中文版 | English
题名

无负极锂金属电池的界面改性研究

其他题名
INTERFACE MODIFICATIONS FOR ANODE-FREE LITHIUM METAL BATTERIES
姓名
姓名拼音
LI Zhiqiang
学号
11930752
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
卢周广
导师单位
材料科学与工程系
论文答辩日期
2023-05-13
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

锂金属兼具电位负(–3.04 V,相对标准氢电极)、比重轻(M=6.94 g mol–1r=0.534 g cm–3)、半径小(76 pm)和容量大(3860 mAh g–1)的特殊优点,成为理想的负极材料。然而,其高活性导致电沉积过程中锂成核不均匀、界面不稳定和体积膨胀等问题,从而引发不可控的锂枝晶生长。锂枝晶会诱导电解液持续分解和死锂产生,导致电池容量快速衰减,并引发电池短路和热失控等安全问题,限制了其商业化应用。本论文主要围绕调控负极表面的电子分布、固体电解质膜(SEI)的构造,构建聚合物人工SEI膜,以及优化固态电解质/电极界面的离子传输三个方面,深入探讨无锂铜负极在锂沉积/剥离过程中的成核、沉积行为、界面演变机制,以及对全电池的电化学性能影响机制。具体研究内容如下:

针对无负极锂金属电池中的不可控锂枝晶生长问题,通过精确设计亲锂三维多孔阵列集流体,诱导原位生成有序孤立梯度结构SEI膜,有效抑制锂枝晶生长和体积膨胀问题。采用纳米压印方法制备三维多孔阵列结构的铜集流体,并通过优化多孔结构调控金属锂沉积空间,从而抑制体积膨胀并释放局部应力。孔洞内壁修饰的CuCl经电化学锂化后,原位形成纳米铜成核位点和有序孤立且LiCl浓度梯度分布的SEI膜。亲锂纳米铜成核位点降低金属锂成核活化能,诱导金属锂在孔洞内优先沉积;SEI膜的独特构造赋予其高的机械稳定性和锂离子传导率,抑制锂枝晶生长,从而提升循环稳定性。亲锂三维多孔无锂铜负极与磷酸铁锂正极组装的全电池,库伦效率大于99.4%,放电容量大于130 mAh g–1100次循环后,容量保持率大于70%。有序孤立梯度SEI膜诱导金属锂稳定沉积为解决锂枝晶难题、推进可充金属锂电池的工业应用,提供了新思路。

针对无负极锂金属电池中普遍存在的界面不稳定等问题,通过在电极表面涂覆葡聚糖磺酸锂LDS)粘结剂作为人工SEI膜,增强了电极界面层的粘结力、机械稳定性和锂离子电导率。利用LDS涂层改性的铜箔作为无锂铜负极(LDS-Cu),与钴酸锂正极组装的全电池,在碳酸酯和醚类电解液中均展现出较低的锂沉积过电位,及优异的循环稳定性。100次循环后全电池容量保持率超过72.1%,接近目前文献报道的无负极金属锂电池循环稳定性最佳值。这主要归因于LDS的高锂离子传导率,以及在碳酸酯和醚类电解液中溶胀率低。LDS分子主链上的聚糖苷结构,具有良好的柔性和机械互锁作用,赋予LDS涂层良好的弹性和机械稳定性;分子链上的磺酸官能团(-SO3Li),具有优良的络合作用力,可以动态的与铜集流体及金属锂形成强的粘附力;同时,磺酸锂不仅离子传导率高、且具有单离子电导特性,有助于抑制浓差极化和副反应发生,进而优化了无锂负极倍率性能与库伦效率。功能化有机锂盐粘结剂通过涂覆成功改性电极界面,为解决锂枝晶和稳定电极/电解液界面提供了一个简单有效策略。

针对固态电池中固态电解质内部以及电极/固态电解质固固界面阻抗大等难题,充分利用界面稳定材料LDS的强粘合力和高离子传导率特性,复合Li6.3La3Zr1.4Ta0.6O12 (LLZTO)无机快离子导体,制备复合固态电解质膜(LDS-LLZTO)。LDS作为界面稳定层,降低了LLZTO颗粒的固固界面以及正负极和复合电解质的固固界面阻抗。LDS-LLZTO与无锂多孔阵列铜负极、磷酸铁锂正极组装成一体化结构无负极全固态锂金属电池,在0.5C下的放电容量大于130 mAh g–1,经100个循环后容量保留率仍高于68%。可归因于LDS-LLZTO复合固态电解质具有高弹性、高模量、锂离子迁移数大和高离子电导率(室温导离子率可达0.37 mS cm–1)等特性,从而实现锂离子在铜箔上的均匀且可逆沉积。因此,葡聚糖磺酸锂作为固固界面稳定层材料,对设计高性能固态锂金属电池有重要的启发意义。

总之,本论文研究结果表明,三维集流体结合有序孤立梯度结构SEI膜可以有效抑制锂枝晶和死锂的生成,稳定金属锂沉积;葡聚糖磺酸锂作为界面改性材料,不仅可以作为人工SEI膜解决液态金属锂电池中负极界面稳定性问题,还可以有效稳定电极界面、固态电解质内部及其正负极之间的固固界面,降低界面阻抗,为开发高性能可充锂金属电池以及固态锂电池提供了新思路,对推动高能锂电池技术的发展有重要意义。

其他摘要

Lithium metal is generally considered as a most promising anode material due to its unique combination of a low redox electrochemical potential (−3.04 V vs. the standard hydrogen electrode), light weight (M=6.94 g mol−1, ρ=0.534 g cm−3), small radius (76 pm), and high theoretical capacity (3860 mAh g−1). However, the high reactivity of lithium metal also gives rise to many undesired problems, including non-uniform nucleation, interface instability, and volume expansion during electrodeposition. These would cause uncontrolled lithium dendrite formation, which would furtherly result in the persistent electrolyte depletion and the formation of dead lithium. These chain reactions would furtherly culminate in rapid capacity degradation, short circuits and thermal runaway, thereby hindering the commercialization of lithium metal batteries (LMBs). This thesis investigated the nucleation, deposition/stripping and interfacial evolution mechanisms of lithium metal on copper anodes from three aspects: interfacial electron regulation and reconstruction of solid electrolyte interphase (SEI), development of artificial polymer-based SEI layers, and optimization of ion transport within solid electrolyte/electrode interfaces. The main works in this thesis are briefly summarized as follows.

