[1] VAYNBERG J, FUKUDA K, LU F, et al. Non-catalytic signaling by pseudokinase ILK for regulating cell adhesion [J]. Nat Commun, 2018, 9(1): 4465.
[2] VARTIAINEN M K, MUSTONEN T, MATTILA P K, et al. The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics [J]. Mol Biol Cell, 2002, 13(1): 183-94.
[3] KAVERINA I, ROTTNER K, SMALL J V. Targeting, capture, and stabilization of microtubules at early focal adhesions [J]. J Cell Biol, 1998, 142(1): 181-90.
[4] KRYLYSHKINA O, ANDERSON K I, KAVERINA I, et al. Nanometer targeting of microtubules to focal adhesions [J]. J Cell Biol, 2003, 161(5): 853-9.
[5] JUANES M A, ISNARDON D, BADACHE A, et al. The role of APC-mediated actin assembly in microtubule capture and focal adhesion turnover [J]. J Cell Biol, 2019, 218(10): 3415-35.
[6] MAVRAKIS M, JUANES M A. The compass to follow: Focal adhesion turnover [J]. Curr Opin Cell Biol, 2023, 80: 102152.
[7] WU H, YESILYURT H G, YOON J, et al. The MICALs are a family of F-actin dismantling oxidoreductases conserved from drosophila to humans [J]. Sci Rep, 2018, 8(1): 937.
[8] FREMONT S, HAMMICH H, BAI J, et al. Oxidation of F-actin controls the terminal steps of cytokinesis [J]. Nat Commun, 2017, 8: 14528.
[9] RICH S K, BASKAR R, TERMAN J R. Propagation of F-actin disassembly via Myosin15-Mical interactions [J]. Sci Adv, 2021, 7(20): eabg0147.
[10] POLLARD T D, GOLDMAN R D. Overview of the cytoskeleton from an evolutionary perspective [J]. Cold Spring Harb Perspect Biol, 2018, 10(7): a030288.
[11] GOODSON H V, JONASSON E M. Microtubules and microtubule-associated proteins [J]. Cold Spring Harb Perspect Biol, 2018, 10(6): a022608.
[12] HUXLEY H E. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle [J]. J Mol Biol, 1963, 7: 281-308.
[13] KABSCH W, MANNHERZ H G, SUCK D, et al. Atomic structure of the actin:DNase I complex [J]. Nature, 1990, 347(6288): 37-44.
[14] POLLARD T D. Actin and actin-binding proteins [J]. Cold Spring Harb Perspect Biol, 2016, 8(8): a018226.
[15] LAPPALAINEN P, KOTILA T, JEGOU A, et al. Biochemical and mechanical regulation of actin dynamics [J]. Nat Rev Mol Cell Biol, 2022, 23(12): 836-52.
[16] COURTEMANCHE N. Mechanisms of formin-mediated actin assembly and dynamics [J]. Biophys Rev, 2018, 10(6): 1553-69.
[17] RAJAN S, TERMAN J R, REISLER E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics [J]. Front Cell Dev Biol, 2023, 11: 1124202.
[18] BAMBURG J R, MINAMIDE L S, WIGGAN O, et al. Cofilin and actin dynamics: multiple modes of regulation and their impacts in neuronal development and degeneration [J]. Cells, 2021, 10(10): 2726.
[19] SCHAKS M, GIANNONE G, ROTTNER K. Actin dynamics in cell migration [J]. Essays Biochem, 2019, 63(5): 483-95.
[20] CARLIER M F, VALENTIN-RANC C, COMBEAU C, et al. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin [J]. Adv Exp Med Biol, 1994, 358: 71-81.
[21] ROSENBLATT J, PELUSO P, MITCHISON T J. The bulk of unpolymerized actin in Xenopus egg extracts is ATP-bound [J]. Mol Biol Cell, 1995, 6(2): 227-36.
[22] LE S, YU M, BERSHADSKY A, et al. Mechanical regulation of formin-dependent actin polymerization [J]. Semin Cell Dev Biol, 2020, 102: 73-80.
[23] BRADLEY A O, VIZCARRA C L, BAILEY H M, et al. Spire stimulates nucleation by Cappuccino and binds both ends of actin filaments [J]. Mol Biol Cell, 2020, 31(4): 273-86.
[24] COURTEMANCHE N, POLLARD T D. Interaction of profilin with the barbed end of actin filaments [J]. Biochemistry, 2013, 52(37): 6456-66.
[25] EDWARDS M, ZWOLAK A, SCHAFER D A, et al. Capping protein regulators fine-tune actin assembly dynamics [J]. Nat Rev Mol Cell Biol, 2014, 15(10): 677-89.
