[1] WANG Y, RUNNERSTROM E L, MILLIRON D J. Switchable materials for smart windows [J]. Annual Review of Chemical and Biomolecular Engineering, 2016, (7):283-304
[2] RICHARDSON T J. New electrochromic mirror systems [J]. Solid State Ionics, 2003, 165(1-4): 305-308.
[3] CAI G, WANG J, LEE P S. Next-generation multifunctional electrochromic devices [J]. Accounts of Chemical Research, 2016, 49(8): 1469-1476.
[4] WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development [J]. Materials Science and Engineering: R: Reports, 2020, 140: 100524.
[5] ZHANG X, LI W, CHEN X, et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green [J]. Chemical Communications, 2020, 56(69): 10062-10065.
[6] DEB S. Optical and photoelectric properties and colour centres in thin films of tungsten oxide [J]. Philosophical Magazine, 1973, 27(4): 801-822.
[7] GRANQVIST C G. Handbook of inorganic electrochromic materials [M]. Elsevier, 1995.
[8] SHAO Z, HUANG A, MING C, et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices [J]. Nature Electronics, 2022, 5(1): 45-52.
[9] TONG Z, LI N, LV H, et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device [J]. Solar Energy Materials and Solar Cells, 2016, 146: 135-143.
[10] WANG J, ZHAO W, TAM B, et al. Pseudocapacitive porous amorphous vanadium pentoxide with enhanced multicolored electrochromism [J]. Chemical Engineering Journal, 2023, 452: 139655.
[11] GONG H, LI W, FU G, et al. Recent progress and advances in electrochromic devices exhibiting infrared modulation [J]. Journal of Materials Chemistry A, 2022, 10, 6269-6290参考文献56
[12] HOSSEINI A, MASSOUD Y. A low-loss metal-insulator-metal plasmonic bragg reflector [J]. Optics Express, 2006, 14(23): 11318-11323.
[13] MADASAMY K, VELAYUTHAM D, SURYANARAYANAN V, et al. Viologen-based electrochromic materials and devices [J]. Journal of Materials Chemistry C, 2019, 7(16): 4622-4637.
[14] MORTIMER R J. Electrochromic materials [J]. Annual Review of Materials Research, 2011, 41: 241-268.
[15] MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications [J]. Displays, 2006, 27(1): 2-18.
[16] PERNITES R B, PONNAPATI R R, ADVINCULA R C. Superhydrophobic–superoleophilic polythiophene films with tunable wetting and electrochromism [J]. Advanced Materials, 2011, 23(28): 3207-3213.
[17] MONK P, MORTIMER R, ROSSEINSKY D. Electrochromism and electrochromic devices [M]. Cambridge University Press, 2007. p512.
[18] SONMEZ G, SHEN C K, RUBIN Y, et al. A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era [J]. Angewandte Chemie, 2004, 116(12): 1524-1528.
[19] SONMEZ G, SHEN C K, RUBIN Y, et al. The unusual effect of bandgap lowering by C60 on a conjugated polymer [J]. Advanced Materials, 2005, 17(7): 897-900.
[20] ITAYA K, SHIBAYAMA K, AKAHOSHI H, et al. Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device [J]. Journal of Applied Physics, 1982, 53(1): 804-805.
[21] KO J H, YEO S, PARK J H, et al. Graphene-based electrochromic systems: the case of Prussian Blue nanoparticles on transparent graphene film [J]. Chemical Communications, 2012, 48(32): 3884-3886.
[22] ARMER C F, LüBKE M, REDDY M, et al. Phase change effect on the structural and electrochemical behaviour of pure and doped vanadium pentoxide as positive electrodes for lithium ion batteries [J]. Journal of Power Sources, 2017, 353: 40-50.
[23] LUO Y, BAI Y, MISTRY A, et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by 参考文献57multiscale operando investigation [J]. Nature Materials, 2022, 21(2): 217-227.
[24] LIU H, ZHU Z, YAN Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries [J]. Nature, 2020, 585(7823): 63-67.
[25] HORROCKS G A, LIKELY M F, VELAZQUEZ J M, et al. Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study [J]. Journal of Materials Chemistry A, 2013, 1(48): 15265-15277.