To address the challenge of uncontrolled lithium dendrite growth in anode-free LMBs, a lithiophilic three-dimensional (3D) porous current collector (CC) was precisely designed to induce the in-situ formation of gradient solid electrolyte interface (SEI) with ordered and isolated components, effectively suppressing lithium dendrite growth and volume expansion. The 3D porous structure on the copper CC surface was fabricated using nanoimprint lithography, and the optimized porous structure regulated metallic lithium deposition, suppressed volume expansion, and alleviated local stress. After the initial electrochemical lithiation of the CuCl-coated pore surface, an orderly isolated SEI film containing LiCl with concentration gradient, along with in situ-formed Cu nanoparticles, was generated. This structure subsequently facilitated the selective deposition of lithium within the interior of the pores. The lithiophilic Cu nanoparticles as nucleation sites reduced the nucleation activation energy of metallic lithium. The in-situ formed SEI not only exhibited high lithium-ion conductivity, but also effectively inhibited the lithium dendrite growth and dead lithium formation during lithium deposition, thereby significantly enhancing the mechanical and cycling stability of the anode-free system. Through assembling full cells with the modified copper CC as anode and the LiFePO4 as cathode, it achieved a Coulombic efficiency exceeding 99.4%, a discharge capacity surpassing 130 mAh g–1, and a capacity retention ratio above 70% after 100 cycles. This approach offers a novel solution to the lithium dendrite issue, paving the way for the industrial application of rechargeable anode-free LMBs.

To address the prevalent issues of interfacial instability in anode-free LMBs, lithium dextran sulfate (LDS), a binder, was employed as an artificial SEI film, which contributed to enhancing the adhesion, mechanical stability, and lithium-ion conductivity at the electrode interface. The full cell, assembled with LDS-coated copper foil (LDS-Cu) as a lithium-free anode and a LiCoO2 cathode, exhibited low lithium deposition overpotential and excellent cycling stability in both carbonate and ether-based electrolytes. The capacity retention rate surpasses 72.1% after 100 cycles, approaching the best reported values for anode-free LMBs in the literature. This can be primarily attributed to the high ionic conductivity and low swelling rate of the LDS protective layer in electrolytes. Specifically, the glycosidic structure in the LDS molecular chain endowed themselves with flexibility and mechanical interlocking properties, which contributed to creating a LDS coating layer with excellent elasticity and mechanical stability on the CC. The sulfonic acid functional groups (-SO3Li) on the molecular chain can reversibly, dynamically, and strongly bind to the copper CCs as well as metallic Li. Furthermore, the high lithium-ion conductivity and single-ion conduction characteristics of lithium sulfonate contributed to suppressing concentration polarization and side reactions, thereby optimizing the rate performance and Coulombic efficiency of the lithium-free anode. The functionalized organic lithium salt binder coating provides a simple and effective strategy for suppressing lithium dendrite formation and stabilizing the electrode/electrolyte interface.

