management method considering spatial and temporal synergistic effect of toxic substance leakage and fire accidents[J]. Process Safety and Environmental Protection, 2023, 169: 238-251.
[2] WANG J, FU G, YAN M. Comparative analysis of two catastrophic hazardous chemical accidents in China[J]. Process Safety Progress, 2020, 39(1).
[3] CHAO C Y, ZHANG H, HAMMER M, et al. Integrating Fixed Monitoring Systems with LowCost Sensors to Create High-Resolution Air Quality Maps for the Northern China Plain Region[J]. ACS Earth and Space Chemistry, 2021, 5(11): 3022-3035.
[4] QIU S, CHEN B, WANG R, et al. Estimating contaminant source in chemical industry park using UAV-based monitoring platform, artificial neural network and atmospheric dispersion simulation[J]. RSC Advances, 2017, 7(63): 39726-39738.
[5] RAHBAR F, MARJOVI A, MARTINOLI A. An algorithm for odor source localization based on source term estimation[C]//2019 International Conference on Robotics and Automation (ICRA).2019: 973-979.
[6] RHODES C, LIU C, CHEN W H. Informative path planning for gas distribution mapping in cluttered environments[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; RSJ, 2020: 6726-6732.
[7] RICCI F, SCARPONI G E, PASTOR E, et al. Safety distances for storage tanks to prevent fire damage in Wildland-Industrial Interface[J]. Process Safety and Environmental Protection, 2021, 147: 693-702.
[8] HUANG P, CHEN M, CHEN K, et al. A combined real-time intelligent fire detection and forecasting approach through cameras based on computer vision method[J]. Process Safety and Environmental Protection, 2022, 164: 629-638.
[9] DIWATE R B, PATIL L V, KHODASKAR M R, et al. Lower Complex CNN Model for Fire Detection in Surveillance Videos[C]//2021 International Conference on Emerging Smart Computing and Informatics (ESCI). IEEE, 2021: 380-384.
[10] HUANG L, LIU G, WANG Y, et al. Fire detection in video surveillances using convolutional neural networks and wavelet transform[J]. Engineering Applications of Artificial Intelligence,2022, 110: 104737.
[11] SAPONARA S, ELHANASHI A, GAGLIARDI A. Exploiting R-CNN for video smoke/fire sensing in antifire surveillance indoor and outdoor systems for smart cities[C]//2020 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE; IEEE Comp Soc, 2020: 392-397.
[12] CHAOXIA C, SHANG W, ZHANG F. Information-guided flame detection based on faster RCNN[J]. IEEE Access, 2020, 8: 58923-58932.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 779-788.
[14] NGUYEN A, NGUYEN H, TRAN V, et al. A visual real-time fire detection using single shot multibox detector for uav-based fire surveillance[C]//2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). 2021: 338-343.
[15] QIN Y Y, CAO J T, JI X F. Fire detection method based on depthwise separable convolution and yolov3[J]. International Journal of Automation and Computing, 2021, 18: 300-310.
[16] ZHAO L, ZHI L, ZHAO C, et al. Fire-YOLO: A small target object detection method for fire inspection[J]. Sustainability, 2022, 14(9): 4930.
[17] POIKONEN S, GOLDEN B, WASIL E A. A branch-and-bound approach to the traveling salesman problem with a drone[J]. INFORMS Journal on Computing, 2019, 31(2): 335-346.
[18] İLHAN İ, GÖKMEN G. A list-based simulated annealing algorithm with crossover operator for the traveling salesman problem[J]. Neural Computing and Applications, 2022, 34(10): 1-26.
[19] BEHMANESH R, RAHIMI I, GANDOMI A H. Evolutionary many-objective algorithms for combinatorial optimization problems: a comparative study[J]. Archives of Computational Methods in Engineering, 2021, 28(2): 673-688.
[20] HALIM A H, ISMAIL I. Combinatorial optimization: comparison of heuristic algorithms in travelling salesman problem[J]. Archives of Computational Methods in Engineering, 2019, 26 (2): 367-380.
[21] CHAUHAN C, GUPTA R, PATHAK K. Survey of methods of solving tsp along with its implementation using dynamic programming approach[J]. International Journal of Computer Applications, 2012, 52(4).
[22] ZHOU Y, XU W, FU Z H, et al. Multi-neighborhood simulated annealing-based iterated local search for colored traveling salesman problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16072-16082.
[23] LIU J, LI W. Greedy permuting method for genetic algorithm on traveling salesman problem[C]//2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC). IEEE, 2018: 47-51.
[24] DU P, LIU N, ZHANG H, et al. An improved ant colony optimization based on an adaptive heuristic factor for the traveling salesman problem[J]. Journal of Advanced Transportation,2021, 2021: 1-16.
[25] MAVROVOUNIOTIS M, YANG S, VAN M, et al. Ant colony optimization algorithms for dynamic optimization: A case study of the dynamic travelling salesperson problem [research frontier][J]. IEEE Computational Intelligence Magazine, 2020, 15(1): 52-63.
[26] COLORNI A, DORIGO M, MANIEZZO V, et al. Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life: volume 142. 1991: 134-142.
[27] DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),1996, 26(1): 29-41.
[28] STUTZLE T, HOOS H. MAX-MIN ant system and local search for the traveling salesman problem[C]//Proceedings of 1997 IEEE International Conference on Evolutionary Computation(ICEC’97). IEEE, 1997: 309-314.