[26] JARRY A, WALKER M, THEODORU S, et al. Elucidating Structural Transformations in Li xV2O5 Electrochromic Thin Films by Multimodal Spectroscopies [J]. Chemistry of Materials, 2020, 32(17): 7226-7236.
[27] MJEJRI I, GAUDON M, ROUGIER A. Mo addition for improved electrochromic properties of V2O5 thick films [J]. Solar Energy Materials and Solar Cells, 2019, 198: 19-25.
[28] WEN R-T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films [J]. Nature Materials, 2015, 14(10): 996-1001.
[29] WEN R-T, NIKLASSON G A, GRANQVIST C G. Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping [J]. ACS Applied Materials & Interfaces, 2016, 8(9): 5777-5782.
[30] FAUGHNAN B W, CRANDALL R S, HEYMAN P M. Electrochromism in WO3 amorphous films [J]. Rca Rev, 1975, 36(1): 177-197.
[31] SAKAI N, EBINA Y, TAKADA K, et al. Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency [J]. Journal of the Electrochemical Society, 2005, 152(12): E384-E389.
[32] LIU L, DIAO X, HE Z, et al. High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage [J]. Energy Storage Materials, 2020, 33: 258-267.
[33] CHEN J, WANG Z, LIU C, et al. Mimicking Nature's Butterflies: Electrochromic Devices with Dual ‐ Sided Differential Colorations [J]. Advanced Materials, 2021, 33(14): 2007314.
[34] WANG Z, WANG X, CONG S, et al. Towards full-colour tunability of 参考文献58inorganic electrochromic devices using ultracompact fabry-perot nanocavities [J]. Nature Communications, 2020, 11(1): 1-9.
[35] ZHANG W, LI H, ELEZZABI A Y. Electrochromic Displays Having Two‐Dimensional CIE Color Space Tunability [J]. Advanced Functional Materials, 2022, 32(7): 2108341.
[36] ZHANG W, LI H, YU W W, et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices [J]. Light: Science & Applications, 2020, 9(1): 1-11.
[37] OHNO Y. CIE fundamentals for color measurements [J]. 2000.
[38] IBRAHEEM N A, HASAN M M, KHAN R Z, et al. Understanding color models: a review [J]. ARPN Journal of Science and Technology, 2012, 2(3): 265-275.
[39] XIAO L, LV Y, LIN J, et al. WO3‐Based Electrochromic Distributed Bragg Reflector: Toward Electrically Tunable Microcavity Luminescent Device [J]. Advanced Optical Materials, 2018, 6(1): 1700791.
[40] HOPMANN E, ELEZZABI A Y. Plasmochromic nanocavity dynamic light color switching [J]. Nano Letters, 2020, 20(3): 1876-1882.
[41] HEO S, KIM J, ONG G K, et al. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods [J]. Nano Letters, 2017, 17(9): 5756-5761.
[42] LLORDéS A, WANG Y, FERNANDEZ-MARTINEZ A, et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing [J]. Nature Materials, 2016, 15(12): 1267-1273.
[43] WANG Z, ZHANG Q, CONG S, et al. Using Intrinsic Intracrystalline Tunnels for Near‐Infrared and Visible‐Light Selective Electrochromic Modulation [J]. Advanced Optical Materials, 2017, 5(11): 1700194.
[44] LLORDéS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites [J]. Nature, 2013, 500(7462): 323-326.
[45] BACHMANN H-G, AHMED F R, BARNES W H. The crystal structure of vanadium pentoxide [J]. Zeitschrift für Kristallographie-Crystalline Materials, 1961, 115(1-6): 110-131.参考文献59
[46] ZHANG X-F, WANG K-X, WEI X, et al. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries [J]. Chemistry of Materials, 2011, 23(24): 5290-5292.
[47] LI Y, HUANG Z, KALAMBATE P K, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery [J]. Nano Energy, 2019, 60: 752-759.