[26] BLANCHOIN L, POLLARD T D. Interaction of actin monomers with Acanthamoeba actophorin (ADF/cofilin) and profilin [J]. J Biol Chem, 1998, 273(39): 25106-11.
[27] CAO W, GOODARZI J P, DE LA CRUZ E M. Energetics and kinetics of cooperative cofilin-actin filament interactions [J]. J Mol Biol, 2006, 361(2): 257-67.
[28] BLANCHOIN L, POLLARD T D. Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments [J]. J Biol Chem, 1999, 274(22): 15538-46.
[29] JANKE C, MAGIERA M M. The tubulin code and its role in controlling microtubule properties and functions [J]. Nat Rev Mol Cell Biol, 2020, 21(6): 307-26.
[30] ROLL-MECAK A. Intrinsically disordered tubulin tails: complex tuners of microtubule functions? [J]. Semin Cell Dev Biol, 2015, 37: 11-9.
[31] LI H, DEROSIER D J, NICHOLSON W V, et al. Microtubule structure at 8 A resolution [J]. Structure, 2002, 10(10): 1317-28.
[32] GARVALOV B K, ZUBER B, BOUCHET-MARQUIS C, et al. Luminal particles within cellular microtubules [J]. J Cell Biol, 2006, 174(6): 759-65.
[33] SOPPINA V, HERBSTMAN J F, SKINIOTIS G, et al. Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules [J]. PLoS One, 2012, 7(10): e48204.
[34] DE FORGES H, BOUISSOU A, PEREZ F. Interplay between microtubule dynamics and intracellular organization [J]. Int J Biochem Cell Biol, 2012, 44(2): 266-74.
[35] GANGULY A, YANG H, SHARMA R, et al. The role of microtubules and their dynamics in cell migration [J]. J Biol Chem, 2012, 287(52): 43359-69.
[36] EHRHARDT D W, SHAW S L. Microtubule dynamics and organization in the plant cortical array [J]. Annu Rev Plant Biol, 2006, 57: 859-75.
[37] VERTII A, HEHNLY H, DOXSEY S. The Centrosome, a multitalented renaissance organelle [J]. Cold Spring Harb Perspect Biol, 2016, 8(12): a025049.
[38] MCINTOSH J R. Mitosis [J]. Cold Spring Harb Perspect Biol, 2016, 8(9).
[39] FAN R, LAI K O. Understanding how kinesin motor proteins regulate postsynaptic function in neuron [J]. FEBS J, 2022, 289(8): 2128-44.
[40] GASSMANN R. Dynein at the kinetochore [J]. J Cell Sci, 2023, 136(5): jcs220269.
[41] OLENICK M A, HOLZBAUR E L F. Dynein activators and adaptors at a glance [J]. J Cell Sci, 2019, 132(6):jcs22732.
[42] KIRSCHNER M, MITCHISON T. Beyond self-assembly: from microtubules to morphogenesis [J]. Cell, 1986, 45(3): 329-42.
[43] MOGILNER A, WOLLMAN R, CIVELEKOGLU-SCHOLEY G, et al. Modeling mitosis [J]. Trends Cell Biol, 2006, 16(2): 88-96.
[44] AKHMANOVA A, STEINMETZ M O. Control of microtubule organization and dynamics: two ends in the limelight [J]. Nat Rev Mol Cell Biol, 2015, 16(12): 711-26.
[45] BROUHARD G J, RICE L M. Microtubule dynamics: an interplay of biochemistry and mechanics [J]. Nat Rev Mol Cell Biol, 2018, 19(7): 451-63.
[46] CHRETIEN D, FULLER S D, KARSENTI E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates [J]. J Cell Biol, 1995, 129(5): 1311-28.
[47] HYMAN A A, SALSER S, DRECHSEL D N, et al. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP [J]. Mol Biol Cell, 1992, 3(10): 1155-67.
[48] ZHANG R, ALUSHIN G M, BROWN A, et al. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins [J]. Cell, 2015, 162(4): 849-59.
[49] GRISHCHUK E L, MOLODTSOV M I, ATAULLAKHANOV F I, et al. Force production by disassembling microtubules [J]. Nature, 2005, 438(7066): 384-8.
[50] TILLERY M M L, BLAKE-HEDGES C, ZHENG Y, et al. Centrosomal and non-centrosomal microtubule-organizing centers (MTOCs) in drosophila melanogaster [J]. Cells, 2018, 7(9):121.
