中文版 | English
题名

基于砷化镓的光纤热丝式血流测量技术的开发

其他题名
DEVELOPMENT OF OPTICAL FIBER HOT- WIRE BLOOD FLOW MEASUREMENT TECHNOLOGY BASED ON GALLIUM ARSENIDE
姓名
姓名拼音
LIU Zeyuan
学号
12132550
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
董玉明
导师单位
深圳先进技术研究院
论文答辩日期
2023-05-18
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

我国心血管疾病患者众多,心血管疾病的诊断和治疗给我国带来了沉重的医疗负担。目前冠状动脉造影和超声等手段可以诊断血管的形态学病变,但不能提供血管狭窄处的功能信息的判断。血流储备分数通过测量狭窄血管前后的压力差可以评估狭窄血管功能,但仍存在不能评估血管中阻力大小等缺陷。测量冠状动脉中的血流速度,可以一定程度弥补上述缺点,有助于冠心病的诊疗。

本文以测量冠状动脉血流速度为目标,以热式流速测量技术为基本原理,选择砷化镓光纤热丝式流速传感器进行研究。通过有限元仿真分析了恒功率加热的情况下传感器的各项参数对于传感器性能的影响,根据仿真优化的结果和实际情况制作了光纤传感器探头,设计并搭建了冠状动脉流速测量的体外环境。根据砷化镓材料的光吸收特性,使用光谱仪获取传感器的反射光谱,建立了光谱中特征波长与温度的变化关系,实现了在模拟血管中高灵敏度的流速测量,在不同液体温度下根据光谱中相对波长漂移量的大小部分补充了温度对于流速测量结果的影响。本文基于上述传感器提出了一种导管设计,能够辅助定位测量冠状动脉血流速度时传感器的位置,为进一步探索精准测量血流速度的光学流速传感系统提供了依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 中国心血管健康与疾病报告2021概要[J]. 心脑血管病防治, 2022, 22(04): 20-36.
[2] GOULD K L. Does coronary flow trump coronary anatomy?[J]. JACC Cardiovasc Imaging, 2009, 2(8): 1009-1023.
[3] TOTH G, HAMILOS M, PYXARAS S, et al. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses[J]. Eur Heart J, 2014, 35(40): 2831-2838.
[4] TUZCU E M, BERKALP B, DE FRANCO A C, et al. The dilemma of diagnosing coronary calcification: angiography versus intravascular ultrasound[J]. J Am Coll Cardiol, 1996, 27(4): 832-838.
[5] MADDOX T M, STANISLAWSKI M A, GRUNWALD G K, et al. Nonobstructive coronary artery disease and risk of myocardial infarction[J]. JAMA, 2014, 312(17): 1754-1763.
[6] HALLIWE M. Doppler ultrasound: Physics, instrumentation and signal processing[J]. Physiological Measurement, 2000, 21(3): 425-426.
[7] ANDERSSON C, KIHLBERG J, EBBERS T, et al. Phase-contrast MRI volume flow--a comparison of breath held and navigator based acquisitions[J]. BMC Med Imaging, 2016, 5(7):16-26.
[8] ANDREINI D, PONTONE G, MUSHTAQ S, et al. A long-term prognostic value of coronary CT angiography in suspected coronary artery disease[J]. JACC Cardiovasc Imaging, 2012, 5(7): 690-701.
[9] DE BRUYNE B, PIJLS N H, KALESAN B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease[J]. N Engl J Med, 2012, 367(11): 991-1001.
[10] MANABE O, NAYA M, TAMAKI N. Feasibility of PET for the management of coronary artery disease: Comparison between CFR and FFR[J]. J Cardiol, 2017, 70(2): 135-140.
[11] 乔红艳, 张龙江. FFR_(CT)的技术原理、注意事项和结果解释[J]. 国际医学放射学杂志, 2018, 41(03): 258-262.
[12] 中国冠状动脉血流储备分数测定技术临床路径专家共识[J]. 中国介入心脏病学杂志, 2019, 27(03): 121-133.
[13] 韩梦月, 谢锋, 朱芳, 等. 核素心肌显像测定MBF和CFR在冠心病的诊断价值及展望[J]. 中国动脉硬化杂志, 2022, 30(03): 260-264.
[14] VAN DE HOEF T P, VAN LAVIEREN M A, DAMMAN P, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity[J]. Circulation: Cardiovascular Interventions, 2014, 7(3): 301-311.
