中文版 | English
题名

超弹性本构在电子封装材料中的应用

其他题名
APPLICATION OF HYPERELASTIC CONSTITUTIVE MODEL IN ELECTRONIC PACKAGING MATERIALS
姓名
姓名拼音
PENG Xu
学号
12132556
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
鲁济豹
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-22
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电子封装的目的包括固定和保护芯片、连通芯片电极和外界电路等。封装材料包括热界面材料、环氧塑封料等复合材料和胶水材料等,材质包括聚合物、陶瓷、金属和复合材料等。其中,部分聚合物材料具有超弹性,可在多次变形后不易遭受损伤,从而提高封装的可靠性。然而,目前对这些材料在实际使用中的力学性能分析仍有不足之处。以热界面材料、光学透明胶和电池粘接胶三个典型应用为例,热界面材料的缺口拉伸行为研究中往往未考虑超弹特性对缺口处应变集中区域的影响、光学透明胶的弯折行为研究中经常未考虑光学透明胶的超弹特性,以及手机跌落行为研究中往往未考虑超弹性电池粘接胶对其余部件的影响,因此需要对其进行深入研究以增加认知。
基于此,本文采用实验与有限元仿真相结合的方法重点研究了热界面材料、光学透明胶和电池粘接胶三种典型应用场景下材料超弹性在拉伸、弯折和跌落加载模式下对力学特性的影响。具体地,第三章研究了热界面材料缺口处应变集中区域,发现材料的超弹特性可以显著减少缺口处的局部应变,并且发现高应变区面积可以作为表征实验中材料断裂伸长率的序参量,证明了此序参量具有普适性,为热界面材料可靠性评估提供了重要依据。在第四章的光学透明胶服役分析中,由于光学透明胶的超弹属性可以有效协调各叠层之间的不规则变形,所以主要探讨了柔性显示模组在弯折对称区域的拉压应变分布;发现光学透明胶模量的小幅变化对显示模组对称区域的拉压应变影响不大,而其厚度的变化会造成显著影响。第五章针对智能手机跌落时电池粘接胶对主板力学行为的影响开展了分析。电池粘接胶可对电池进行固定,是典型的超弹性材料。发现1米跌落情况下电池粘接胶的超弹属性对主板影响不大,可选取更大载荷的场景进行进一步探究。以上研究阐明了三种重要的电子封装应用场景中超弹性材料的行为规律,为超弹性材料在电子封装领域的应用和发展提供了重要理论指导。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-07
参考文献列表

[1] SCHALLER R R. Moore's Law: Past, Present and Future[J]. IEEE Spectrum, 1997, 34(6): 52-59.
[2] LI Y, GOYAL D. Introduction to 3D microelectronic packaging[J]. 3D Microelectronic Packaging: From Architectures to Applications, 2021: 1-16.
[3] Wang F, Liu Q, Xia J, et al. Laser Lift‐Off Technologies for Ultra‐Thin Emerging Electronics: Mechanisms, Applications, and Progress[J]. Advanced Materials Technologies, 2022: 2201186.
[4] SHUR M. Wide Band Gap Semiconductor Technology: State-of-the-Art[J]. Solid-State Electronics, 2019, 155: 65-75.
[5] 何雨洁, 陈伟, 裴倩倩. 基于离散教与学算法的半导体芯片终端测试阶段调度问题研究[J]. 自动化应用, 2021(12): 5-8.
[6] BASHIR I, ASKER M, CETINTEPE C, et al. A Mixed-Signal Control Core for a Fully Integrated Semiconductor Quantum Computer System-on-Chip[C]//ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC). IEEE, 2019: 125-128.
[7] MA S, WU T, CHEN X, et al. An Artificial Neural Network Chip Based on Two-Dimensional Semiconductor[J]. Science Bulletin, 2022, 67(3): 270-277.
[8] RAZEEB K M, DALTON E, CROSS G L W, et al. Present and Future Thermal Interface Materials for Electronic Devices[J]. International Materials Reviews, 2018, 63(1): 1-21.
[9] SHI B, DONG L, LI M, et al. Thermal Percolation in Composite Materials with Electrically Conductive Fillers[J]. Applied Physics Letters, 2018, 113(4): 041902.
[10] WU Y, ZHANG X, NEGI A, et al. Synergistic Effects of Boron Nitride (BN) Nanosheets and Silver (Ag) Nanoparticles on Thermal Conductivity and Electrical Properties of Epoxy Nanocomposites[J]. Polymers, 2020, 12(2): 426.
[11] DAI W, LV L, MA T, et al. Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management[J]. Advanced Science, 2021, 8(7): 2003734.