[51] LIU P, WURTZ M, ZUPA E, et al. Microtubule nucleation: The waltz between gamma-tubulin ring complex and associated proteins [J]. Curr Opin Cell Biol, 2021, 68: 124-31.
[52] KOLLMAN J M, MERDES A, MOUREY L, et al. Microtubule nucleation by gamma-tubulin complexes [J]. Nat Rev Mol Cell Biol, 2011, 12(11): 709-21.
[53] AKHMANOVA A, HOOGENRAAD C C. Microtubule minus-end-targeting proteins [J]. Curr Biol, 2015, 25(4): R162-71.
[54] AKHMANOVA A, STEINMETZ M O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips [J]. Nat Rev Mol Cell Biol, 2008, 9(4): 309-22.
[55] BROUHARD G J, STEAR J H, NOETZEL T L, et al. XMAP215 is a processive microtubule polymerase [J]. Cell, 2008, 132(1): 79-88.
[56] SRAYKO M, KAYA A, STAMFORD J, et al. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo [J]. Dev Cell, 2005, 9(2): 223-36.
[57] GRIMALDI A D, MAKI T, FITTON B P, et al. CLASPs are required for proper microtubule localization of end-binding proteins [J]. Dev Cell, 2014, 30(3): 343-52.
[58] GALJART N. CLIPs and CLASPs and cellular dynamics [J]. Nat Rev Mol Cell Biol, 2005, 6(6): 487-98.
[59] LEONG S Y, EDZUKA T, GOSHIMA G, et al. Kinesin-13 and Kinesin-8 function during cell growth and division in the moss physcomitrella patens [J]. Plant Cell, 2020, 32(3): 683-702.
[60] OGREN A, PARMAR S, MUKHERJEE S, et al. Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability [J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2108046119.
[61] DESAI A, VERMA S, MITCHISON T J, et al. Kin I kinesins are microtubule-destabilizing enzymes [J]. Cell, 1999, 96(1): 69-78.
[62] ASENJO A B, CHATTERJEE C, TAN D, et al. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases [J]. Cell Rep, 2013, 3(3): 759-68.
[63] BURNS K M, WAGENBACH M, WORDEMAN L, et al. Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization [J]. Structure, 2014, 22(8): 1173-83.
[64] VARGA V, LEDUC C, BORMUTH V, et al. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization [J]. Cell, 2009, 138(6): 1174-83.
[65] SPROUL L R, ANDERSON D J, MACKEY A T, et al. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends [J]. Curr Biol, 2005, 15(15): 1420-7.
[66] NAWROTEK A, KNOSSOW M, GIGANT B. The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin [J]. J Mol Biol, 2011, 412(1): 35-42.
[67] GUDIMCHUK N B, MCINTOSH J R. Regulation of microtubule dynamics, mechanics and function through the growing tip [J]. Nat Rev Mol Cell Biol, 2021, 22(12): 777-95.
[68] MISHRA Y G, MANAVATHI B. Focal adhesion dynamics in cellular function and disease [J]. Cell Signal, 2021, 85: 110046.
[69] PARSONS J T, HORWITZ A R, SCHWARTZ M A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension [J]. Nat Rev Mol Cell Biol, 2010, 11(9): 633-43.
[70] CHANGEDE R, SHEETZ M. Integrin and cadherin clusters: A robust way to organize adhesions for cell mechanics [J]. Bioessays, 2017, 39(1): 1-12.
[71] KAMRANVAR S A, RANI B, JOHANSSON S. Cell cycle regulation by Integrin-mediated adhesion [J]. Cells, 2022, 11(16):2521.
[72] HUTTENLOCHER A, HORWITZ A R. Integrins in cell migration [J]. Cold Spring Harb Perspect Biol, 2011, 3(9): a005074.
[73] CHANGEDE R, XU X, MARGADANT F, et al. Nascent integrin adhesions form on all matrix rigidities after integrin activation [J]. Dev Cell, 2015, 35(5): 614-21.
[74] SUN Z, TSENG H Y, TAN S, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation [J]. Nat Cell Biol, 2016, 18(9): 941-53.
[75] COYER S R, SINGH A, DUMBAULD D W, et al. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension [J]. J Cell Sci, 2012, 125(Pt 21): 5110-23.
[76] HORTON E R, BYRON A, ASKARI J A, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly [J]. Nat Cell Biol, 2015, 17(12): 1577-87.
[77] LI Z, LEE H, ZHU C. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion [J]. Exp Cell Res, 2016, 349(1): 85-94.