To address the challenges of high internal and electrode/solid electrolyte interfacial impedance in solid-state LMBs, a novel composite solid-state electrolyte was fabricated by exploiting the exceptional adhesive strength and high ionic conductivity of functionalized LDS in combination with Li6.3La3Zr1.4Ta0.6O12 (LLZTO) inorganic fast-ion conductor. Serving as an interfacial stabilizing layer, LDS effectively mitigated the solid-solid interface impedance between the different LLZTO particles as well as the anode/cathode and the LDS-LLZTO composite electrolyte. The full cell assembled with lithium-free porous copper anode, LDS-LLZTO and LiFePO4 cathode, exhibited a discharge capacity exceeding 130 mAh g–1 at 0.5C and maintained over 68% capacity retention following 100 cycles. The superior performance of the battery can be attributed to the exceptional properties of the LDS-LLZTO composite solid-state electrolyte, including notable elasticity, high modulus, substantial lithium-ion transference number, and impressive ionic conductivity (0.37 mS cm–1 at room temperature). These factors synergistically contribute to the stabilization of uniform and reversible lithium deposition on the copper foil. Consequently, LDS's role as a solid-solid interface stabilizing material offers valuable guidance in devising high-performance solid-state LMBs.

In summary, the findings in this thesis indicated that incorporating a 3D CC with an orderly isolated gradient structure SEI film can effectively suppress the formation of lithium dendrites and dead lithium, thereby stabilizing lithium deposition. LDS not only can act as an artificial SEI to enable the stability of SEI for Li metal anode, but also as an interfacial modification material, which can efficiently stabilize the solid-solid interface within the solid electrolyte and between the anode and cathode, therefore reducing the interfacial impedance. These findings offer fresh perspectives for the development of high-performance rechargeable LMBs and all-solid-state lithium batteries, which are of great significance in driving forward lithium battery technology advancements.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
[2] TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669.
[3] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[4] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
[7] QIAN J, XU W, BHATTACHARYA P, et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15: 135-144.
[8] DENG D. Li-ion batteries: basics, progress, and challenges[J]. Energy Science & Engineering, 2015, 3(5): 385-418.
[9] LIU S, HOU H, HU W, et al. Binder-free integration of insoluble cubic CuCl nanoparticles with a homologous Cu substrate for lithium ion batteries[J]. RSC Advances, 2016, 6(5): 3742-3747.
[10] LIANG J, LI F, CHENG H-M. From laboratory to factory: Are the new electrode materials ready?[J]. Energy Storage Materials, 2017, 6: A1-A3.
[11] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of American Chemical Society, 2013, 135(4): 1167-1176.
[12] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
[13] KWON H, LEE J-H, ROH Y, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries[J]. Nature Communications, 2021, 12(1): 5537.
[14] FU X, DENG X, DENG Y, et al. Lithium perchlorate additive for dendritic-free and long-life Li metal batteries[J]. Energy & Fuels, 2022, 36(18): 11219-11226.
[15] LIU D-H, BAI Z, LI M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives[J]. Chemical Society Reviews, 2020, 49(15): 5407-5445.
[16] KIM T, SONG W, SON D, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. The Journal of Materials Chemistry A, 2019, 7: 2942-2964.
[17] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[18] KANG D W, PARK S S, CHOI H J, et al. One-dimensional porous Li-confinable hosts for high-rate and stable Li-metal batteries[J]. ACS Nano, 2022, 16(8): 11892-11901.
[19] ZOU P, WANG Y, CHIANG S W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9(1): 464.
[20] ZHANG H, ESHETU G G, JUDEZ X, et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives[J]. Angew Chem Int Ed Engl, 2018, 57(46): 15002-15027.
[21] LI N, WEI W, XIE K, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters, 2018, 18(3): 2067-2073.
[22] KE X, CHENG Y, LIU J, et al. Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13552-13561.
[23] JIN C, SHENG O, LUO J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186.
[24] HOU H, YAO Y, LIU S, et al. Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode[J]. Waste Manage, 2017, 65: 147-152.
[25] YUN Q, HE Y B, LV W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939.
[26] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[27] VHENG X B, ZHANG R, ZHAO C Z, et al. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review[J]. Chemical Reviews, 2017, 117(15): 10403–10473.
[28] CHEN S, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140–3151.
[29] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications , 2015, 6: 8058.
[30] LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Maerials, 2017, 29(13): 1604460.
[31] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Letters, 2017, 2(6): 1321-1326.
