[1] WISE M, CALVIN K, THOMSON A, et al. Implications of limiting CO2 concentrations for land use and energy[J]. Science, 2009, 324(5931): 1183-1186.
[2] BERETTA D, NEOPHYTOU N, HODGES J M, et al. Thermoelectrics: from history, a window to the future[J]. Materials Science and Engineering: R: Reports, 2019, 138: 100501.
[3] ZHENG L, LI W, SUN C, et al. Ternary thermoelectric AB2C2 Zintls[J]. Journal of Alloys and Compounds, 2020, 821: 153497.
[4] FERNáNDEZ-YáñEZ P, ROMERO V, ARMAS O, et al. Thermal management of thermoelectric generators for waste energy recovery[J]. Applied Thermal Engineering, 2021, 196: 117291.
[5] GE M, LI Z, ZHAO Y, et al. Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery[J]. Applied Energy, 2022, 322: 119523.
[6] MAHMOUDINEZHAD S, REZANIAKOLAEI A, ROSENDAHL L A. Experimental study on effect of operating conditions on thermoelectric power generation[J]. Energy Procedia, 2017, 142: 558-563.
[7] ZHU L, TAN H, YU J. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications[J]. Energy Conversion and Management, 2013, 76: 685-690.
[8] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[9] SEEBECK T J. Ueber die magnetische Polarisation der Metalle und Erze durch TemperaturDifferenz[J]. AnnalenderPhysik, 1826, 82(1): 1-20.
[10] PELTIERJCA. Nouvelles expériences sur la caloricité des courans électriques[J]. Annalesde ChimieetdePhysique, 1834, (56): 371-386.
[11] 刘睿恒. P型填充方钴矿材料的制备和性能研究[D]. 上海: 中国科学院大学材料物理与化学博士学位论文, 2012: 1-112.
[12] 陈立东,刘睿恒,史迅. 热电材料与器件[M]. 北京: 科学出版社, 2018: 1-211.
[13] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
[14] 牛厂磊, 唐显, 李鑫. 碲化铋热电材料研究进展评述[J]. 中国陶瓷, 2019, 55(01): 1-49.
[15] SABERI Y, SAJJADI S A. A comprehensive review on the effects of doping process on the thermoelectric properties of Bi2Te3 based alloys[J]. Journal of Alloys and Compounds, 2022, 904: 163918.
[16] ZHUANG H L, HU H, PEI J, et al. High ZT in p-type thermoelectric (Bi,Sb)2Te3 with built-in nanopores[J]. Energy & Environmental Science, 2022, 15(5): 2039-2048.
[17] KIM S I, LEE K H, MUN H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109-114.
[18] HU L, ZHU T, LIU X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J]. Advanced Functional Materials, 2014, 24(33): 5211-5218.
[19] NOZARIASBMARZ A, SUAREZ F, DYCUS J H, et al. Thermoelectric generators for wearable body heat harvesting: Material and device concurrent optimization[J]. Nano Energy, 2020, 67: 104265.
[20] TAINOFF D, PROUDHOM A, TUR C, et al. Network of thermoelectric nanogenerators for low power energy harvesting[J]. Nano Energy, 2019, 57: 804-810.
[21] 刘紫航. MgAgSb基合金的组织结构与热电性能[D]. 哈尔滨: 哈尔滨工业大学材料物理与化学博士学位论文, 2017: 1-98.
[22] ZHAO H, SUI J, TANG Z, et al. High thermoelectric performance of MgAgSb-based materials[J]. Nano Energy, 2014, 7: 97-103.
[23] 张勤勇, 雷晓波. 国外块体热电材料PbTe的研究进展[J]. 西华大学学报(自然科学版), 2012, 31(3): 81-87.
[24] CHEN Z, XU M, DENG S. Enhanced electrical transport properties of PbTe single crystal through Ga substitution synthesized by a Pb-flux method[J]. Journal of Alloys and Compounds, 2022, 920: 165953.
[25] PEI Y, WANG H, SNYDER G J. Band engineering of thermoelectric materials[J]. Advanced Materials, 2012, 24(46): 6125-6135.