[78] ZAIDEL-BAR R, ITZKOVITZ S, MA'AYAN A, et al. Functional atlas of the integrin adhesome [J]. Nat Cell Biol, 2007, 9(8): 858-67.
[79] KANCHANAWONG P, SHTENGEL G, PASAPERA A M, et al. Nanoscale architecture of integrin-based cell adhesions [J]. Nature, 2010, 468(7323): 580-4.
[80] YAN J, YAO M, GOULT B T, et al. Talin dependent mechanosensitivity of cell focal adhesions [J]. Cell Mol Bioeng, 2015, 8(1): 151-9.
[81] MURPHY K N, BRINKWORTH A J. Manipulation of focal adhesion signaling by pathogenic microbes [J]. Int J Mol Sci, 2021, 22(3): 1358.
[82] WEHRLE-HALLER B. Structure and function of focal adhesions [J]. Curr Opin Cell Biol, 2012, 24(1): 116-24.
[83] FISCHER R S, LAM P Y, HUTTENLOCHER A, et al. Filopodia and focal adhesions: An integrated system driving branching morphogenesis in neuronal pathfinding and angiogenesis [J]. Dev Biol, 2019, 451(1): 86-95.
[84] LI Y, BURRIDGE K. Cell-cycle-dependent regulation of cell adhesions: adhering to the schedule: three papers reveal unexpected properties of adhesion structures as cells progress through the cell cycle [J]. Bioessays, 2019, 41(1): e1800165.
[85] LANCASTER O M, LE BERRE M, DIMITRACOPOULOS A, et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation [J]. Dev Cell, 2013, 25(3): 270-83.
[86] SHIN H, LEE M N, CHOUNG J S, et al. Focal adhesion assembly induces phenotypic changes and dedifferentiation in chondrocytes [J]. J Cell Physiol, 2016, 231(8): 1822-31.
[87] MITRA S K, SCHLAEPFER D D. Integrin-regulated FAK-Src signaling in normal and cancer cells [J]. Curr Opin Cell Biol, 2006, 18(5): 516-23.
[88] BOLOS V, GASENT J M, LOPEZ-TARRUELLA S, et al. The dual kinase complex FAK-Src as a promising therapeutic target in cancer [J]. Onco Targets Ther, 2010, 3: 83-97.
[89] JONES M C, ZHA J, HUMPHRIES M J. Connections between the cell cycle, cell adhesion and the cytoskeleton [J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1779): 20180227.
[90] TAN H F, TAN S M. The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining alpha-tubulin acetylation [J]. J Biol Chem, 2020, 295(18): 5928-43.
[91] CHAKRABORTY S, BANERJEE S, RAINA M, et al. Force-directed "mechanointeractome" of Talin-Integrin [J]. Biochemistry, 2019, 58(47): 4677-95.
[92] LOPEZ-COLOME A M, LEE-RIVERA I, BENAVIDES-HIDALGO R, et al. Paxillin: a crossroad in pathological cell migration [J]. J Hematol Oncol, 2017, 10(1): 50.
[93] XU H, CAO H, XIAO G. Signaling via PINCH: Functions, binding partners and implications in human diseases [J]. Gene, 2016, 594(1): 10-5.
[94] WEBB D J, PARSONS J T, HORWITZ A F. Adhesion assembly, disassembly and turnover in migrating cells -- over and over and over again [J]. Nat Cell Biol, 2002, 4(4): E97-100.
[95] BENINGO K A, DEMBO M, KAVERINA I, et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts [J]. J Cell Biol, 2001, 153(4): 881-8.
[96] BERSHADSKY A D, BALABAN N Q, GEIGER B. Adhesion-dependent cell mechanosensitivity [J]. Annu Rev Cell Dev Biol, 2003, 19: 677-95.
[97] KIRFEL G, RIGORT A, BORM B, et al. Cell migration: mechanisms of rear detachment and the formation of migration tracks [J]. Eur J Cell Biol, 2004, 83(11-12): 717-24.
[98] GARCIN C, STRAUBE A. Microtubules in cell migration [J]. Essays Biochem, 2019, 63(5): 509-20.
[99] ZAMIR E, KATZ M, POSEN Y, et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts [J]. Nat Cell Biol, 2000, 2(4): 191-6.
[100] WEBB D J, DONAIS K, WHITMORE L A, et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly [J]. Nat Cell Biol, 2004, 6(2): 154-61.
[101] GUPTON S L, WATERMAN-STORER C M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration [J]. Cell, 2006, 125(7): 1361-74.
[102] BROWN M C, CARY L A, JAMIESON J S, et al. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness [J]. Mol Biol Cell, 2005, 16(9): 4316-28.