[15] TAQUETI V R, DI CARLI M F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2018, 72(21): 2625-2641.
[16] SOLBERG O G, RAGNARSSON A, KVARSNES A, et al. Reference interval for the index of coronary microvascular resistance[J]. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2014, 9(9): 1069-1075.
[17] AHN S G, HUNG O Y, LEE J-W, et al. Combination of the thermodilution-derived index of microcirculatory resistance and coronary flow reserve is highly predictive of microvascular obstruction on cardiac magnetic resonance imaging after ST-segment elevation myocardial infarction[J]. JACC: Cardiovascular Interventions, 2016, 9(8): 793-801.
[18] LEE J M, JUNG J-H, HWANG D, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis[J]. Journal of the American College of Cardiology, 2016, 67(10): 1158-1169.
[19] KERN M J, BACH R G, MECHEM C J, et al. Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease[J]. Journal of the American College of Cardiology, 1996, 28(5): 1154-1160.
[20] GUTIéRREZ-BARRIOS A, IZAGA-TORRALBA E, CRESPO F R, et al. Continuous thermodilution method to assess coronary flow reserve[J]. The American Journal of Cardiology, 2021, 141: 31-37.
[21] PIJLS N, UIJEN G, HOEVELAKEN A, et al. Mean transit time for the assessment of myocardial perfusion by videodensitometry[J]. Circulation, 1990, 81(4): 1331-1340.
[22] ÖZBEK M, ÖZEL H F, EKERBICER N, et al. A physical model of the thermodilution method: influences of the variations of experimental setup on the accuracy of flow rate estimation[J]. 2011, 21(3): 3-8
[23] SAUGEL B, SCHEEREN T W, TEBOUL J-L. Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice[J]. Critical Care, 2017, 21(1): 1-11.
[24] HUNT R W, EVANS N, RIEGER I, et al. Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants[J]. The Journal of pediatrics, 2004, 145(5): 588-592.
[25] VAN SOEST G, REGAR E, VAN DER STEEN A F. Photonics in cardiovascular medicine[J]. Nature Photonics, 2015, 9(10): 626-629.
[26] VAN DER HORST A, GEVEN M C, RUTTEN M C, et al. Thermal anemometric assessment of coronary flow reserve with a pressure-sensing guide wire: An in vitro evaluation[J]. Medical engineering & physics, 2011, 33(6): 684-691.
[27] VAN DER HORST A, VAN’T VEER M, VAN DER SLIGTE R A, et al. A combination of thermal methods to assess coronary pressure and flow dynamics with a pressure-sensing guide wire[J]. Medical engineering & physics, 2013, 35(3): 298-309.
[28] CORREIA R, JAMES S, LEE S, et al. Biomedical application of optical fibre sensors[J]. Journal of Optics, 2018, 20(7): 73-83.
[29] MISHRA V, SINGH N, TIWARI U, et al. Fiber grating sensors in medicine: Current and emerging applications[J]. Sensors and Actuators A: Physical, 2011, 167(2): 279-290.
[30] PEVEC S, DONLAGIĆ D. Multiparameter fiber-optic sensors: A review[J]. Optical Engineering, 2019, 58(7): 072009-072009.
[31] COOTE J, ALLES E, NOIMARK S, et al. Dynamic physiological temperature and pressure sensing with phase-resolved low-coherence interferometry[J]. Optics Express, 2019, 27(4): 5641-5654.
[32] GUPTA H, ARUMURU V, JHA R. Industrial fluid flow measurement using optical fiber sensors: A review[J]. IEEE Sensors Journal, 2020, 21(6): 7130-7144.
[33] ZHOU X, FAN D, ZHANG Z, et al. Analysis and design of multi-loop IMC controller for electro-optical serve control systems[J]. Infrared and Laser Engineering, 2011, 40(10):55-58.
[34] 葛晓静, 聂帅华. 光纤传感器的原理及应用[J]. 电脑与电信, 2011(07): 68-70.
[35] DASH J N, JHA R, DASS S. Ultrasensitive displacement sensor based on photonic crystal fiber modal interferometer[C].Optical Sensors. Optica Publishing Group, 2014: SeW4C. 3.