[48] WANG H G, MA D L, HUANG Y, et al. Electrospun V2O5 nanostructures with controllable morphology as high‐performance cathode materials for lithium‐ion batteries [J]. Chemistry–A European Journal, 2012, 18(29): 8987-8993.
[49] LIU Y, JIA C, WAN Z, et al. Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film [J]. Solar Energy Materials and Solar Cells, 2015, 132: 467-475.
[50] HE Z, WANG J-L, CHEN S-M, et al. Self-Assembly of Nanowires: From Dynamic Monitoring to Precision Control [J]. Accounts of Chemical Research, 2022, 55(11): 1480-1491.
[51] TONG Z, HAO J, ZHANG K, et al. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films [J]. Journal of Materials Chemistry C, 2014, 2(18): 3651-3658.
[52] YUE Y, LIANG H. Micro ‐ and nano ‐ structured vanadium pentoxide (V2O5) for electrodes of lithium ‐ ion batteries [J]. Advanced Energy Materials, 2017, 7(17): 1602545.
[53] MUñOZ-CASTRO M, BERKEMEIER F, SCHMITZ G, et al. Controlling the optical properties of sputtered-deposited LixV2O5 films [J]. Journal of Applied Physics, 2016, 120(13): 135106.
[54] MJEJRI I, GAUDON M, SONG G, et al. Crystallized V2O5 as oxidized phase for unexpected multicolor electrochromism in V2O3 thick film [J]. ACS Applied Energy Materials, 2018, 1(6): 2721-2729.
[55] MJEJRI I, DUTTINE M, BUFFIèRE S, et al. From the Irreversible Transformation of VO2 to V2O5 Electrochromic Films [J]. Inorganic Chemistry, 2022, 61(46): 18496-18503.
[56] KELLY P J, ARNELL R D. Magnetron sputtering: a review of recent 参考文献60developments and applications [J]. Vacuum, 2000, 56(3): 159-172.
[57] DAHLMAN C J, HEO S, ZHANG Y, et al. Dynamics of lithium insertion in electrochromic titanium dioxide nanocrystal ensembles [J]. Journal of the American Chemical Society, 2021, 143(22): 8278-8294.
[58] SANCHEZ C, LIVAGE J, LUCAZEAU G. Infrared and Raman study of amorphous V2O5 [J]. Journal of Raman Spectroscopy, 1982, 12(1): 68-72.
[59] HUOTARI J, LAPPALAINEN J, ERIKSSON J, et al. Synthesis of nanostructured solid-state phases of V7O16 and V2O5 compounds for ppb level detection of ammonia [J]. Journal of Alloys and Compounds, 2016, 675: 433-440.
[60] GRACIA F, YUBERO F, ESPINOS J, et al. First nucleation steps of vanadium oxide thin films studied by XPS inelastic peak shape analysis [J]. Applied Surface Science, 2005, 252(1): 189-195.
[61] SILVERSMIT G, POELMAN H, DEPLA D, et al. A comparative XPS and UPS study of VOx layers on mineral TiO2 (001)‐ anatase supports [J]. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 2006, 38(9): 1257-1265.
[62] TIAN B, TANG W, SU C, et al. Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 642-650.
[63] BHUPATHI S, WANG S, ABUTOAMA M, et al. Femtosecond laser-induced vanadium oxide metamaterial nanostructures and the study of optical response by experiments and numerical simulations [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41905-41918.
[64] LAMSAL C, RAVINDRA N. Optical properties of vanadium oxides-an analysis [J]. Journal of Materials Science, 2013, 48: 6341-6351.
[65] LINDSTRöM H, SöDERGREN S, SOLBRAND A, et al. Li+ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films [J]. The Journal of Physical Chemistry B, 1997, 101(39): 7717-7722.
[66] HUANG S, ZHANG R, SHAO P, et al. Electrochromic performance fading and restoration in amorphous TiO2 thin films [J]. Advanced Optical Materials, 2022, 10(16): 2200903.参考文献61
[67] LI J, LIU W, WEI Y, et al. Effect of Oxygen Content on the Properties of Sputtered TaOx Electrolyte Film in All-Solid-State Electrochromic Devices [J]. Coatings, 2022, 12(12): 1831.