[103] NAYAL A, WEBB D J, BROWN C M, et al. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics [J]. J Cell Biol, 2006, 173(4): 587-9.
[104] LING K, DOUGHMAN R L, FIRESTONE A J, et al. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions [J]. Nature, 2002, 420(6911): 89-93.
[105] HERNANDEZ M V, SALA M G, BALSAMO J, et al. ER-bound PTP1B is targeted to newly forming cell-matrix adhesions [J]. J Cell Sci, 2006, 119(Pt 7): 1233-43.
[106] VICENTE-MANZANARES M, ZARENO J, WHITMORE L, et al. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells [J]. J Cell Biol, 2007, 176(5): 573-80.
[107] HU K, JI L, APPLEGATE K T, et al. Differential transmission of actin motion within focal adhesions [J]. Science, 2007, 315(5808): 111-5.
[108] GEIGER B. A role for p130Cas in mechanotransduction [J]. Cell, 2006, 127(5): 879-81.
[109] VON WICHERT G, HAIMOVICH B, FENG G S, et al. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2 [J]. EMBO J, 2003, 22(19): 5023-35.
[110] LEHTIMAKI J I, RAJAKYLA E K, TOJKANDER S, et al. Generation of stress fibers through myosin-driven reorganization of the actin cortex [J]. Elife, 2021, 10: e60710.
[111] HAASE K, AL-REKABI Z, PELLING A E. Mechanical cues direct focal adhesion dynamics [J]. Prog Mol Biol Transl Sci, 2014, 126: 103-34.
[112] MOON H H, KREIS N N, FRIEMEL A, et al. Mitotic Centromere-Associated Kinesin (MCAK/KIF2C) Regulates Cell Migration and Invasion by Modulating Microtubule Dynamics and Focal Adhesion Turnover [J]. Cancers (Basel), 2021, 13(22):5673.
[113] DOGTEROM M, KOENDERINK G H. Actin-microtubule crosstalk in cell biology [J]. Nat Rev Mol Cell Biol, 2019, 20(1): 38-54.
[114] DING B, NARVAEZ-ORTIZ H Y, SINGH Y, et al. Structure of Arp2/3 complex at a branched actin filament junction resolved by single-particle cryo-electron microscopy [J]. Proc Natl Acad Sci U S A, 2022, 119(22): e2202723119.
[115] FUNK J, MERINO F, SCHAKS M, et al. A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks [J]. Nat Commun, 2021, 12(1): 5329.
[116] YUAN B, ZHANG R, HU J, et al. WDR1 promotes cell growth and migration and contributes to malignant phenotypes of non-small cell lung cancer through ADF/cofilin-mediated actin dynamics [J]. Int J Biol Sci, 2018, 14(9): 1067-80.
[117] BURIANEK L E, SODERLING S H. Under lock and key: spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes [J]. Semin Cell Dev Biol, 2013, 24(4): 258-66.
[118] HASEGAWA K, MATSUI T K, KONDO J, et al. N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells in vivo [J]. Development, 2022, 149(23): dev201214.
[119] DEMALI K A, BARLOW C A, BURRIDGE K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion [J]. J Cell Biol, 2002, 159(5): 881-91.
[120] BRYCE N S, CLARK E S, LEYSATH J L, et al. Cortactin promotes cell motility by enhancing lamellipodial persistence [J]. Curr Biol, 2005, 15(14): 1276-85.
[121] OKADA K, OBINATA T, ABE H. XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins [J]. J Cell Sci, 1999, 112 ( Pt 10): 1553-65.
[122] MALLAVARAPU A, MITCHISON T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction [J]. J Cell Biol, 1999, 146(5): 1097-106.
[123] BOUCHET B P, GOUGH R E, AMMON Y C, et al. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions [J]. Elife, 2016, 5: e18124.
[124] MIMORI-KIYOSUE Y, GRIGORIEV I, LANSBERGEN G, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex [J]. J Cell Biol, 2005, 168(1): 141-53.
[125] ZAOUI K, BENSEDDIK K, DAOU P, et al. ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells [J]. Proc Natl Acad Sci U S A, 2010, 107(43): 18517-22.
[126] WEN Y, ENG C H, SCHMORANZER J, et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration [J]. Nat Cell Biol, 2004, 6(9): 820-30.
[127] DAOU P, HASAN S, BREITSPRECHER D, et al. Essential and nonredundant roles for Diaphanous formins in cortical microtubule capture and directed cell migration [J]. Mol Biol Cell, 2014, 25(5): 658-68.