[32] LIU W, LIN D, PEI A, et al. Stabilizing lithium metal anodes by uniform li-ion flux distribution in nanochannel confinement[J]. Journal of American Chemical Society, 2016, 138(47): 15443-15450.
[33] RYOU M-H, LEE Y M, LEE Y, et al. Mechanical surface modification of lithium metal: Towards improved Li metal anode performance by directed Li plating[J]. Advanced Functional Materials, 2015, 25(6): 834-841.
[34] LI M, DU H, KUAI L, et al. Scalable dry production process of a superior 3D net-like carbon-based iron oxide anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition , 2017, 56(41): 12649-12653.
[35] ZHANG R, CHEN X R, CHEN X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition , 2017, 56(27): 7764-7768.
[36] LIU S, HOU H, LIU X, et al. High-performance hierarchical homologous scale-like CuCl/Cu foam anode for lithium ion battery[J]. Ceramics International, 2016, 42(7): 8310-8315.
[37] CHENG X B, YAN C, PENG H J, et al. Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free li metal anodes[J]. Energy Storage Materials, 2018, 10: 199-205.
[38] CUI X M, CHU Y, QIN L M, et al. Stabilizing Li metal anodes through a novel self-healing strategy[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11097-11104.
[39] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[40] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.
[41] GIRARD G M A, WANG X E, YUNIS R, et al. Sustainable, dendrite free lithium-metal electrode cycling achieved with polymer composite electrolytes based on a poly(ionic liquid) host[J]. Batteries & Supercaps, 2019, 2(3): 229-239.
[42] HAO F, VERMA A, MUKHERJEE P P. Electrodeposition stability of metal electrodes [J]. Energy Storage Materials, 2019, 20: 1-6.
[43] WU S, ZHANG Z, LAN M, et al. Lithiophilic Cu-CuO-Ni hybrid structure: Advanced current collectors toward stable lithium metal anodes[J]. Advanced Materials, 2018, 30(9): 1705830.
[44] LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10): 1605531.
[45] ZHANG X, FAN C L, HAN S C. Improving the initial coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density[J]. Journal of Materials Science, 2017, 52(17): 10418-10430.
[46] FANG C, LI J, ZHANG M, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572: 511–515.
[47] HAGEN M, QUIROGA-GONZALEZ E, DORFLER S, et al. Studies on preventing Li dendrite formation in Li-S batteries by using pre-lithiated Si microwire anodes[J]. Journal of Power Sources, 2014, 248: 1058-1066.
[48] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895.
[49] XIE K Y, WEI W F, YUAN K, et al. Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@Ni scaffold[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26091-26097.
[50] JANA A, GARCIA R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552-565.
[51] JIN C B, SHENG O W, LUO J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186.
[52] YU H L, ZHAO J N, BEN L B, et al. Dendrite-free lithium deposition with self aligned columnar structure in a carbonate-ether mixed electrolyte[J]. ACS Energy Letters, 2017, 2(6): 1296-1302.
[53] AURBACH D, MCCLOSKEY B D, NAZAR L F, et al. Advances in understanding mechanisms underpinning lithium–air batteries[J]. Nature Energy, 2016, 1(9): 16128.
[54] JIN S, XIN S, WANG L, et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-s batteries[J]. Advanced Materials, 2016, 28(41): 9094-9102.
[55] CHEN W L, HONG Y R, ZHAO Z H, et al. Directing the deposition of lithium metal to the inner concave surface of graphitic carbon tubes to enable lithium-metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(31): 16936-16942.
[56] CHEN X, CHEN X R, HOU T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances, 2019, 5(2): 7728.
[57] CHENG Y F, KE X, CHEN Y M, et al. Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries[J]. Nano Energy, 2019, 63:103854.
[58] DAI Q S, YAO J M, DU C C, et al. Cryo-EM studies of atomic-scale structures of interfaces in garnet-type electrolyte based solid-state batteries[J]. Advanced Functional Materials, 2022, 32(51): 2208682.
[59] DAS S. Highly concentrated nitrile functionalized disiloxane-LiFSI based non-flammable electrolyte for high energy density Li metal battery[J]. Journal of Electroanalytical Chemistry, 2020, 879: 114794.
[60] ABDUL AHAD S, BHATTACHARYA S, KILIAN S, et al. Lithiophilic nanowire guided Li deposition in Li metal batteries[J]. Small, 2023, 19(2): 2205142.
[61] WANG Y, REN L T, LIU J, et al. In situ construction of composite artificial solid electrolyte interphase for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50982-50991.
[62] PAL U, RAKOV D, LU B Y, et al. Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte[J]. Energy & Environmental Science, 2022, 15(5): 1907-1919.