[12] FENG M, PAN Y, ZHANG M, et al. Largely Improved Thermal Conductivity of HDPE Composites by Building a 3D Hybrid Fillers Network[J]. Composites Science and Technology, 2021, 206: 108666.
[13] ZENG X, ZENG X, FAN J, et al. Ultrahigh Energy-Dissipation Thermal Interface Materials Through Anneal-Induced Disentanglement[J]. ACS Materials Letters, 2022, 4(5): 874-881.
[14] HE D Y, WANG Z, ZENG X, et al. Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity and High Toughness[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33912-33921.
[15] HEILMEIER G H, ZANONI L A, BARTON L A. Dynamic Scattering: A New Electrooptic Effect in Certain Classes of Nematic Liquid Crystals[J]. Proceedings of the IEEE, 1968, 56(7): 1162-1171.
[16] SCHADT M, HELFRICH W. Voltage‐Dependent Optical Activity of a Twisted Nematic Liquid Crystal[J]. Applied Physics Letters, 1971, 18(4): 127-128.
[17] SCHIEKEL M F, FAHRENSCHON K. Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields[J]. Applied Physics Letters, 1971, 19(10): 391-393.
[18] SOREF R A. Transverse Field Effects in Nematic Liquid Crystals[J]. Applied Physics Letters, 1973, 22(4): 165-166.
[19] SCHADT M. Milestone in the History of Field-Effect Liquid Crystal Displays and Materials[J]. Japanese Journal of Applied Physics, 2009, 48(3S2): 03B001.
[20] YANG D K, WU S T. Fundamentals of Liquid Crystal Devices[M]. John Wiley & Sons, 2014.
[21] LEE J H, CHEN C H, LEE P H, et al. Blue Organic Light-Emitting Diodes: Current Status, Challenges, and Future Outlook[J]. Journal of Materials Chemistry C, 2019, 7(20): 5874-5888.
[22] BUCKLEY A. Organic Light-Emitting Diodes (OLEDs) Materials[J]. Devices and Applications Woodhead Publishing, Cambridge, UK, 2013.
[23] BLOCHWITZ-NIMOTH J, BHANDARI A, BOESCH D, et al. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes[R]. Pacific Northwest National Lab. (PNNL), Richland, WA (United States), 2015.
[24] TSUJIMURA T. OLED Display Fundamentals and Applications[M]. John Wiley & Sons, 2017.
[25] CHEN C, WANG Z, SUO Z, et al. Flaw Sensitivity of Highly Stretchable Materials[J]. Extreme Mechanics Letters, 2017, 10: 50-57.
[26] 朱海堂, 张启明, 高丹盈, 等. 钢纤维高强混凝土的断裂韧性及缺口敏感性研究[J]. 四川建筑科学研究, 2009, 35(3): 173-176.
[27] TANG J, LI J, VLASSAK J J, et al. Fatigue Fracture of Hydrogels[J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[28] 王凤梅, 黄朝文, 雷旻等. 缺口半径对Ti-55531合金全片层组织拉伸性能的影响[J]. 稀有金属, 2022, 46(10): 1269-1277.
[29] JIN D U, KIM T W, KOO H W, et al. 47.1: Invited Paper: Highly Robust Flexible AMOLED Display on Plastic Substrate with New Structure[C]//SID Symposium Digest of Technical Papers. Oxford, UK: Blackwell Publishing Ltd, 2010, 41(1): 703-705.
[30] LIU Z, MAO X, et al. 63‐1: A Stack of Bendable Touch Sensor with Silver Nanowire for Flexible AMOLED Display Panel[C]//SID Symposium Digest of Technical Papers. 2017, 48(1): 927-929.
[31] HE X, LIU J. Flexible and Broadband Graphene Polarizer Based on Surface Silicon-Core Microfiber[J]. Optical Materials Express, 2017, 7(4): 1398-1405.
[32] CHIOU J Y, LIU Y W, NIU Y F, et al. Optimization of TFE Structure by FTIR Analysis and Mechanical Simulation to Achieve Excellent Encapsulation and High Flexibility AMOLED[J]. Dig. Tech. Pap, 2017, 48: 437-440.
[33] WANG H, HSIEH M, XIE C, et al. P‐106: Influence of Substrate Structure on the Properties of Flexible AMOLED Displays[C]//SID Symposium Digest of Technical Papers. 2016, 47(1): 1526-1528.
[34] NIU Y F, LIU S F, CHIOU J Y, et al. Improving the Flexibility of AMOLED Display Through Modulating Thickness of Layer Stack Structure[J]. Journal of the Society for Information Display, 2016, 24(5): 293-298.