[128] FANG X, SVITKINA T M. Adenomatous Polyposis Coli (APC) in cell migration [J]. Eur J Cell Biol, 2022, 101(3): 151228.
[129] FUKAMI K, FURUHASHI K, INAGAKI M, et al. Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function [J]. Nature, 1992, 359(6391): 150-2.
[130] XUE Y, KUOK C, XIAO A, et al. Identification and expression analysis of mical family genes in zebrafish [J]. J Genet Genomics, 2010, 37(10): 685-93.
[131] ZHENG Q, ZHAO Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction [J]. Biol Cell, 2007, 99(9): 489-502.
[132] GIRIDHARAN S S, ROHN J L, NASLAVSKY N, et al. Differential regulation of actin microfilaments by human MICAL proteins [J]. J Cell Sci, 2012, 125(Pt 3): 614-24.
[133] SCHMIDT E F, SHIM S O, STRITTMATTER S M. Release of MICAL autoinhibition by semaphorin-plexin signaling promotes interaction with collapsin response mediator protein [J]. J Neurosci, 2008, 28(9): 2287-97.
[134] GRIGORIEV I, YU K L, MARTINEZ-SANCHEZ E, et al. Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers [J]. Curr Biol, 2011, 21(11): 967-74.
[135] LUCKEN-ARDJOMANDE HASLER S, VALLIS Y, PASCHE M, et al. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR DeltaF508 [J]. J Cell Biol, 2020, 219(5): e201811014.
[136] HUNG R J, PAK C W, TERMAN J R. Direct redox regulation of F-actin assembly and disassembly by Mical [J]. Science, 2011, 334(6063): 1710-3.
[137] ZUCCHINI D, CAPRINI G, PASTERKAMP R J, et al. Kinetic and spectroscopic characterization of the putative monooxygenase domain of human MICAL-1 [J]. Arch Biochem Biophys, 2011, 515(1-2): 1-13.
[138] NADELLA M, BIANCHET M A, GABELLI S B, et al. Structure and activity of the axon guidance protein MICAL [J]. Proc Natl Acad Sci U S A, 2005, 102(46): 16830-5.
[139] LEE K, ESSELMAN W J. Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways [J]. Free Radic Biol Med, 2002, 33(8): 1121-32.
[140] ALTO L T, TERMAN J R. MICALs [J]. Curr Biol, 2018, 28(9): R538-R41.
[141] FEDOROVA M, KULEVA N, HOFFMANN R. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress [J]. J Proteome Res, 2010, 9(3): 1598-609.
[142] MORINAKA A, YAMADA M, ITOFUSA R, et al. Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse [J]. Sci Signal, 2011, 4(170): ra26.
[143] HUNG R J, YAZDANI U, YOON J, et al. Mical links semaphorins to F-actin disassembly [J]. Nature, 2010, 463(7282): 823-7.
[144] ZHOU Y, ADOLFS Y, PIJNAPPEL W W, et al. MICAL-1 is a negative regulator of MST-NDR kinase signaling and apoptosis [J]. Mol Cell Biol, 2011, 31(17): 3603-15.
[145] TERMAN J R, MAO T, PASTERKAMP R J, et al. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion [J]. Cell, 2002, 109(7): 887-900.
[146] RAI A, GOODY R S, MULLER M P. Multivalency in Rab effector interactions [J]. Small GTPases, 2019, 10(1): 40-6.
[147] ESPOSITO A, VENTURA V, PETOUKHOV M V, et al. Human MICAL1: Activation by the small GTPase Rab8 and small-angle X-ray scattering studies on the oligomerization state of MICAL1 and its complex with Rab8 [J]. Protein Sci, 2019, 28(1): 150-66.
[148] NIU F, SUN K, WEI W, et al. F-actin disassembly factor MICAL1 binding to Myosin Va mediates cargo unloading during cytokinesis [J]. Sci Adv, 2020, 6(45): eabb1307.
[149] SUZUKI T, NAKAMOTO T, OGAWA S, et al. MICAL, a novel CasL interacting molecule, associates with vimentin [J]. J Biol Chem, 2002, 277(17): 14933-41.
[150] BEUCHLE D, SCHWARZ H, LANGEGGER M, et al. Drosophila MICAL regulates myofilament organization and synaptic structure [J]. Mech Dev, 2007, 124(5): 390-406.
[151] DENG W, WANG Y, ZHAO S, et al. MICAL1 facilitates breast cancer cell proliferation via ROS-sensitive ERK/cyclin D pathway [J]. J Cell Mol Med, 2018, 22(6): 3108-18.