[63] LU R C, SHOKRIEH A, LI C F, et al. PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes[J]. Nano Energy, 2022, 95: 107009.
[64] LIU S S, MA Y L, WANG J J, et al. Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode[J]. Chemical Engineering Journal, 2022, 427: 131625.
[65] LI Z P, ZHU K J, LIU P, et al. 3D confinement strategy for dendrite-free sodium metal batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100359.
[66] HU W, YAO Y Y, HUANG X, et al. CuO nanofilm-covered Cu microcone coating for a long cycle Li metal anode by in situ formed Li2O[J]. ACS Applied Energy Materials, 2022, 5(3): 3773-3782.
[67] HE Y B, ZOU P C, BAK S M, et al. Dual passivation of cathode and anode through electrode-electrolyte interface engineering enables long-lifespan Li metal-span batteries[J]. ACS Energy Letters, 2022, 7(9): 2866-2875.
[68] DI J, YANG J L, TIAN H, et al. Dendrites-free lithium metal anode enabled by synergistic surface structural engineering[J]. Advanced Functional Materials, 2022, 32(23): 2200474.
[69] ZHANG Z B, ZHOU X F, LIU Z P. Conformal coating of a carbon film on 3D hosts toward stable lithium anodes[J]. ACS Applied Energy Materials, 2021, 4(7): 7288-7297.
[70] YUE X Y, ZHOU Q Y, BAO J, et al. In situ construction of lithium silicide host with unhindered lithium spread for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2021, 31(9): 2008786.
[71] ZHOU H T, WANG X H, SHERIDAN E, et al. Boosting properties of 3D binder-free manganese oxide anodes by preformation of a solid electrolyte interphase[J]. Chemsuschem, 2015, 8(8): 1368-1380.
[72] GIMBLE N J, KRAYNAK L A, SCHNEIDER J D, et al. X-ray photoelectron spectroscopy as a probe for understanding the potential-dependent impact of fluoroethylene carbonate on the solid electrolyte interface formation in Na/Cu2Sb batteries[J]. Journal of Power Sources, 2021, 489: 229171.
[73] MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318.
[74] RASHEED T, NAVEED A, CHEN J H, et al. Revisiting the role of polymers as renewable and flexible materials for advanced batteries[J]. Energy Storage Materials, 2022, 45: 1012-1039.
[75] KONG L Y, LIU F G, HU X W, et al. An improved pretreatment method for recovering cathode materials from lithium-ion battery: Ultrasonic-assisted NaOH-enhanced dissolving[J]. Energy Sources, 2023, 45(1): 877-887.
[76] LEE Y K, CHO K Y, LEE S, et al. Construction of hierarchical surface on carbon fiber paper for lithium metal batteries with superior stability[J]. Advanced Energy Materials, 2023.
[77] PETRONGARI A, TUCCILLO M, CICCIOLI A, et al. Stable cycling of sodium metal anodes enabled by a sodium/silica-gel host[J]. ChemElectroChem, 2023.
[78] JI X L, LIU D Y, PRENDIVILLE D G, et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition[J]. Nano Today, 2012, 7(1): 10-20.
[79] ZHANG Y H, QIAN J F, XU W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12): 6889-6896.
[80] GAO T, NOKED M, PEARSE A J, et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation[J]. Journal of the American Chemical Society, 2015, 137(38): 12388-12393.
[81] YOO H D, LIANG Y L, LI Y F, et al. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 7001-7007.
[82] ZHOU G M, PAEK E, HWANG G S, et al. High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes[J]. Advanced Energy Materials, 2016, 6(2).
[83] PAN Q W, BARBASH D, SMITH D M, et al. Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries[J]. Advanced Energy Materials, 2017, 7(22).
[84] CHEN L J, CHEN H, WANG Z, et al. Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode[J]. Chemical Engineering Journal, 2019, 363: 270-277.
[85] CHI S S, WANG Q R, HAN B, et al. Lithiophilic zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition[J]. Nano Letters, 2020, 20(4): 2724-2732.
[86] LIU T C, GE J X, XU Y, et al. Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode[J]. Energy Storage Materials, 2020, 32: 261-271.
[87] NANDA S, MANTHIRAM A. Lithium degradation in lithium-sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling[J]. Energy & Environmental Science, 2020, 13(8): 2501-2514.
[88] YAN K, LU Z, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1: 16010.
[89] WANG W, ZHANG J L, YANG Q, et al. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22901-22909.
[90] YAN J, LIU F Q, HU Z Y, et al. Realizing dendrite-free lithium deposition with a composite separator[J]. Nano Letters, 2020, 20(5): 3798-3807.