[35] SHI Y, ROGERS J A, Gao C, et al. Multiple Neutral Axes in Bending of a Multiple-Layer Beam with Extremely Different Elastic Properties[J]. Journal of Applied Mechanics, 2014, 81(11): 114501.
[36] YEH M K, CHANG L Y, CHENG H C, et al. Bending Stress Analysis of Laminated Foldable Touch Panel[J]. Procedia Engineering, 2014, 79: 189-193.
[37] SALMON F, EVERAERTS A, CAMPBELL C, et al. 64‐1: Modeling the Mechanical Performance of a Foldable Display Panel Bonded by 3M Optically Clear Adhesives[C]//SID Symposium Digest of Technical Papers. 2017, 48(1): 938-941.
[38] MATTILA T T, VAJAVAARA L, HOKKA J, et al. Evaluation of the Drop Response of Handheld Electronic Products[J]. Microelectronics Reliability, 2014, 54(3): 601-609.
[39] WANG Y Y, LU C, LI J, et al. Simulation of Drop/Impact Reliability for Electronic Devices[J]. Finite Elements in Analysis and Design, 2005, 41(6): 667-680.
[40] MÜLKOĞLU O, GÜLER M A, ACAR E, et al. Drop Test Simulation and Surrogate-Based Optimization of a Dishwasher Mechanical Structure and Its Packaging Module[J]. Structural and Multidisciplinary Optimization, 2017, 55: 1517-1534.
[41] PERFETTO D, DE LUCA A, LAMANNA G, et al. Drop Test Simulation and Validation of a Full Composite Fuselage Section of a Regional Aircraft[J]. Procedia Structural Integrity, 2018, 12: 380-391.
[42] HWAN C L, LIN M J, LO C C, et al. Drop Tests and Impact Simulation for Cell Phones[J]. Journal of the Chinese Institute of Engineers, 2011, 34(3): 337-346.
[43] MA H J, GAO Q. Drop Simulation Analysis of a Large Screen Mobile Phone[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 687: 275-278.
[44] ZHANG Y, HUANG Y, LI Z, et al. A Simplified FE Modeling Strategy for the Drop Process Simulation Analysis of Light and Small Drone[J]. Aerospace, 2021, 8(12): 387.
[45] COURANT R. Variational Methods for the Solution of Problems of Equilibrium and Vibrations[J]. 1943.
[46] ZIENKIEWICZ O C, KELLY D W, BETTESS P. The Coupling of the Finite Element Method and Boundary Solution Procedures[J]. International Journal for Numerical Methods in Engineering, 1977, 11(2): 355-375.
[47] 李明. 炭黑填充橡胶的热耗散与疲劳性能[D]. 湘潭大学, 2019.
[48] 韩磊, 王新彤, 李录贤. 基于Treloar实验数据的超弹性材料完全本构关系研究[J]. 力学学报, 2022, 55: 1-12.
[49] JAMES H M, GUTH E. Theory of the Elastic Properties of Rubber[J]. The Journal of Chemical Physics, 1943, 11(10): 455-481.
[50] FLORY P J, REHNER JR J. Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity[J]. The Journal of Chemical Physics, 1943, 11(11): 512-520.
[51] WU P D, VANDE GIESSEN E. On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(3): 427-456.
[52] ARRUDA E M, BOYCE M C. A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412.
[53] LOHR M J, SUGERMAN G P, KAKALETSIS S, et al. An Introduction to the Ogden Model in Biomechanics: Benefits, Implementation Tools and Limitations[J]. Philosophical Transactions of the Royal Society A, 2022, 380(2234): 20210365.
[54] MELLY S K, LIU L, LIU Y, et al. Modified Yeoh Model with Improved Equibiaxial Loading Predictions[J]. Acta Mechanica, 2022, 233(2): 437-453.
[55] GENT A N. A New Constitutive Relation for Rubber[J]. Rubber Chemistry and Technology, 1996, 69(1): 59-61.
[56] ZHONG C, PENG X, LI C, et al. Construction and Verification of Hyperelastic Constitutive for Polymer Materials[C]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2022: 1-6.
[57] 张雯新. 柔性AMOLED模组弯折力学性能研究及优化[D]. 河北科技大学, 2022.
[58] 刘信. 跌落冲击载荷下板级互连系统的可靠性研究[D]. 哈尔滨理工大学, 2020.

所在学位评定分委会
材料与化工
国内图书分类号
TN04
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545150
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
彭旭. 超弹性本构在电子封装材料中的应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132556-彭旭-中国科学院深圳理(4780KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[彭旭]的文章
百度学术
百度学术中相似的文章
[彭旭]的文章
必应学术
必应学术中相似的文章
[彭旭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。