[29] BULLNHEIMER B. A new rank based version of the ant system: A computational study[J]. Central European Journal of Operations Research, 1999, 7: 25-38.
[30] ASCHEUER N, FISCHETTI M, GRÖTSCHEL M. A polyhedral study of the asymmetric traveling salesman problem with time windows[J]. Networks: An International Journal, 2000,36(2): 69-79.
[31] COHEN I, EPSTEIN C, ISAIAH P, et al. Discretization-based and look-ahead algorithms for the dubins traveling salesperson problem[J]. IEEE Transactions on Automation Science and Engineering, 2016, 14(1): 383-390.
[32] TUANI A F, KEEDWELL E, COLLETT M. Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling salesman problem[J]. Applied Soft Computing, 2020, 97(B): 106720.
[33] WANG J, MENG M Q H. Real-time decision making and path planning for robotic autonomous luggage trolley collection at airports[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(4): 2174-2183.
[34] WANG J, MENG M Q H. Optimal path planning using generalized voronoi graph and multiple potential functions[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10621-10630.
[35] ZHANG J, WU J, SHEN X, et al. Autonomous land vehicle path planning algorithm based on improved heuristic function of A-Star[J]. International Journal of Advanced Robotic Systems, 2021, 18(5): 17298814211042730.
[36] LIU L S, LIN J F, YAO J X, et al. Path Planning for Smart Car Based on Dijkstra Algorithm and Dynamic Window Approach[J]. Wireless Communications and Mobile Computing, 2021,2021: 1-12.
[37] CHEN G, LUO N, LIU D, et al. Path planning for manipulators based on an improved probabilistic roadmap method[J]. Robotics and Computer-Integrated Manufacturing, 2021, 72: 102196.
[38] ALARABI S, LUO C, SANTORA M. A PRM Approach to Path Planning with Obstacle Avoidance of an Autonomous Robot[C]//2022 8th International Conference on Automation, Robotics and Applications (ICARA 2022). IEEE; IEEE Robot & Automat Soc; Czech Univ Life Sci Prague, 2022: 76-80.
[39] LAVALLE S M, et al. Rapidly-exploring random trees: A new tool for path planning. 1998[J]. URL http://citeseerx. ist. psu. edu/viewdoc/summary, 1998.
[40] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894.
[41] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). IEEE; Robot Soc Japan; RA; SICE; IES; New Technol Fdn, 2014: 2997-3004.
[42] WANG J, CHI W, SHAO M, et al. Finding a high-quality initial solution for the RRTs algorithms in 2D environments[J]. Robotica, 2019, 37(10): 1677-1694.
[43] TAN C S, MOHD-MOKHTAR R, ARSHAD M R. A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms[J]. IEEE Access, 2021, 9: 119310-119342.
[44] VAN DER HOEK W, KONRADSEN F, AMERASINGHE P H, et al. Towards a risk map of malaria for Sri Lanka: the importance of house location relative to vector breeding sites[J]. International Journal of Epidemiology, 2003, 32(2): 280-285.
[45] ANDREEV I, HITTENBERGER M, HOFER P, et al. Risks due to beyond design base accidents of nuclear power plants in Europe—the methodology of riskmap[J]. Journal of Hazardous Materials, 1998, 61(1-3): 257-262.
[46] DEY P K. Managing project risk using combined analytic hierarchy process and risk map[J]. Applied Soft Computing, 2010, 10(4): 990-1000.
[47] PRIMATESTA S, RIZZO A, LA COUR-HARBO A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, 2020, 97(3-4): 489-509.
[48] HOLLINGER G A, SUKHATME G S. Sampling-based Motion Planning for Robotic Information Gathering.[C]//Robotics: Science and Systems: volume 3. 2013: 1-8.
[49] WANG C, CHENG J, CHI W, et al. Semantic-aware informative path planning for efficient object search using mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(8): 5230-5243.
[50] LIU Y, LU W, WANG H, et al. Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation[J]. Science of the Total Environment, 2019, 648: 805- 810.
[51] 周旺. 基于移动监测系统的化工园区大气污染溯源研究[D]. 浙江大学, 2022.
[52] 温凯, 王伟, 谢宜峰, 等. 基于气体扩散模型的天然气泄漏场景下无人机自主飞行控制算 法研究[J]. 石油科学通报, 2021, 6(4): 12.
[53] GAMMELL J D, BARFOOT T D, SRINIVASA S S. Informed sampling for asymptotically optimal path planning[J]. IEEE Transactions on Robotics, 2018, 34(4): 966-984.
[54] YU Z, SHEN Y, SHEN C. A real-time detection approach for bridge cracks based on YOLOv4- FPM[J]. Automation in Construction, 2021, 122.
[55] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A New Backbone that can Enhance Learning Capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2020). IEEE; CVF; IEEE Comp Soc, 2020: 1571-1580.
[56] LI X, LAI T, WANG S, et al. Weighted Feature Pyramid Networks for Object Detection[C]//2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). 2019: 1500-1504.
[57] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; CVF; IEEE Comp Soc, 2018: 8759-8768.
[58] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[59] 王浩. 基于化工园区火灾风险等级安全巡检机器人路径优化[D]. 北京: 北京石油化工学院, 2021.
[60] LAURI M, RITALA R. Planning for robotic exploration based on forward simulation[J]. Robotics and Autonomous Systems, 2016, 83: 15-31.
修改评论