中文版 | English
题名

基于PEDOT:PSS/PDMS柔性材料的快速响应人体温度传感器的设计

其他题名
DESIGN OF A FAST RESPONSE HUMAN TEMPERATURE SENSOR BASED ON PEDOT:PSS/PDMS FLEXIBLE MATERIAL
姓名
姓名拼音
QU Ting
学号
12132558
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李晖
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-18
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  温度是人类活动检测、危机确认和异常身体状况诊断中不可或缺的基本参数之一,作为反应产热和散热平衡的一个指数,温度直接影响理疗过程中的反应及反应速率。因此,精确检测和维持平衡的体温对于人的健康和疾病康复而言都是至关重要的。柔性温度传感器较好的柔韧性、较强的灵活性以及对人体皮肤无刺激性等特点,使得其可以被广泛地应用到体温检测中去。

  本文所制备的柔性温度传感器是以聚二甲基硅氧烷(Polydimethylsiloxane, PDMS为基底材料、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(Poly3,4-ethylenedioxythiophene-polystyrenesulfonate, PEDOT:PSS、石墨烯、聚乙烯醇(Polyvinyl alcohol, PVA、乙二醇和曲拉通为热敏材料的,主要采用旋涂的制备工艺,将热敏材料直接旋涂在基底材料上制备而成的。通过绘制的电阻温度系数(Temperature coefficient of resistance, TCR图形和线性拟合曲线图,本文发现所制备的柔性温度传感器具有-0.33% ℃-1的灵敏度和0.9976的线性度;通过让36.5 ℃热源远离和靠近柔性温度传感器,发现该传感器具有1.3 s的响应时间、5.9 s的恢复时间;通过绘制温度和电阻相对变化率的图形,发现该传感器具有至少为0.1 ℃的分辨率,通过让热源循环远离和靠近柔性温度传感器30次,发现每次循环后柔性温度传感器的电阻值都能回到初始值,该柔性温度传感器具有较好的重复性。由此可知本文所制备的柔性温度传感器具有较好的线性度、较快的响应速度、较高的分辨率和较好的重复性。

  为了验证本文所制备的柔性温度传感器有能够在实际应用使用的潜力,本文将柔性温度传感器用于测量人体不同部位温度、用于运动中的人体温度检测、用于细微温度变化的识别、用于不同水温的测量、用于长时间的温度检测、对人体皮肤无刺激的测试。通过这些应用测试,本文发现所制备的柔性温度传感器有较高的准确性、可以用于长时间的温度检测、对皮肤无刺激等,展示了其在体温检测和监测、可穿戴设备、医疗护理等方面具有较大的潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] HUANG H, SU S, WU N, et al. Graphene-based Sensors for human health monitoring[J]. Frontiers in Chemistry, 2019, 7: 399.
[2] DOU Z, TANG J, LIU Z, et al. Wearable contact lens sensor for non-invasive continuous monitoring of intraocular pressure[J]. Micromachines (Basel), 2021, 12(2):108.
[3] BANERJEE I, FARIS T, STOEVA Z, et al. Graphene films printable on flexible substrates for sensor applications[J]. 2D Materials, 2016, 4(1): 015036.
[4] RAMESH S, BISWAS S, SARMAH S, et al. A working prototype using ds18b20 temperature sensor and arduino for health monitoring[J]. Serial Number Computer Science, 2021, 2: 1-21.
[5] WANG X, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1602790.
[6] FAJRIN H R, ILAHI M R, HANDOKO B S, et al. Body temperature monitoring based on telemedicine[J]. Journal of Physics: Conference Series, 2019, 1381(1): 012014.
[7] LIU Z, TIAN B, FAN X, et al. A temperature sensor based on flexible substrate with ultra-high sensitivity for low temperature measurement[J]. Sensors and Actuators A: Physical, 2020, 315: 112341
[8] XU K, LU Y, TAKEI K. Multifunctional skin-inspired flexible sensor systems for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(3): 1800628.
[9] LU Z, ZHANG H, MAO C, et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body[J]. Applied Energy, 2016, 164: 57-63.
[10] HOU X, ZHANG S, YU J, et al. Flexible piezoelectric nanofibers/polydimethylsiloxane‐based pressure sensor for self‐powered human motion monitoring[J]. Energy Technology, 2020, 8(3): 1901242.
