[1] 傅民魁. 口腔正畸学[M]. 北京: 人民卫生出版社, 2012:1-115
[2] 齐小秋. 第三次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2008.23-28
[3] 台保军. 第四次全国口腔健康流行病学调查知信行结果报告[C]//2018 年中华口腔医学会第十八次口腔预防医学学术年会, 西安, F, 2018.14-15
[4] MARIANNE B, ULF B, STAVROS K. Experience of pain d uring an orthodontic procedure [J]. European Journal of Oral Sciences, 2002, 110(2):92-98
[5] PITHON M M. Nonsurgical treatment of severe Class II malocclusion with anterior open bite using mini-implants and maxillary lateral incisor and mandibular first molar extractions[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2017, 151(5): 964-977.
[6] VITALI F C, CARDOSO I V, MELLO F W, et al. Effect of orthodontic force on dental pulp histomorphology and tissue factor expression: A systematic review[J]. The Angle Orthodontist, 2021, 91(6): 830 -842.
[7] CHAUSHU S, KLEIN Y, MANDELBOIM O, et al. Immune changes induced by orthodontic forces: a critical review[J]. Journal of Dental Research, 2022, 101(1): 11-20.
[8] LI Y, ZHAN Q, BAO M, et al. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade[J]. International Journal of Oral Science, 2021, 13(1): 20.
[9] WESTOVER L, FAULKNER G, FLORES-MIR C, et al. Non-invasive evaluation of periodontal ligament stiffness during orthodontic tooth movement[J]. The Angle Orthodontist, 2019, 89(2): 228 -234.
[10] MEMMERT S, NOGUEIRA A V B, DAMANAKI A, et al. Regulation of the autophagy-marker Sequestosome 1 in periodontal cells and tissues by biomechanical loading[J]. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopadie, 2020, 81(1): 10-21.
[11] TSAI M T, HUANG H L, YANG S G, et al. Biomechanical analysis of occlusal modes on the periodontal ligament while orthodontic force applied[J]. Clinical Oral Investigations, 2021: 1 -10.
[12] HU L, ZHANG Q, LI X, et al. Stimuli-responsive polymers for sensing and actuation[J]. Materials Horizons, 2019;6(9):1774-1793.
[13]Chen Z, Zhao D H, Liu B H, et al. 3D Printing of Multifunctional Hydrogels[J]. Advanced Functional Materials,2019,29(20).
[14] Chen J, Peng Q, Peng X, et al. Recent advances in mechano -responsive hydrogels for biomedical applications[J]. ACS Applied Polymer Materials, 2020, 2(3): 1092-1107.
[15] He Y, Xu H, Xiang Z, et al. YAP regulates periodontal ligament cell differentiation into myofibroblast interac ted with RhoA/ROCK pathway[J]. Journal of Cellular Physiology, 2019, 234(4): 5086 -5096.
[16] Jin Y, Ding L, Ding Z, et al. Tensile force -induced PDGF-BB/PDGFRβ signals in periodontal ligament fibroblasts activate JAK2/STAT3 for orthodontic tooth movement[J]. Scientific Reports, 2020, 10(1): 11269.
[17] KRISHNAN V, DAVIDOVITCH Z. On a Path to Unfolding the Biological Mechanisms of Orthodontic Tooth Movement[J]. Journal of Dental Research, 2009, 88(7): 597-608.
[18] CHO M I L G P R. Development and general structure of the periodontium[J]. Periodontology, 2000, 24(1): 9 -27.
[19] ABRAMOWITCH S D, WOO S L Y, CLINEFF T D, et al. An evaluation of the quasi-linear viscoelastic properties of the healing medial collateral ligament in a goat model[J]. Annals of Biomedical Engineering, 2004, 32: 329 -335.
[20] ABRAMOWITCH S D, WOO S L-Y. An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory[J]. Journal of Biomechanical Engine ering, 2004, 126(1): 92-97.
[21] GERO K, CHRISTIAN S, ULRIKE F, et al. Molar distalization with different pendulum appliances: in vitro registration of orthodontic forces and moments in the initial phase. Journal of orofacial orthopedics[J]. Journal of Orofacial Orthopedics = Fortschritte Der Kieferorthopadie : Organ/Official Journal Deutsche Gesellschaft Fur Kieferorthopadie, 2004, 5(65): 389-409.