[91] YIN D M, HUANG G, WANG S H, et al. Free-standing 3D nitrogen-carbon anchored Cu nanorod arrays: In situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8(3): 1425-1431.
[92] YUE X Y, BAO J, QIU Q Q, et al. Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode[J]. Chemical Engineering Journal, 2020, 391.
[93] ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348.
[94] WEI C L, FEI H F, AN Y L, et al. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li metal anode[J]. Journal of Materials Chemistry A, 2019, 7(32): 18861-18870.
[95] SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10.
[96] WANG X C, HE Y F, TU S B, et al. Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries[J]. Energy Storage Materials, 2022, 49: 135-143.
[97] WANG J, ZHANG J, DUAN S R, et al. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode[J]. Nano Letters, 2022.
[98] TAN L W, WEI C L, ZHANG Y C, et al. Lif-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries[J]. Chemical Engineering Journal, 2022, 442.
[99] SONG C L, LUO J R, MA L Y, et al. Dendrite-free lithium metal batteries achieved with Ce-MOF membrane coating with one-dimensional continuous oxygen-containing channels for rapid migration of Li ions[J]. Journal of Materials Chemistry A, 2022, 10(35): 18248-18255.
[100] SONG Y X, LU W Y, CHEN Y J, et al. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries[J]. Rare Metals, 2022, 41(4): 1255-1264.
[101] INAMOTO J, MARUYAMA S, MATSUO Y, et al. Effects of pre-lithiation on the electrochemical properties of graphene-like graphite[J]. Electrochemistry, 2019, 87(5): 260-264.
[102] WANG H T, TANG Y B. Artificial solid electrolyte interphase acting as "armor" to protect the anode materials for high-performance lithium-ion battery[J]. Chemical Research in Chinese Universities, 2020, 36(3): 402-409.
[103] HAN L, LIU T F, SHENG O W, et al. Undervalued roles of binder in modulating solid electrolyte interphase formation of silicon-based anode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45139-45148.
[104] YU Z, CUI Y, BAO Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes [J]. Cell Reports Physical Science, 2020, 1 (7): 100119.
[105] YOUNESI R, HAHLIN M, ROBERTS M, et al. The SEI layer formed on lithium metal in the presence of oxygen: A seldom considered component in the development of the Li-O2 battery[J]. Journal of Power Sources, 2013, 225: 40-45.
[106] ZHANG W J, DAHBI M, KOMABA S. Polymer binder: A key component in negative electrodes for high-energy Na-ion batteries[J]. Current Opinion in Chemical Engineering, 2016, 13: 36-44.
[107] LEE S Y, CHOI Y, HONG K S, et al. Influence of edta in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode[J]. Applied Surface Science, 2018, 447: 442-451.
[108] MARKEVICH E, SALITRA G, YOSHIDA H, et al. Stabilizing lithium-sulfur cells with practical loading and cycling conditions using Li2S8-containing ethereal electrolyte solution[J]. Journal of The Electrochemical Society, 2020, 167(14).
[109] LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advancd Materials, 2017, 29(10).
[110] YANG H, FEY E O, TRIMM B D, et al. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency[J]. Journal of Power Sources, 2014, 272: 900-908.
[111] GAO Y, YI R, LI Y C, et al. General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes[J]. Journal of the American Chemical Society, 2017, 139(48): 17359-17367.
[112] TU Z, CHOUDHURY S, ZACHMAN M J, et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes[J]. Nature Energy, 2018, 3(4): 310-316.
[113] SHI Q, ZHONG Y, WU M, et al. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America , 2018, 115(22): 5676-5680.
[114] TANG W, YIN X, CHEN Z, et al. Chemically polished lithium metal anode for high energy lithium metal batteries[J]. Energy Storage Materials, 2018, 14: 289-296.
[115] FUKUNISHI M, YABUUCHI N, DAHBI M, et al. Impact of the cut-off voltage on cyclability and passive interphase of Sn-polyacrylate composite electrodes for sodium-ion batteries[J]. Journal of Physical Chemistry C, 2016, 120(28): 15017-15026.
[116] ZHANG Z, PENG Z, ZHENG J, et al. The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network[J]. Journal of Materials Chemistry A, 2017, 5(19): 9339-9349.
[117] PROSINI P P, RONDINO F, MORENO M, et al. Electrochemical characterization of Cu-catalysed Si nanowires as an anode for lithium-ion cells[J]. Journal of Nanomaterials, 2020, 2020: 1-9.
[118] GUO L Y, HUANG F F, CAI M Z, et al. Organic-inorganic hybrid SEI induced by a new lithium salt for high-performance metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 32886-32893.