[11] LU Y, FUJITA Y, HONDA S, et al. Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center[J]. Advanced Healthcare Materials, 2021, 10(17): e2100103.
[12] TRUNG T Q, LE H S, DANG T M L, et al. Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring[J]. Advanced Healthcare Materials, 2018, 7(12): e1800074.
[13] LOU D, PANG Q, PEI X, et al. Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning[J]. Biosensors Bioelectronics, 2020, 162: 112275.
[14] KHAN Y, OSTFELD A E, LOCHNER C M, et al. Monitoring of vital signs with flexible and wearable medical devices[J]. Advanced Materials, 2016, 28(22): 4373-4395.
[15] YU Y, YE L, SONG Y, et al. Wrinkled nitrile rubber films for stretchable and ultra-sensitive respiration sensors[J]. Extreme Mechanics Letters, 2017, 11: 128-136.
[16] CHEN Z, ZHANG K Y, TONG X, et al. Phosphorescent polymeric thermometers for in vitro and in vivo temperature sensing with minimized background interference[J]. Advanced Functional Materials, 2016, 26(24): 4386-4396.
[17] GAO Y, YU L, YEO J C, et al. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability[J]. Advanced Materials, 2020, 32(15): e1902133.
[18] MANDAL S, BANERJEE M, ROY S, et al. Organic field-effect transistor-based ultrafast, flexible, physiological-temperature sensors with hexagonal barium titanate nanocrystals in amorphous matrix as sensing material[J]. American Chemical Society Applied Materials & Interfaces, 2019, 11(4): 4193-4202.
[19] BANG J, LEE W S, PARK B, et al. Highly sensitive temperature sensor: ligand‐treated ag nanocrystal thin films on pdms with thermal expansion strategy[J]. Advanced Functional Materials, 2019, 29(32): 1903047.
[20] QIN J, YIN L J, HAO Y N, et al. Flexible and stretchable capacitive sensors with different microstructures[J]. Advanced Materials, 2021, 33(34): e2008267.
[21] WANG L, JIANG K, SHEN G. Wearable, implantable, and interventional medical devices based on smart electronic skins[J]. Advanced Materials Technologies, 2021, 6(6): 2100107.
[22] OH J H, HONG S Y, PARK H, et al. Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive[J]. American Chemical Society Applied Materials & Interfaces, 2018, 10(8): 7263-7270.
[23] HOU C, XU Z, QIU W, et al. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection[J]. Small, 2019, 15(11): e1805084.
[24] KUN H, BIN L, ORBAN M, et al. Accurate flexible temperature sensor based on laser-induced graphene material[J]. Shock and Vibration, 2021, 2021: 1-7.
[25] KHOSHMANESH F, THURGOOD P, PIROGOVA E, et al. Wearable sensors: at the frontier of personalised health monitoring, smart prosthetics and assistive technologies[J]. Biosensors Bioelectronics, 2021, 176: 112946.
[26] SOMEYA T, AMAGAI M. Toward a new generation of smart skins[J]. Nature Biotechnology, 2019, 37(4): 382-8.
[27] OUYANG H, TIAN J, SUN G, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease[J]. Advanced Materials, 2017, 29(40): 1703456.
[28] MENG K, CHEN J, LI X, et al. Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure[J]. Advanced Functional Materials, 2019, 29(5): 1806388.
[29] CHEN J, WANG F, ZHU G, et al. Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity[J]. American Chemical Society Applied Materials & Interfaces, 2021, 13(43): 51567-51577.
[30] YIN Y, WANG Y, LI H, et al. A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure–temperature sensing[J]. Chemical Engineering Journal, 2022, 430: 133158.
[31] TRUNG T Q, DANG T M L, RAMASUNDARAM S, et al. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature[J]. American Chemical Society Applied Materials & Interfaces, 2019, 11(2): 2317-2327.
[32] LEE J H, CHEN H, KIM E, et al. Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature[J]. Materials Horizons, 2021, 8(5): 1488-1498
[33] JIANG N, CHANG X, HU D, et al. Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors[J]. Chemical Engineering Journal, 2021, 424: 130418.
[34] CHEN R, LUO T, GENG D, et al. Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface[J]. Carbon, 2022, 187: 35-46.
[35] LIU Z, TIAN B, ZHANG B, et al. A thin-film temperature sensor based on a flexible electrode and substrate[J]. Microsystems Nanoengineering, 2021, 7: 42.