[152] GU H, LI Y, CUI X, et al. MICAL1 inhibits colorectal cancer cell migration and proliferation by regulating the EGR1/beta-catenin signaling pathway [J]. Biochem Pharmacol, 2022, 195: 114870.
[153] OHARA-IMAIZUMI M, OHTSUKA T, MATSUSHIMA S, et al. ELKS, a protein structurally related to the active zone-associated protein CAST, is expressed in pancreatic beta cells and functions in insulin exocytosis: interaction of ELKS with exocytotic machinery analyzed by total internal reflection fluorescence microscopy [J]. Mol Biol Cell, 2005, 16(7): 3289-300.
[154] LAWRENCE E J, CHATTERJEE S, ZANIC M. CLASPs stabilize the pre-catastrophe intermediate state between microtubule growth and shrinkage [J]. J Cell Biol, 2023, 222(7): e202107027.
[155] LUO W, DEMIDOV V, SHEN Q, et al. CLASP2 recognizes tubulins exposed at the microtubule plus-end in a nucleotide state-sensitive manner [J]. Sci Adv, 2023, 9(1): eabq5404.
[156] MAIATO H, RIEDER C L, EARNSHAW W C, et al. How do kinetochores CLASP dynamic microtubules? [J]. Cell Cycle, 2003, 2(6): 511-4.
[157] MAIATO H, KHODJAKOV A, RIEDER C L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres [J]. Nat Cell Biol, 2005, 7(1): 42-7.
[158] MAIATO H, FAIRLEY E A, RIEDER C L, et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics [J]. Cell, 2003, 113(7): 891-904.
[159] BRATMAN S V, CHANG F. Stabilization of overlapping microtubules by fission yeast CLASP [J]. Dev Cell, 2007, 13(6): 812-27.
[160] SOUSA A, REIS R, SAMPAIO P, et al. The Drosophila CLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state [J]. Cell Motil Cytoskeleton, 2007, 64(8): 605-20.
[161] MATON G, EDWARDS F, LACROIX B, et al. Kinetochore components are required for central spindle assembly [J]. Nat Cell Biol, 2015, 17(5): 697-705.
[162] LACROIX B, BOURDAGES K G, DORN J F, et al. In situ imaging in C. elegans reveals developmental regulation of microtubule dynamics [J]. Dev Cell, 2014, 29(2): 203-16.
[163] AMBROSE C, ALLARD J F, CYTRYNBAUM E N, et al. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis [J]. Nat Commun, 2011, 2: 430.
[164] AL-BASSAM J, CHANG F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP [J]. Trends Cell Biol, 2011, 21(10): 604-14.
[165] SLEP K C. A microtubule dynamics reconstitutional convention [J]. J Cell Biol, 2016, 215(3): 305-7.
[166] YU N, SIGNORILE L, BASU S, et al. Isolation of functional tubulin dimers and of tubulin-associated proteins from mammalian cells [J]. Curr Biol, 2016, 26(13): 1728-36.
[167] AL-BASSAM J, VAN BREUGEL M, HARRISON S C, et al. Stu2p binds tubulin and undergoes an open-to-closed conformational change [J]. J Cell Biol, 2006, 172(7): 1009-22.
[168] SLEP K C, VALE R D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1 [J]. Mol Cell, 2007, 27(6): 976-91.
[169] AYAZ P, YE X, HUDDLESTON P, et al. A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase [J]. Science, 2012, 337(6096): 857-60.
[170] AYAZ P, MUNYOKI S, GEYER E A, et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase [J]. Elife, 2014, 3: e03069.
[171] AKHMANOVA A, HOOGENRAAD C C, DRABEK K, et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts [J]. Cell, 2001, 104(6): 923-35.
[172] HONNAPPA S, GOUVEIA S M, WEISBRICH A, et al. An EB1-binding motif acts as a microtubule tip localization signal [J]. Cell, 2009, 138(2): 366-76.
[173] MAURER S P, FOURNIOL F J, BOHNER G, et al. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends [J]. Cell, 2012, 149(2): 371-82.
[174] EFIMOV A, KHARITONOV A, EFIMOVA N, et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network [J]. Dev Cell, 2007, 12(6): 917-30.
[175] MILLER P M, FOLKMANN A W, MAIA A R, et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells [J]. Nat Cell Biol, 2009, 11(9): 1069-80.
[176] AMBROSE J C, SHOJI T, KOTZER A M, et al. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division [J]. Plant Cell, 2007, 19(9): 2763-75.