[26] SHARMA P K, SENGUTTUVAN T D, SHARMA V K, et al. Effect of bismuth doping and SiC nanodispersion on the thermoelectric properties of solution-processed PbTe[J]. Journal of Alloys and Compounds, 2022, 915: 165390.
[27] PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
[28] 李小亚, 陈炎, 郝峰. 碲化铋基热电半导体晶体研究[J]. 中国材料进展, 2017, 36(4): 270-278.
[29] 姜洪义, 王华文, 任卫. SiGe热电材料的发展与展望[J]. 材料导报, 2007, (07): 119-121.
[30] LI Y, LI J, DU J, et al. Influence of fast neutron and gamma irradiation on the thermoelectric properties of n-type and p-type SiGe alloy[J]. Journal of Nuclear Materials, 2020, 528: 151856.
[31] MURUGASAMI R, VIVEKANANDHAN P, KUMARAN S, et al. Simultaneous enhancement in thermoelectric performance and mechanical stability of p-type SiGe alloy doped with Boron prepared by mechanical alloying and spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 773: 752-761.
[32] HE R, KIM H S, LAN Y, et al. Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1-xCoSb0.8Sn0.2 by reducing Hf concentration for power generation[J]. RSC Advances, 2014, 4(110): 64711-64716.
[33] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and Old Concepts in Thermoelectric Materials[J]. Angewandte Chemie International Edition, 2009, 48(46): 8616-8639.
[34] 王超, 张蕊, 姜晶. CoSb3基方钴矿热电材料综述[J]. 电子科技大学学报, 2020, 49(6): 934-941.
[35] LIU W S, ZHANG B P, ZHAO L D, et al. Improvement of thermoelectric performance of CoSb3-xTex skutterudite compounds by additional substitution of IVB-Group elements for Sb[J]. Chemistry of Materials, 2008, 20(24): 7526-7531.
[36] 刘志愿, 王永贵, 赵成玉. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(08): 979-991.
[37] ROGL G, GRYTSIV A, ROGL P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively[J]. Acta Materialia, 2014, 76: 434-448.
[38] TAN G, ZHENG Y, TANG X. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures[J]. Applied Physics Letters, 2013, 103(18).
[39] PENG S, SUN J, CUI B, et al. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in situ formed Fe3Si nanoprecipitate[J]. Inorganic Chemistry Frontiers, 2017, 4(10): 1697-1703.
[40] ZONG P A, CHEN L D. Preparation and mechanical properties of Ce0.85Fe3CoSb12/rGO thermoelectric nanocomposite[J]. Journal of Inorganic Materials, 2016, 32(1): 33-38.
[41] SALE B C, MANDRUS D, CHAKOUMAKOS B C, et al. Filled skutterudite antimonides: Electron crystals and phonon glasses[J]. Phys Rev B, 1997, 56(23): 15081-15089.
[42] QIU P F, YANG J, LIU R H, et al. High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R=Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb)[J]. Journal of Applied Physics, 2011, 109(6): 063713.
[43] SHI X, SALVADOR J R, CHI M, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20): 7837-7846.
[44] ROGL G, GRYTSIV A, ROGL P, et al. n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0[J]. Acta Materialia, 2014, 63: 30-43.
[45] DAHAL T, KIM H S, GAHLAWAT S, et al. Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4-xCoxSb12[J]. Acta Materialia, 2016, 117: 13-22.
[46] ZHOU L, QIU P, UHER C, et al. Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites[J]. Intermetallics, 2013, 32: 209-213.
[47] SINGH D J, MAZIN I I. Calculated thermoelectric properties of La-filled skutterudites[J]. Physical Review B, 1997, 56(4): R1650-R1653.
[48] SHI X, ZHANG W, CHEN L D, et al. Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations[J]. Acta Materialia, 2008, 56(8): 1733-1740.
[49] BéRARDAN D, GODART C, ALLENO E, et al. Existence, structure and valence properties of the skutterudites CeyFe4−xCoxSb12[J]. Journal of Alloys and Compounds, 2003, 350(1–2): 30-35.