[68] LE T K, PHAM P V, DONG C-L, et al. Recent advances in vanadium pentoxide (V2O5) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives [J]. Journal of Materials Chemistry C, 2022, 10(11): 4019-4071.
[69] BADDOUR-HADJEAN R, PEREIRA-RAMOS J-P. Raman microspectrometry applied to the study of electrode materials for lithium batteries [J]. Chemical Reviews, 2010, 110(3): 1278-1319.
[70] PATRISSI C J, MARTIN C R. Sol‐gel‐based template synthesis and li‐insertion rate performance of nanostructured vanadium pentoxide [J]. Journal of the Electrochemical Society, 1999, 146(9): 3176.
[71] BADDOUR-HADJEAN R, RAEKELBOOM E, PEREIRA-RAMOS J. New Structural Characterization of the Li xV2O5 System Provided by Raman Spectroscopy [J]. Chemistry of Materials, 2006, 18(15): 3548-3556.
[72] GUO X, CHEN C, ONG S P. Intercalation Chemistry of the Disordered Rocksalt Li3V2O5 Anode from Cluster Expansions and Machine Learning Interatomic Potentials [J]. Chemistry of Materials, 2023, 35(4): 1537-1546.
[73] 张天宁, 王书霞, 黄田田, et al. Atomic-Layer-Deposited ultrathin films of vanadium pentoxide crystalline nanoflakes with controllable thickness and optical band-gap [J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 3-7.
[74] 方容川. 固体光谱学 [M]. 中国科学技术大学出版社, 2001.
[75] TAUC J. Optical properties of amorphous semiconductors [J]. Amorphous and Liquid Semiconductors, 1974: 159-220.
[76] TALLEDO A, GRANQVIST C G. Electrochromic vanadium pentoxidebased films: Structural, electrochemical, and optical properties [J]. Journal of Applied Physics, 1995, 77(9): 4655-4666.
[77] LAMBRECHT W, DJAFARI-ROUHANI B, LANNOO M, et al. The energy band structure of V2O5. I. Theoretical approach and band calculations [J]. Journal of Physics C: Solid State Physics, 1980, 13(13): 2485.
[78] KAMAT P V, DIMITRIJEVIC N M, NOZIK A J. Dynamic Burstein-Moss 参考文献62shift in semiconductor colloids [J]. The Journal of Physical Chemistry, 1989, 93(8): 2873-2875.
[79] WANG Q, BRIER M, JOSHI S, et al. Defect-induced Burstein-Moss shift in reduced V2O5 nanostructures [J]. Physical Review B, 2016, 94(24): 245305.
[80] PARKER J, LAM D, XU Y-N, et al. Optical properties of vanadium pentoxide determined from ellipsometry and band-structure calculations [J]. Physical Review B, 1990, 42(8): 5289.
[81] BERGGREN L, JONSSON J C, NIKLASSON G A. Optical absorption in lithiated tungsten oxide thin films: Experiment and theory [J]. Journal of Applied Physics, 2007, 102(8): 083538.
[82] GAPONENKO S V. Optical properties of semiconductor nanocrystals [M]. Cambridge University Press, 1998.
[83] LYNCH D W, OLSON C, WEAVER J. Optical properties of Ti, Zr, and Hf from 0.15 to 30 eV [J]. Physical Review B, 1975, 11(10): 3617.
[84] MOKEROV V, MAKAROV V, TULVINSKII V, et al. Optical properties of vanadium pentoxide in the region of photon energies from 2 eV to 14 eV [J]. Opt Spectrosc(USSR)(Engl Transl);(United States), 1976, 40(1).
[85] SHAFEEQ K, ATHIRA V, KISHOR C R, et al. Structural and optical properties of V2O5 nanostructures grown by thermal decomposition technique [J]. Applied Physics A, 2020, 126: 1-6.
[86] RASHEED R T, MANSOOR H S, ABDULLAH T A, et al. Synthesis, characterization of V2O5 nanoparticles and determination of catalase mimetic activity by new colorimetric method [J]. Journal of Thermal Analysis and Calorimetry, 2021, 145: 297-307.
修改评论