[177] HANNAK E, HEALD R. Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts [J]. Nat Protoc, 2006, 1(5): 2305-14.
[178] MAFFINI S, MAIA A R, MANNING A L, et al. Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux [J]. Curr Biol, 2009, 19(18): 1566-72.
[179] GIRAO H, OKADA N, RODRIGUES T A, et al. CLASP2 binding to curved microtubule tips promotes flux and stabilizes kinetochore attachments [J]. J Cell Biol, 2020, 219(2): e201905080.
[180] PEREIRA A L, PEREIRA A J, MAIA A R, et al. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function [J]. Mol Biol Cell, 2006, 17(10): 4526-42.
[181] MIMORI-KIYOSUE Y, GRIGORIEV I, SASAKI H, et al. Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment [J]. Genes Cells, 2006, 11(8): 845-57.
[182] BASU S, SLADECEK S, MARTINEZ DE LA PEÑA Y VALENZUELA I, et al. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles [J]. Mol Biol Cell, 2015, 26(5): 938-51.
[183] LANSBERGEN G, GRIGORIEV I, MIMORI-KIYOSUE Y, et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta [J]. Dev Cell, 2006, 11(1): 21-32.
[184] PARANAVITANE V, COADWELL W J, EGUINOA A, et al. LL5beta is a phosphatidylinositol (3,4,5)-trisphosphate sensor that can bind the cytoskeletal adaptor, gamma-filamin [J]. J Biol Chem, 2003, 278(2): 1328-35.
[185] STEHBENS S J, PASZEK M, PEMBLE H, et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover [J]. Nat Cell Biol, 2014, 16(6): 561-73.
[186] LIU Y, LOIJENS J C, MARTIN K H, et al. The association of ASAP1, an ADP ribosylation factor-GTPase activating protein, with focal adhesion kinase contributes to the process of focal adhesion assembly [J]. Mol Biol Cell, 2002, 13(6): 2147-56.
[187] SIPEKI S, KOPRIVANACZ K, TAKACS T, et al. Novel roles of SH2 and SH3 domains in lipid binding [J]. Cells, 2021, 10(5): 1191.
[188] WU X, KNUDSEN B, FELLER S M, et al. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk [J]. Structure, 1995, 3(2): 215-26.
[189] FENG S, CHEN J K, YU H, et al. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions [J]. Science, 1994, 266(5188): 1241-7.
[190] LEE C H, LEUNG B, LEMMON M A, et al. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein [J]. EMBO J, 1995, 14(20): 5006-15.
[191] LIM W A, RICHARDS F M, FOX R O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains [J]. Nature, 1994, 372(6504): 375-9.
[192] RUBINI C, RUZZA P, SPALLER M R, et al. Recognition of lysine-rich peptide ligands by murine cortactin SH3 domain: CD, ITC, and NMR studies [J]. Biopolymers, 2010, 94(3): 298-306.
[193] DENG L, VELIKOVSKY C A, SWAMINATHAN C P, et al. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1 [J]. J Mol Biol, 2005, 352(1): 1-10.
[194] SHIBATA H, OISHI K, YAMAGIWA A, et al. PKNbeta interacts with the SH3 domains of Graf and a novel Graf related protein, Graf2, which are GTPase activating proteins for Rho family [J]. J Biochem, 2001, 130(1): 23-31.
[195] DADWAL N, MIX C, REINHOLD A, et al. The multiple roles of the cytosolic adapter proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -mediated signaling events [J]. Front Immunol, 2021, 12: 703534.
[196] WU L, YU Z, SHEN S H. SKAP55 recruits to lipid rafts and positively mediates the MAPK pathway upon T cell receptor activation [J]. J Biol Chem, 2002, 277(43): 40420-7.
[197] TAPIAL MARTINEZ P, LOPEZ NAVAJAS P, LIETHA D. FAK structure and regulation by membrane interactions and force in focal adhesions [J]. Biomolecules, 2020, 10(2).
[198] KATOH K. FAK-dependent cell motility and cell elongation [J]. Cells, 2020, 9(1): 192.
[199] LIU J, KANG H, RAAB M, et al. FYB (FYN binding protein) serves as a binding partner for lymphoid protein and FYN kinase substrate SKAP55 and a SKAP55-related protein in T cells [J]. Proc Natl Acad Sci U S A, 1998, 95(15): 8779-84.
[200] MIRDITA M, SCHUTZE K, MORIWAKI Y, et al. ColabFold: making protein folding accessible to all [J]. Nat Methods, 2022, 19(6): 679-82.
修改评论