[119] MA X, CHEN H, LIU X, et al. Polymers for long‐cycle and highly safe lithium‐based batteries[J]. Macromolecular Materials and Engineering, 2022, 307(7): 2100923.
[120] CHENG S H S, HE K Q, LIU Y, et al. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte[J]. Electrochimica Acta, 2017, 253: 430-438.
[121] WU J F, LI X Y, ZHAO Y Z, et al. Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites[J]. Journal of Materials Chemistry A, 2018, 6(42): 20896-20903.
[122] ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
[123] LU Y, HUANG X, SONG Z, et al. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290.
[124] GUPTA A, SAKAMOTO J. Controlling ionic transport through the PEO-LiTFSI/LLZTO interface[J]. Electrochemical Society Interface, 2019, 28(2): 63-69.
[125] LIU C D, CAO G Q, WU Z H, et al. Surficial structure retention mechanism for LiNi0.8Co0.15Al0.05O2 in a full gradient cathode[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31991-31996.
[126] HUANG Z Y, PANG W Y, LIANG P, et al. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties[J]. Journal of Materials Chemistry A, 2019, 7(27): 16425-16436.
[127] LU J, LIU Y C, YAO P H, et al. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries[J]. Chemical Engineering Journal, 2019, 367: 230-238.
[128] XU L H, LI G B, GUAN J X, et al. Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries[J]. Journal of Energy Storage, 2019, 24.
[129] GAO L, LI J X, JU J G, et al. Polyvinylidene fluoride nanofibers with embedded Li6.4La3Zr1.4Ta0.6O12 fillers modified polymer electrolytes for high-capacity and long-life all-solid-state lithium metal batteries[J]. Composites Science and Technology, 2020, 200.
[130] YAN D E, MAI H W, CHEN W, et al. Enhanced electrochemical performance of garnet-based solid-state lithium metal battery with modified anodic and cathodic interfaces[J]. Chinese Journal of Chemical Engineering, 2022, 44: 140-147.
[131] XU K, XU C, JIANG Y J, et al. Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries[J]. Ionics, 2022, 28(7): 3243-3253.
[132] SU Y X, XU F, QIU Y Q, et al. Electrolyte based on laser-generated nano-garnet in poly(ethylene oxide) for solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2022, 443.
[133] QIU G R, SHI Y P, HUANG B L. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries[J]. Nano Research, 2022, 15(6): 5153-5160.
[134] LI L X, LI R, HUANG Z H, et al. A multifunctional gradient solid electrolyte remarkably improving interface compatibility and ion transport in solid-state lithium battery[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 30786-30795.
[135] JOLLY D S, MELVIN D L R, STEPHENS I D R, et al. Interfaces between ceramic and polymer electrolytes: A comparison of oxide and sulfide solid electrolytes for hybrid solid-state batteries[J]. Inorganics, 2022, 10(5).
[136] CAI D, QI X H, XIANG J Y, et al. A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery[J]. Chemical Engineering Journal, 2022, 435.
[137] MA X, LIU M, WU Q P, et al. Composite electrolytes prepared by improving the interfacial compatibility of organic-inorganic electrolytes for dendrite-free, long-life all-solid lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53828-53839.
[138] FENG C, WANG X C, ZENG G F, et al. Heat-resistant trilayer separators for high-performance lithium-ion batteries[J]. Physica Status Solidi-Rapid Research Letters, 2020, 14(1).
[139] WANG R, ZHANG X J, CAI Y C, et al. Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte[J]. Nano Research, 2019, 12(10): 2543-2548.
[140] YU J, KWOK S C T, LU Z H, et al. A ceramic-pvdf composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature[J]. ChemElectroChem, 2018, 5(19): 2873-2881.
[141] LI W W, SUN C Z, JIN J, et al. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(48): 27304-27312.
[142] HUANG Z Y, TONG R A, ZHANG J, et al. Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: A low-cost manufacture method for mass production of composite polymer electrolyte[J]. Journal of Power Sources, 2020, 451.
[143] ZHANG Y C, FEI H F, AN Y L, et al. High voltage, flexible and low cost all-solid-state lithium metal batteries with a wide working temperature range[J]. Chemistryselect, 2020, 5(3): 1214-1219.
[144] LUO S Q, ZHAO E Y, GU Y X, et al. Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries[J]. Chemical Engineering Journal, 2021, 421.
[145] CAMPANELLA D, KRACHKOVSKIY S, BERTONI G, et al. Metastable properties of a garnet type Li5La3Bi2O12 solid electrolyte towards low temperature pressure driven densification[J]. Journal of Materials Chemistry A, 2022, 11(1): 364-373.
[146] LU Z Y, PENG L, RONG Y, et al. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2023.