[36] LIN M, ZHENG Z, YANG L, et al. A high-performance, sensitive, wearable multifunctional sensor based on rubber/cnt for human motion and skin temperature detection[J]. Advanced Materials, 2022, 34(1): e2107309.
[37] LEE J-W, CHOI Y, JANG J, et al. High sensitivity flexible paper temperature sensor and body-attachable patch for thermometers[J]. Sensors and Actuators A: Physical, 2020, 313: 112205.
[38] YU Y, PENG S, SHA Z, et al. High-precision, stretchable kirigami-capacitive sensor with ultra-low cross-sensitivity for body temperature monitoring[J]. Journal of Materials Chemistry A, 2021, 9(44): 24874-24886.
[39] ZHU C, CHORTOS A, WANG Y, et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors[J]. Nature Electronics, 2018, 1(3): 183-190.
[40] KIM J-Y, LEE W, KANG Y H, et al. Wet-spinning and post-treatment of cnt/pedot:pss composites for use in organic fiber-based thermoelectric generators[J]. Carbon, 2018, 133: 293-299.
[41] WANG Y F, SEKINE T, TAKEDA Y, et al. Fully printed pedot:pss-based temperature sensor with high humidity stability for wireless healthcare monitoring[J]. Scientific Reports, 2020, 10(1): 2467.
[42] YU Y, PENG S, BLANLOEUIL P, et al. Wearable temperature sensors with enhanced sensitivity by engineering microcrack morphology in pedot:pss-pdms sensors[J]. American Chemical Society Applied Materials & Interfaces, 2020, 12(32): 36578-36588.
[43] AN B W, HEO S, JI S, et al. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature[J]. Nature Communications, 2018, 9(1): 2458.
[44] ZHANG M, YEOW J T W. A flexible, scalable, and self-powered mid-infrared detector based on transparent pedot:pss /graphene composite[J]. Carbon, 2020, 156: 339-345.
[45] SEHRAWAT P, ABID, ISLAM S S, et al. Reduced graphene oxide based temperature sensor: extraordinary performance governed by lattice dynamics assisted carrier transport[J]. Sensors and Actuators B: Chemical, 2018, 258: 424-435.
[46] K T, RAJINI G K, MAJI D. Cost-effective, disposable, flexible, and printable mwcnt-based wearable sensor for human body temperature monitoring[J]. Institute of Electrical and Electronics Engineers Sensors Journal, 2022, 22(17): 16756-16763.
[47] PHADKULE S S, SARMA S. High‐performance flexible temperature sensor from hybrid nanocomposite for continuous human body temperature monitoring[J]. Polymer Composites, 2022, 44(2): 1381-1391.
[48] LIU Q, TAI H, YUAN Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Materials Technologies, 2019, 4(3): 1800594.
[49] 初永志, 郭洪吉, 尹鹏和, 等. 基于纳米裂纹的超高灵敏度柔性温度传感器[J]. 机电工程技术, 2018, 47(11): 33-59.
[50] LIU G, TAN Q, KOU H, et al. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things[J]. Sensors (Basel), 2018, 18(5): 1400.
[51] GONG X, ZHANG L, HUANG Y, et al. Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices[J]. Royal Society of Chemistry Advances, 2020, 10(37): 22222-22229.
[52] CHEN Y, LU B, CHEN Y, et al. Breathable and stretchable temperature sensors inspired by skin[J]. Scientific Reports, 2015, 5: 11505.
[53] GE G, LU Y, QU X, et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor[J]. American Chemical Society Nanotechnology, 2020, 14(1): 218-228.
[54] HUANG Y, ZENG X, WANG W, et al. High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring[J]. Sensors and Actuators A: Physical, 2018, 278: 1-10.
[55] WANG F, JIANG J, SUN F, et al. Flexible wearable graphene/alginate composite non-woven fabric temperature sensor with high sensitivity and anti-interference[J]. Cellulose, 2019, 27(4): 2369-2380.
[56] NAKATA S, ARIE T, AKITA S, et al. Wearable, flexible, and multifunctional healthcare device with an isfet chemical sensor for simultaneous sweat ph and skin temperature monitoring[J]. American Chemical Society Sensors, 2017, 2(3): 443-448.
[57] OTTO G P, MOISéS M P, CARVALHO G, et al. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers[J]. Composites Part B: Engineering, 2017, 110: 459-465.