[50] ZHOU C, MORELLI D, ZHOU X, et al. Thermoelectric properties of P-type Yb-filled skutterudite YbxFeyCo4-ySb12[J]. Intermetallics, 2011, 19(10): 1390-1393.
[51] LIU R, YANG J, CHEN X, et al. p-Type skutterudites RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): effectiveness of double-filling for the lattice thermal conductivity reduction[J]. Intermetallics, 2011, 19(11): 1747-1751.
[52] TAN G J, WANG S Y, TANG X F. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites[J]. Journal of Electronic Materials, 2013, 43(6): 1712-1717.
[53] BAE S H, LEE K H, CHOI S M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials[J]. Intermetallics, 2019, 105: 44-47.
[54] PRADOGONJAL J, VAQUEIRO P, NUTTALL C, et al. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process[J]. Journal of Alloys and Compounds, 2017, 695: 3598-3604.
[55] ROGL G, BURSIK J, GRYTSIV A, et al. Nanostructuring as a tool to adjust thermal expansion in high ZT skutterudites[J]. Acta Materialia, 2018, 145: 359-368.
[56] TANG X, CHEN L, GOTO T, et al. Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4-xSb12[J]. Journal of Materials Research, 2001, 16(3): 837-843.
[57] CHOI S, KUROSAKI K, YUSUFU A, et al. Thermoelectric Properties of p-Type Tl-Filled Skutterudites: TlxFe1.5Co2.5Sb12[J]. Journal of Electronic Materials, 2015, 44(6): 1743-1749.
[58] DABRAL K P, VITTA S. p-Type High temperature thermoelectric behavior of dy filled CoSb3 and Fe1.5Co2.5Sb12 and their magnetic properties[J]. ACS Applied Energy Materials, 2020, 3(7): 6644-6656.
[59] BENYAHIA M, VANEY J B, LEROY E, et al. Thermoelectric properties in double-filled Ce0.3InyFe1.5Co2.5Sb12 p-type skutterudites[J]. Journal of Alloys and Compounds, 2017, 696: 1031-1038.
[60] 张骐昊, 刘睿恒, 廖锦城. 填充方钴矿热电器件的结构优化设计与性能[J]. 硅酸盐学报, 2021, 49(02): 211-219.
[61] 张骐昊. 方钴矿基热电发电器件的优化设计与性能研究[D]. 上海: 中国科学院大学材料物理与化学博士学位论文, 2017: 1-118.
[62] WU H, SUN Y, WANG Y, et al. Improved thermoelectric and mechanical performance of Sb2Te3-based materials toward the segmented operation[J]. Materials Today Energy, 2022, 27: 101045.
[63] CAO J, TAN X Y, JIA N, et al. Designing good compatibility factor in segmented Bi0.5Sb1.5Te3 -GeTe thermoelectrics for high power conversion efficiency[J]. Nano Energy, 2022, 96: 107147.
[64] MING T, WU Y, PENG C, et al. Thermal analysis on a segmented thermoelectric generator[J]. Energy, 2015, 80: 388-399.
[65] SHU G, MA X, TIAN H, et al. Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery[J]. Energy, 2018, 160: 612-624.
[66] TIAN H, JIANG N, JIA Q, et al. Comparison of segmented and traditional thermoelectric generator for waste heat recovery of diesel engine[J]. Energy Procedia, 2015, 75: 590-596.
[67] 陈立东, 邢云飞, 柏胜强. 一种激光快速制备Half‑Heusler材料的方法: 中国, 107475546A[P]. 2017-07-18.
[68] SHI L, HUANG X, GU M, et al. Interfacial structure and stability in Ni/SKD/Ti/Ni skutterudite thermoelements[J]. Surface and Coatings Technology, 2016, 285: 312-317.
[69] GU M, XIA X, LI X, et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature[J]. Journal of Alloys and Compounds, 2014, 610: 665-670.
[70] LAN Y C, WANG D Z, CHEN G, et al. Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials[J]. Applied Physics Letters, 2008, 92(10): 101910.
[71] PARK S H, KIM Y, JANG H, et al. Fe-Ni-Cr diffusion barrier for high-temperature operation of Bi2Te3[J]. Journal of Alloys and Compounds, 2023, 932: 167537.
修改评论