[22] FUCK L M, DRESCHER D. Force systems in the initial phase of orthodontic treatment--a comparison of different leveling arch wires[J]. Journal of Orofacial Orthopedics = Fortschritte Der Kieferorthopadie : Organ/Official Journal Deutsche Gesellschaft Fur Kie ferorthopadie, 2006, 67(1): 6-18.
[23] CHEN J, BULUCEA I, KATONA T R, et al. Complete orthodontic load systems on teeth in a continuous full archwire: the role of triangular loop position[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2007, 132(2): 143. e1-143. e8.
[24] LAPATKI B G, BARTHOLOMEYCZIK J, RUTHER P, et al. Smart bracket for multi-dimensional force and moment measurement[J]. Journal of dental research, 2007, 86(1): 73-78.
[25] BADAWI H M, TOOGOOD R W, CAREY J P R, et al. Three -dimensional orthodontic force measurements[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2009, 136(4): 518 -528.
[26] MENCATTELLI M, DONATI E, CULTRONE M, et al. Novel universal system for 3-dimensional orthodontic force -moment measurements and its clinical use[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2015, 148(1): 174-183.
[27] MIDORIKAWA Y, TAKEMURA H, MIZOGUCHI H, et al. Six -axis orthodontic force and moment sensing system for dentist technique training[C]//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016: 2206 -2209.
[28] 汤文成, 魏志刚, 李薇, 等. 一种体外测量口腔正畸力的测量装置及测量方法: 江苏,CN101411647[P]. 2009-04-22.
[29] 汤文成, 黄辉祥, 吴斌, 等.基于力传感器的牙齿矫正正畸力测量装置: 江苏,CN102085120A[P]. 2011-06-08.
[30] 汤文成 , 黄辉祥 , 吴 斌 , 等 . 一 种 牙 齿 矫 正 正 畸 力 测 量 装 置 : 江 苏CN202113184U[P]. 2012-01-18.
[31] 杨宝宽, 王林, 严斌, 等. 正畸矫治力三维测量装置的设计 [J]. 口腔生物医学, 2010, 1(02): 78-79+75.
[32] 刘云峰 , 仵健磊 , 张鹏园 , 等 . 一 种 三 维 正 畸 矫 治 力 测 量 装 置 : 浙 江 ,CN103961188A[P]. 2014-08-06.
[33] 刘云峰, 仵健磊, 范莹莹, 等.可模拟任意矫治时刻的准动态牙齿矫治力测量装置:浙江,CN206548631U[P]. 2017-10-13.
[34] 陈大亮. 基于口腔下颌仿体的牙齿正畸力测量及牙齿应力的分析 [D]; 哈尔滨工业大学, 2016.
[35] 夏泽洋 , 熊 璟 , 陈大亮 , 等 . 一种新型口腔正畸力测量方法 : 广 东 ,CN104523347B[P]. 2017-04-19.
[36] YOSHIDA N, KOGA Y, PENG C L, et al. In vivo measurement of the elastic modulus of the human periodontal ligament[J]. Medical Engineering & Physics, 2001, 23(8): 567-572.
[37] XIA Z, JIANG F, CHEN J. Estimation of periodontal ligament's equivalent mechanical parameters for finite element modeling[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2013, 143(4): 486 -491.
[38] XIA Z, CHEN J. Biomechanical validation of an artificial tooth -periodontal ligament-bone complex for in vitro orthodontic load measurement[J]. The Angle Orthodontist, 2013, 83(3): 410-417.
[39] WU J, LIU Y, WANG D, et al. Dynamic measurement of orthodontic force using a tooth movement simulation system based on a wax model[J]. Technology and Health Care, 2021, 29(3): 457 -466.
[40] ZHANG Y S, KHADEMHOSSEINI A. Ad vances in engineering hydrogels[J]. Science, 2017, 356(6337).
[41] EL-SHERBINY I M, ABDEL-HAMID M I, RASHAD M, et al. New calcareous soil–alginate composites for efficient uptake of Fe (III), Mn (II) and As (V) from water [J]. Carbohydrate Polymers, 2013, 96(2): 450 -459.
[42] 高凤苑, 韦东来, 张鑫, 等. 水凝胶的研究进展及在生物医学方面的应用 [J]. 化工新型材料, 2018, 46(S1): 6-10.
[43] BURDICK J A, MURPHY W L. Moving from static to dynamic complexity in hydrogel design[J]. Nature communications, 2012, 3(1): 1269.
[44] SELIKTAR D. Designing Cell-Compatible Hydrogels for Biomed ical Applications [J]. Science, 2012, 336(6085).