[58] ADEPU V, MATTELA V, SAHATIYA P. A remarkably ultra-sensitive large area matrix of MXene based multifunctional physical sensors (pressure, strain, and temperature) for mimicking human skin[J]. Journal of Materials Chemistry B, 2021, 9(22): 4523-4534.
[59] XIE H, LAI X, LI H, et al. Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety[J]. Journal of Colloid and Interface Science, 2021, 602: 756-766.
[60] CHEN J, ZHANG J, LUO Z, et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring[J]. American Chemical Society Applied Materials & Interfaces, 2020, 12(19): 22200-22211.
[61] WANG L, ZHU R, LI G. Temperature and strain compensation for flexible sensors based on thermosensation[J]. American Chemical Society Applied Materials & Interfaces, 2020, 12(1): 1953-1961.
[62] HAO L, DING J, YUAN N, et al. Visual and flexible temperature sensor based on a pectin-xanthan gum blend film[J]. Organic Electronics, 2018, 59: 243-246.
[63] QI D, ZHANG K, TIAN G, et al. Stretchable electronics based on pdms substrates[J]. Advanced Materials, 2021, 33(6): e2003155.
[64] GANDLA S, NAQI M, LEE M, et al. Highly linear and stable flexible temperature sensors based on laser‐induced carbonization of polyimide substrates for personal mobile monitoring[J]. Advanced Materials Technologies, 2020, 5(7): 2000014.
[65] VUORINEN T, NIITTYNEN J, KANKKUNEN T, et al. Inkjet-printed graphene/pedot:pss temperature sensors on a skin-conformable polyurethane substrate[J]. Scientific Reports, 2016, 6: 35289.
[66] YUAN Z, PEI Z, SHAHBAZ M, et al. Wrinkle structured network of silver-coated carbon nanotubes for wearable sensors[J]. Nanoscale Research Letters, 2019, 14(1): 356.
[67] WANG H, TAO J, JIN K, et al. Multifunctional pressure/temperature/bending sensor made of carbon fibre-multiwall carbon nanotubes for artificial electronic application[J]. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106796.
[68] FENG Q, ZHANG C, YIN R, et al. Self-Powered multifunctional electronic skin based on carbon nanotubes/poly(dimethylsiloxane) for health monitoring[J]. American Chemical Society Applied Materials & Interfaces, 2022, 14(18): 21406-21417.
[69] WU Z, DING H, TAO K, et al. Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications[J]. American Chemical Society Applied Materials & Interfaces, 2021, 13(18): 21854-21864.
[70] KUZUBASOGLU B A, SAYAR E, COCHRANE C, et al. Wearable temperature sensor for human body temperature detection[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(4): 4784-4797.
[71] WANG Y, CHEN Y, LACEY S D, et al. Reduced graphene oxide film with record-high conductivity and mobility[J]. Materials Today, 2018, 21(2): 186-192.
[72] JANG G N, HONG S Y, PARK H, et al. Highly sensitive pressure and temperature sensors fabricated with poly(3-hexylthiophene-2,5-diyl)-coated elastic carbon foam for bio-signal monitoring[J]. Chemical Engineering Journal, 2021, 423: 130197.
[73] WANG Z, GAO W, ZHANG Q, et al. 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors[J]. American Chemical Society Applied Materials & Interfaces, 2019, 11(1): 1344-1352.
[74] VEERALINGAM S, BADHULIKA S. Bi2S3/pvdf/ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing[J]. American Chemical Society Applied Biomaterials Materials, 2021, 4(1): 14-23.
[75] IL’INA M V, IL’IN O I, GURYANOV A V, et al. Anomalous piezoelectricity and conductivity in aligned carbon nanotubes[J]. Journal of Materials Chemistry C, 2021, 9(18): 6014-6021.
[76] HSIAO F-R, LIAO Y-C. Printed micro-sensors for simultaneous temperature and humidity detection[J]. Institute of Electrical and Electronics Engineers Sensors Journal, 2018, 18(16): 6788-6793.
[77] RIVADENEYRA A, BOBINGER M, ALBRECHT A, et al. Cost-effective pedot:pss temperature sensors inkjetted on a bendable substrate by a conSMUer printer[J]. Polymers (Basel), 2019, 11(5): 824.
