[1] SCHALLER R R. Moore's Law: Past, Present and Future[J]. IEEE Spectrum, 1997, 34(6): 52-59.
[2] LI Y, GOYAL D. Introduction to 3D microelectronic packaging[J]. 3D Microelectronic Packaging: From Architectures to Applications, 2021: 1-16.
[3] Wang F, Liu Q, Xia J, et al. Laser Lift‐Off Technologies for Ultra‐Thin Emerging Electronics: Mechanisms, Applications, and Progress[J]. Advanced Materials Technologies, 2022: 2201186.
[4] SHUR M. Wide Band Gap Semiconductor Technology: State-of-the-Art[J]. Solid-State Electronics, 2019, 155: 65-75.
[5] 何雨洁, 陈伟, 裴倩倩. 基于离散教与学算法的半导体芯片终端测试阶段调度问题研究[J]. 自动化应用, 2021(12): 5-8.
[6] BASHIR I, ASKER M, CETINTEPE C, et al. A Mixed-Signal Control Core for a Fully Integrated Semiconductor Quantum Computer System-on-Chip[C]//ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC). IEEE, 2019: 125-128.
[7] MA S, WU T, CHEN X, et al. An Artificial Neural Network Chip Based on Two-Dimensional Semiconductor[J]. Science Bulletin, 2022, 67(3): 270-277.
[8] RAZEEB K M, DALTON E, CROSS G L W, et al. Present and Future Thermal Interface Materials for Electronic Devices[J]. International Materials Reviews, 2018, 63(1): 1-21.
[9] SHI B, DONG L, LI M, et al. Thermal Percolation in Composite Materials with Electrically Conductive Fillers[J]. Applied Physics Letters, 2018, 113(4): 041902.
[10] WU Y, ZHANG X, NEGI A, et al. Synergistic Effects of Boron Nitride (BN) Nanosheets and Silver (Ag) Nanoparticles on Thermal Conductivity and Electrical Properties of Epoxy Nanocomposites[J]. Polymers, 2020, 12(2): 426.
[11] DAI W, LV L, MA T, et al. Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management[J]. Advanced Science, 2021, 8(7): 2003734.
[12] FENG M, PAN Y, ZHANG M, et al. Largely Improved Thermal Conductivity of HDPE Composites by Building a 3D Hybrid Fillers Network[J]. Composites Science and Technology, 2021, 206: 108666.
[13] ZENG X, ZENG X, FAN J, et al. Ultrahigh Energy-Dissipation Thermal Interface Materials Through Anneal-Induced Disentanglement[J]. ACS Materials Letters, 2022, 4(5): 874-881.
[14] HE D Y, WANG Z, ZENG X, et al. Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity and High Toughness[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33912-33921.
[15] HEILMEIER G H, ZANONI L A, BARTON L A. Dynamic Scattering: A New Electrooptic Effect in Certain Classes of Nematic Liquid Crystals[J]. Proceedings of the IEEE, 1968, 56(7): 1162-1171.
[16] SCHADT M, HELFRICH W. Voltage‐Dependent Optical Activity of a Twisted Nematic Liquid Crystal[J]. Applied Physics Letters, 1971, 18(4): 127-128.
[17] SCHIEKEL M F, FAHRENSCHON K. Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields[J]. Applied Physics Letters, 1971, 19(10): 391-393.
[18] SOREF R A. Transverse Field Effects in Nematic Liquid Crystals[J]. Applied Physics Letters, 1973, 22(4): 165-166.
[19] SCHADT M. Milestone in the History of Field-Effect Liquid Crystal Displays and Materials[J]. Japanese Journal of Applied Physics, 2009, 48(3S2): 03B001.
[20] YANG D K, WU S T. Fundamentals of Liquid Crystal Devices[M]. John Wiley & Sons, 2014.
[21] LEE J H, CHEN C H, LEE P H, et al. Blue Organic Light-Emitting Diodes: Current Status, Challenges, and Future Outlook[J]. Journal of Materials Chemistry C, 2019, 7(20): 5874-5888.
[22] BUCKLEY A. Organic Light-Emitting Diodes (OLEDs) Materials[J]. Devices and Applications Woodhead Publishing, Cambridge, UK, 2013.
[23] BLOCHWITZ-NIMOTH J, BHANDARI A, BOESCH D, et al. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes[R]. Pacific Northwest National Lab. (PNNL), Richland, WA (United States), 2015.
[24] TSUJIMURA T. OLED Display Fundamentals and Applications[M]. John Wiley & Sons, 2017.
[25] CHEN C, WANG Z, SUO Z, et al. Flaw Sensitivity of Highly Stretchable Materials[J]. Extreme Mechanics Letters, 2017, 10: 50-57.
[26] 朱海堂, 张启明, 高丹盈, 等. 钢纤维高强混凝土的断裂韧性及缺口敏感性研究[J]. 四川建筑科学研究, 2009, 35(3): 173-176.
[27] TANG J, LI J, VLASSAK J J, et al. Fatigue Fracture of Hydrogels[J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[28] 王凤梅, 黄朝文, 雷旻等. 缺口半径对Ti-55531合金全片层组织拉伸性能的影响[J]. 稀有金属, 2022, 46(10): 1269-1277.
[29] JIN D U, KIM T W, KOO H W, et al. 47.1: Invited Paper: Highly Robust Flexible AMOLED Display on Plastic Substrate with New Structure[C]//SID Symposium Digest of Technical Papers. Oxford, UK: Blackwell Publishing Ltd, 2010, 41(1): 703-705.