[45] NASIM A, RYON S S, ALI T, et al. Highly Elastic and Conductive Human -Based Protein Hybrid Hydrogels. [J]. Advanced materials, 2016, 28(1).
[46] BODUGOZ-SENTURK H, MACIAS C E, KUNG J H, et al. Poly(vinylalcohol)-acrylamide hydrogels as load -bearing cartilage substitute [J]. Biomaterials, 2009, 30(4): 589 -596.
[47] SUN J Y, ZHAO X, ILLEPERUMA W R, et al. Highly stretchable and tough hydrogels [J]. Nature, 2012, 489(7414): 133 -136.
[48] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double -Network Hydrogels with Extremely High Mechanical Strength [J]. Advanced Materials, 2003, 15(14): 1155-1158.
[49] HENDERSON K J, ZHOU T C, OTIM K J, et al. Ionically Cross-Linked Triblock Copolymer Hydrogels with High Strength [J]. Macromolecules, 2010, 43(14): 6193-6201.
[50] SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity[J]. Nature Materials, 2013, 12(10): 932 -937.
[51] GONZALEZ M A, SIMON J R, GHOORCHIAN A, et al. Strong, tough, stretchable, and self‐adhesive hydrogels from intrinsically unstructured proteins[J]. Advanced Materials, 2017, 29(10): 1604743.
[52] LI Q, BARRETT D G, MESSERSMITH P B, et al. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics [J]. ACS Nano, 2016, 10(1): 1317-1324.
[53] SUN Z, SONG C, WANG C, et al. Hydrogel-based controlled drug delivery for cancer treatment: a review[J]. Molecular Pharmaceutics, 2019, 17(2): 373 -391.
[54] ZHANG H, GUO J, WANG Y, et al. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins[J]. Advanced Science, 2021, 8(20): 2102156.
[55] YANG X, ZHANG C, DENG D, et al. Multiple stimuli‐responsive MXene‐based hydrogel as intelligent drug delivery carriers for deep chronic wound healing[J]. Small, 2022, 18(5): 2104368.
[56] WANG L, XU T, ZHANG X. Multifunctional conductive hydrogel-based flexible wearable sensors[J]. TrAC Trends in Analytical Chemistry, 2021, 134: 116130.
[57] DU Y, GHODOUSI M, QI H, et al. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels [J]. Biotechnology and bioengineering, 2011, 108(7): 1693 -1703.
[58] 方 道 斌 , 郭 睿 威 , 哈 润 华 . 丙 烯 酰 胺 聚 合 物 [M]. 北 京 : 化 学 工 业 出 版 社 , 2006.365-379
[59] YANG C, YIN T, SUO Z. Polyacrylamide hydrogels. I. Network imperfection [J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 43 -55.
[60] LIU J, YANG C, YIN T, et al. Polyacrylamide hydrogels. II. elastic dissipater [J]. Journal of the Mechanics and Physic s of Solids, 2019, 133.
[61] WANG Y, YIN T, SUO Z. Polyacrylamide hydrogels. III. Lap shear and peel [J]. Journal of the Mechanics and Physics of Solids, 2021, 150.
[62] HAN X, LIU L, YUAN J, et al. Polyacrylamide -Mediated Silver Nanoparticles for Selectively Enhancing Electroreduction of CO(2) towards CO in Water [J]. ChemSusChem, 2021, 14(2): 721-729.
[63] AHMED E M. Hydrogel: Preparation, characterization, and applications: A review [J]. Journal of Advanced Research, 2015, 6(2): 105-121.
[64] GUO Y, BAE J, FANG Z, et al. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability [J]. Chemical Reviews, 2020, 120(15): 7642-7707.
[65] KIM J, ZHANG G, SHI M, et al. Fracture, fatigue, and friction of polymers in which entanglements gr eatly outnumber cross-links [J]. Science, 2021, 374(6564): 212-216.
[66] ALI I, SHAH L A. Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators [J]. Polymer Bulletin, 2020, 78(3): 1275-1291.
[67] MANE S, PONRATHNAM S, CHAVAN N. Effect of chemical cross-linking on properties of polymer microbeads: a review[J]. Can Chem Trans, 2015, 3(4): 473-485.
[68] CHRISTIANSEN R L, BURSTONE C J J A J O O. Centers of rotation within the periodontal space [J]. American Journal of Orthodontics, 1969, 55(4): 353 -369
修改评论