[36] DASH J N, JHA R, VILLATORO J, et al. Nano-displacement sensor based on photonic crystal fiber modal interferometer[J]. Optics letters, 2015, 40(4): 467-470.
[37] ARUMURU V, KODAM A, JHA R. Bidirectional interferometric flowmeter with linear sensitivity and large dynamic range[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-6.
[38] JHA R, VILLATORO J, BADENES G. Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing[J]. Applied Physics Letters, 2008, 93(19): 91-106.
[39] DASH J N, JHA R. Inline microcavity-based PCF interferometer for refractive index and temperature sensing[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1325-1328.
[40] DASH J N, JHA R. Fabry–Perot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature[J]. Applied optics, 2015, 54(35): 10479-10486.
[41] DASH J N, JHA R. Mach–Zehnder interferometer based on tapered PCF with an up-tapered joint for curvature, strain and temperature interrogation[J]. Journal of Optics, 2016, 18(10): 105002.
[42] DASH J N, JHA R. Fabry–Perot cavity on demand for hysteresis free interferometric sensors[J]. Journal of Lightwave Technology, 2016, 34(13): 3188-3193.
[43] DASH J N, NEGI N, JHA R. Graphene oxide coated PCF interferometer for enhanced strain sensitivity[J]. Journal of Lightwave Technology, 2017, 35(24): 5385-5390.
[44] ARUMURU V, DASH J N, DORA D, et al. Vortex shedding optical flowmeter based on photonic crystal fiber[J]. Scientific Reports, 2019, 9(1): 1-9.
[45] DASS S, KACHHAP S, JHA R. Hearing the sounds of aquatic life using optical fiber microtip-based hydrophone[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(7): 4015-4020.
[46] DASH J N, DASS S, JHA R. Photonic crystal fiber microcavity based bend and temperature sensor using micro fiber[J]. Sensors and Actuators A: Physical, 2016, 244: 24-29.
[47] DASS S, JHA R. Square knot resonator-based compact bending sensor[J]. IEEE Photonics Technology Letters, 2018, 30(18): 1649-1652.
[48] ESPOSITO F, SRIVASTAVA A, CAMPOPIANO S, et al. Radiation effects on long period fiber gratings: A review[J]. Sensors, 2020, 20(9): 2729.
[49] ESPOSITO F, SRIVASTAVA A, SANSONE L, et al. Label-free biosensors based on long period fiber gratings: a review[J]. IEEE Sensors Journal, 2020, 21(11): 12692-12705.
[50] 王超. 基于光纤干涉微腔传感的流速测量方法研究[D]. 天津:天津大学, 2020: 7-8.
[51] ZAMARRENO C R, MARTELLI C, BARONCINI V H, et al. Single and multiphase flow characterization by means of an optical fiber Bragg grating grid[J]. Journal of Lightwave Technology, 2015, 33(9): 1857-1862.
[52] THEKKETHIL S, ROY K R, THOMAS R, et al. Mathematical model for a novel cryogenic flow sensor using fibre Bragg gratings[J]. Procedia Technology, 2016, 24: 477-484.
[53] LV R-Q, ZHENG H-K, ZHAO Y, et al. An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline[J]. Optical Fiber Technology, 2018, 45: 313-318.
[54] PAWLOWSKI E. Design and evaluation of a flow-to-frequency converter circuit with thermal feedback[J]. Measurement Science and Technology, 2017, 28(5): 54-64.
[55] LAMB D W, HOOPER A. Laser-optical fiber Bragg grating anemometer for measuring gas flows: application to measuring the electric wind[J]. Optics letters, 2006, 31(8): 1035-1037.
[56] LI Z, WANG J, LIU T, et al. High-sensitivity “hot-wire”-based gas velocity sensor for safe monitoring in mining applications[J]. IEEE Sensors Journal, 2018, 18(24): 10192-10198.
[57] GAO S, ZHANG A P, TAM H-Y, et al. All-optical fiber anemometer based on laser heated fiber Bragg gratings[J]. Optics express, 2011, 19(11): 10124-10130.
[58] GAO R, LU D. Temperature compensated fiber optic anemometer based on graphene-coated elliptical core micro-fiber Bragg grating[J]. Optics express, 2019, 27(23): 34011-34021.
[59] LEE C-L, HONG W-Y, HSIEH H-J, et al. Air gap fiber Fabry–Pérot interferometer for highly sensitive micro-airflow sensing[J]. IEEE Photonics Technology Letters, 2011, 23(13): 905-907.