[30] LIU Z, MAO X, et al. 63‐1: A Stack of Bendable Touch Sensor with Silver Nanowire for Flexible AMOLED Display Panel[C]//SID Symposium Digest of Technical Papers. 2017, 48(1): 927-929.
[31] HE X, LIU J. Flexible and Broadband Graphene Polarizer Based on Surface Silicon-Core Microfiber[J]. Optical Materials Express, 2017, 7(4): 1398-1405.
[32] CHIOU J Y, LIU Y W, NIU Y F, et al. Optimization of TFE Structure by FTIR Analysis and Mechanical Simulation to Achieve Excellent Encapsulation and High Flexibility AMOLED[J]. Dig. Tech. Pap, 2017, 48: 437-440.
[33] WANG H, HSIEH M, XIE C, et al. P‐106: Influence of Substrate Structure on the Properties of Flexible AMOLED Displays[C]//SID Symposium Digest of Technical Papers. 2016, 47(1): 1526-1528.
[34] NIU Y F, LIU S F, CHIOU J Y, et al. Improving the Flexibility of AMOLED Display Through Modulating Thickness of Layer Stack Structure[J]. Journal of the Society for Information Display, 2016, 24(5): 293-298.
[35] SHI Y, ROGERS J A, Gao C, et al. Multiple Neutral Axes in Bending of a Multiple-Layer Beam with Extremely Different Elastic Properties[J]. Journal of Applied Mechanics, 2014, 81(11): 114501.
[36] YEH M K, CHANG L Y, CHENG H C, et al. Bending Stress Analysis of Laminated Foldable Touch Panel[J]. Procedia Engineering, 2014, 79: 189-193.
[37] SALMON F, EVERAERTS A, CAMPBELL C, et al. 64‐1: Modeling the Mechanical Performance of a Foldable Display Panel Bonded by 3M Optically Clear Adhesives[C]//SID Symposium Digest of Technical Papers. 2017, 48(1): 938-941.
[38] MATTILA T T, VAJAVAARA L, HOKKA J, et al. Evaluation of the Drop Response of Handheld Electronic Products[J]. Microelectronics Reliability, 2014, 54(3): 601-609.
[39] WANG Y Y, LU C, LI J, et al. Simulation of Drop/Impact Reliability for Electronic Devices[J]. Finite Elements in Analysis and Design, 2005, 41(6): 667-680.
[40] MÜLKOĞLU O, GÜLER M A, ACAR E, et al. Drop Test Simulation and Surrogate-Based Optimization of a Dishwasher Mechanical Structure and Its Packaging Module[J]. Structural and Multidisciplinary Optimization, 2017, 55: 1517-1534.
[41] PERFETTO D, DE LUCA A, LAMANNA G, et al. Drop Test Simulation and Validation of a Full Composite Fuselage Section of a Regional Aircraft[J]. Procedia Structural Integrity, 2018, 12: 380-391.
[42] HWAN C L, LIN M J, LO C C, et al. Drop Tests and Impact Simulation for Cell Phones[J]. Journal of the Chinese Institute of Engineers, 2011, 34(3): 337-346.
[43] MA H J, GAO Q. Drop Simulation Analysis of a Large Screen Mobile Phone[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 687: 275-278.
[44] ZHANG Y, HUANG Y, LI Z, et al. A Simplified FE Modeling Strategy for the Drop Process Simulation Analysis of Light and Small Drone[J]. Aerospace, 2021, 8(12): 387.
[45] COURANT R. Variational Methods for the Solution of Problems of Equilibrium and Vibrations[J]. 1943.
[46] ZIENKIEWICZ O C, KELLY D W, BETTESS P. The Coupling of the Finite Element Method and Boundary Solution Procedures[J]. International Journal for Numerical Methods in Engineering, 1977, 11(2): 355-375.
[47] 李明. 炭黑填充橡胶的热耗散与疲劳性能[D]. 湘潭大学, 2019.
[48] 韩磊, 王新彤, 李录贤. 基于Treloar实验数据的超弹性材料完全本构关系研究[J]. 力学学报, 2022, 55: 1-12.
[49] JAMES H M, GUTH E. Theory of the Elastic Properties of Rubber[J]. The Journal of Chemical Physics, 1943, 11(10): 455-481.
[50] FLORY P J, REHNER JR J. Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity[J]. The Journal of Chemical Physics, 1943, 11(11): 512-520.
[51] WU P D, VANDE GIESSEN E. On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(3): 427-456.
[52] ARRUDA E M, BOYCE M C. A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412.
[53] LOHR M J, SUGERMAN G P, KAKALETSIS S, et al. An Introduction to the Ogden Model in Biomechanics: Benefits, Implementation Tools and Limitations[J]. Philosophical Transactions of the Royal Society A, 2022, 380(2234): 20210365.
[54] MELLY S K, LIU L, LIU Y, et al. Modified Yeoh Model with Improved Equibiaxial Loading Predictions[J]. Acta Mechanica, 2022, 233(2): 437-453.
[55] GENT A N. A New Constitutive Relation for Rubber[J]. Rubber Chemistry and Technology, 1996, 69(1): 59-61.
[56] ZHONG C, PENG X, LI C, et al. Construction and Verification of Hyperelastic Constitutive for Polymer Materials[C]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2022: 1-6.
[57] 张雯新. 柔性AMOLED模组弯折力学性能研究及优化[D]. 河北科技大学, 2022.
[58] 刘信. 跌落冲击载荷下板级互连系统的可靠性研究[D]. 哈尔滨理工大学, 2020.
修改评论