[78] KUZUBASOGLU B A, SAYAR E, BAHADIR S K. Inkjet-printed cnt/pedot:pss temperature sensor on a textile substrate for wearable intelligent systems[J]. Institute of Electrical and Electronics Engineers Sensors Journal, 2021, 21(12): 13090-13097.
[79] LIAO F, LU C, YAO G, et al. Ultrasensitive flexible temperature-mechanical dual-parameter sensor based on vanadium dioxide films[J]. Institute of Electrical and Electronics Engineers Electron Device Letters, 2017, 38(8): 1128-1131.
[80] KIM H-G, HAJRA S, OH D, et al. Additive manufacturing of high-performance carbon-composites: An integrated multi-axis pressure and temperature monitoring sensor[J]. Composites Part B: Engineering, 2021, 222: 109079.
[81] ALBRECHT A, SALMERON J F, BECHERER M, et al. Screen-printed chipless wireless temperature sensor[J]. Institute of Electrical and Electronics Engineers Sensors Journal, 2019, 19(24): 12011-12015.
[82] RIVADENEYRA A, SALMERON J F, MURRU F, et al. Carbon dots as sensing layer for printed humidity and temperature sensors[J]. Nanomaterials (Basel), 2020, 10(12): 2446.
[83] XIAO Y, JIANG S, LI Y, et al. Screen-printed flexible negative temperature coefficient temperature sensor based on polyvinyl chloride/carbon black composites[J]. Smart Materials and Structures, 2021, 30(2): 025035.
[84] LIU Z, WU L, QIAN J, et al. Tuned transport behavior of the ipa-treated pedot:pss flexible temperature sensor via screen printing[J]. Journal of Electronic Materials, 2021, 50(4): 2356-2364.
[85] WU L, QIAN J, PENG J, et al. Screen-printed flexible temperature sensor based on fg/cnt/pdms composite with constant TCR[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(10): 9593-9601.
[86] WU R, MA L, HOU C, et al. Silk composite electronic textile sensor for high space precision 2d combo temperature-pressure sensing[J]. Small, 2019, 15(31): e1901558.
[87] AFROJ S, KARIM N, WANG Z, et al. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique[J]. American Chemical Society Nanotechnology, 2019, 13(4): 3847-3857.
[88] YANG S, LI C, WEN N, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli[J]. Journal of Materials Chemistry C, 2021, 9(39): 13789-13798.
[89] BOBZIN K, BRöGELMANN T, KRUPPE N C, et al. Smart pvd hard coatings with temperature sensor function[J]. Surface and Coatings Technology, 2021, 423: 127631.
[90] ZHAO X, LONG Y, YANG T, et al. Simultaneous high sensitivity sensing of temperature and humidity with graphene woven fabrics[J]. American Chemical Society Applied Materials & Interfaces, 2017, 9(35): 30171-30176.
[91] SALVATORE G A, SüLZLE J, DALLA VALLE F, et al. Biodegradable and highly deformable temperature sensors for the internet of things[J]. Advanced Functional Materials, 2017, 27(35): 1702390.
[92] FAN Z, OUYANG J. Thermoelectric properties of pedot:pss[J]. Advanced Electronic Materials, 2019, 5(11): 1800769.
[93] TIWARI S K, SAHOO S, WANG N, et al. Graphene research and their outputs: status and prospect[J]. Journal of Science: Advanced Materials and Devices, 2020, 5(1): 10-29.
[94] S B A, A S M, DANNOUN E M A, et al. The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (pva)-based biopolymer electrolytes[J]. Polymers (Basel), 2020, 12(10): 2184.
[95] TEODORESCU M, BERCEA M, MORARIU S. Biomaterials of pva and pvp in medical and pharmaceutical applications: perspectives and challenges[J]. Biotechnology Advances, 2019, 37(1): 109-131.
[96] YANG J, WEI D, TANG L, et al. Wearable temperature sensor based on graphene nanowalls[J]. Royal Society of Chemistry Advances, 2015, 5(32): 25609-25615.

所在学位评定分委会
材料与化工
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545161
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
屈婷. 基于PEDOT:PSS/PDMS柔性材料的快速响应人体温度传感器的设计[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132558-屈婷-中国科学院深圳理(2906KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[屈婷]的文章
百度学术
百度学术中相似的文章
[屈婷]的文章
必应学术
必应学术中相似的文章
[屈婷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。