[60] CHERI M S, LATIFI H, AGHBOLAGH F B A, et al. Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber[J]. Applied optics, 2013, 52(14): 3420-3427.
[61] LI Y, YAN G, ZHANG L, et al. Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer[J]. Optics express, 2015, 23(7): 9483-9493.
[62] LIU G, HOU W, QIAO W, et al. Fast-response fiber-optic anemometer with temperature self-compensation[J]. Optics express, 2015, 23(10): 13562-13570.
[63] LIU G, SHENG Q, HOU W, et al. Optical fiber vector flow sensor based on a silicon Fabry–Perot interferometer array[J]. Optics letters, 2016, 41(20): 4629-4632.
[64] DU Y, JOTHIBASU S, ZHUANG Y, et al. Rayleigh backscattering based macrobending single mode fiber for distributed refractive index sensing[J]. Sensors and Actuators B: Chemical, 2017, 248: 346-350.
[65] GARCIA-RUIZ A, DOMINGUEZ-LOPEZ A, PASTOR-GRAELLS J, et al. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR[J]. Optics express, 2018, 26(1): 463-476.
[66] JDERU A, ENACHESCU M, ZIEGLER D. Mass flow monitoring by distributed fiber optical temperature sensing[J]. Sensors, 2019, 19(19): 41-51.
[67] TANAKA T, BENEDEK G B. Measurement of the velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy[J]. Applied optics, 1975, 14(1): 189-196.
[68] CARR E, MACKLE E C, FINLAY M C, et al. Optical interferometric temperature sensors for intravascular blood flow measurements[C].European Conference on Biomedical Optics. Optica Publishing Group, 2019: 11075_1.
[69] RUIZ‐VARGAS A, MORRIS S A, HARTLEY R H, et al. Optical flow sensor for continuous invasive measurement of blood flow velocity[J]. Journal of biophotonics, 2019, 12(10): 13-19.
[70] CHRISTENSEN D. NEW NON-PERTURBING TEMPERATURE PROBE USING SEMICONDUCTOR BAND EDGE SHIFT[J]. Journal of Bioengineering, 1977, 1(5-6): 541-545.
[71] CHRISTENSEN D, VAGUINE V. A fiberoptic temperature sensor using wavelength-dependent detection[C].Fiber optic and laser sensors V. SPIE, 1988, 838: 252-256.
[72] 陈学岗, 熊文林, 王庆. GaAs材料测温系统的研制[J]. 江西科学, 2001(04): 208-210.
[73] 闫锴. 基于温差法流量测量技术研究[D]. 陕西:西安石油大学, 2021:7-10.
[74] GHALICHI F, DENG X, DE CHAMPLAIN A, et al. Low Reynolds number turbulence modeling of blood flow in arterial stenoses[J]. Biorheology, 1998, 35(4-5): 281-294.
[75] 赵伟国. 热式气体质量流量测量方法及系统研究[D]. 江苏:浙江大学, 2009:12-15.
[76] KRAMERS H. Heat transfer from spheres to flowing media[J]. physica, 1946, 12(2-3): 61-80.
[77] LIU G, SHENG Q, PIASSETTA G R L, et al. A fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot cavity[C].Fiber Optic Sensors and Applications XIII. SPIE, 2016, 9852: 288-294.
[78] VAN’T VEER M, ADJEDJ J, WIJNBERGEN I, et al. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation[J]. EuroIntervention, 2016, 12(6): 701-707.
[79] 李永富. 强激光对砷化镓材料损伤机理的研究[D]. 山东:山东大学, 2007:43-45.
[80] 胡昆. 基于砷化镓吸收式多通道自校准光纤温度监测系统的研究[D]. 广东:广东工业大学, 2015:40-43.
[81] MUNOZ C, NARKAWICZ A. Formalization of Bernstein polynomials and applications to global optimization[J]. Journal of Automated Reasoning, 2013, 51: 151-196.

所在学位评定分委会
材料与化工
国内图书分类号
TN253
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545158
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
刘泽源. 基于砷化镓的光纤热丝式血流测量技术的开发[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132550-刘泽源-中国科学院深圳(3060KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘泽源]的文章
百度学术
百度学术中相似的文章
[刘泽源]的文章
必应学术
必应学术中相似的文章
[刘泽源]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。