[147] ZHANG X X, FERGUS J W. Solid electrolytes for lithium batteries[J]. International Journal of Technology, 2018, 9(6): 1178-1186.
[148] ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785.
[149] YANG H, MU D B, WU B R, et al. Improving cathode/Li6.4La3Zr1.4Ta0.6O12 electrolyte interface with a hybrid PVDF-HFP-based buffer layer for solid lithium battery[J]. Journal of Materials Science, 2020, 55(25): 11451-11461.
[150] ZHANG Z, HUANG Y, GAO H, et al. An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance[J]. Ceramics International, 2020, 46(8): 11397-11405.
[151] QIU G R, SUN C W. A quasi-solid composite electrolyte with dual salts for dendrite-free lithium metal batteries[J]. New Journal of Chemistry, 2020, 44(5): 1817-1824.
[152] LIU W, LI W Y, ZHUO D, et al. Core-shell nanoparticle coating as an interfacial layer for dendrite free lithium metal anodes[J]. ACS Central Science, 2017, 3(2): 135-140.
[153] MINELLA C B, GAO P, ZHAO-KARGER Z, et al. Interlayer-expanded vanadium oxychloride as an electrode material for magnesium-based batteries[J]. ChemElectroChem, 2017, 4(3): 738-745.
[154] HONG Y S, LI N, CHEN H S, et al. In operando observation of chemical and mechanical stability of Li and na dendrites under quasi-zero electrochemical field[J]. Energy Storage Materials, 2018, 11: 118-126.
[155] LI Y B, SUN Y M, PEI A, et al. Robust pinhole-free Li3N solid electrolyte grown from molten lithium[J]. ACS Central Science, 2018, 4(1): 97-104.
[156] LI X, ZHENG J M, REN X D, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8(15).
[157] CHEN T, JIA W S, YAO Z Y, et al. Partly lithiated graphitic carbon foam as 3D porous current collectors for dendrite-free lithium metal anodes[J]. Electrochemistry Communications, 2019, 107.
[158] CAO C, LI Y, FENG Y Y, et al. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries[J]. Energy Storage Materials, 2019, 19: 401-407.
[159] CHEN X R, LI B Q, ZHU C, et al. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(39).
[160] YOON B, PARK J, LEE J, et al. High-rate cycling of lithium-metal batteries enabled by dual-salt electrolyte-assisted micropatterned interfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31777-31785.
[161] ZHANG W, HUANG Y, LIU Y, et al. Strategies toward stable nonaqueous alkali metal-O2 batteries[J]. Advanced Energy Materials, 2019, 9(24).
[162] ZHAO F, ZHOU X F, DENG W, et al. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes[J]. Nano Energy, 2019, 62: 55-63.
[163] YUAN Y X, WU F, CHEN G H, et al. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2019, 37: 197-203.
[164] DENG K R, ZENG Q G, WANG D, et al. Single-ion conducting gel polymer electrolytes: Design, preparation and application[J]. Journal of Materials Chemistry A, 2020, 8(4): 1557-1577.
[165] HU M F, MA Q Y, YUAN Y, et al. Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries[J]. Chemical Engineering Journal, 2020, 388.
[166] ZHANG T, LI Y J, CHEN N, et al. Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 681-687.
[167] ZHANG K, WU F, ZHANG K, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Materials, 2021, 41: 485-494.
[168] ZUO C, LI H P, CHEN G, et al. Fabrication of elastic cyclodextrin-based triblock polymer electrolytes for all-solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 9402-9411.
[169] HAGOPIAN A, TOUJA J, LOUVAIN N, et al. Importance of halide ions in the stabilization of hybrid sn-based coatings for lithium electrodes[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10319-10326.
[170] MIAO R R, YANG J, FENG X J, et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources, 2014, 271: 291-297.
[171] LU Z Y, ZHANG Z G, CHEN X C, et al. Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating[J]. Energy Storage Materials, 2018, 11: 47-56.
[172] SONG J, CHUN J, KIM A, et al. Dendrite-free Li metal anode for rechargeable Li-SO2 batteries employing surface modification with a NaAlCl4-2SO2 electrolyte[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34699-34705.
[173] FAN H L, DONG Q Y, GAO C H, et al. Encapsulating metallic lithium into carbon nanocages which enables a low-volume effect and a dendrite-free lithium metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30902-30910.
[174] CAO D X, SUN X, LI Q, et al. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations[J]. Matter, 2020, 3(1): 57-94.
[175] CHEN H, ADEKOYA D, HENCZ L, et al. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery[J]. Advanced Energy Materials, 2020, 10(21): 13.
[176] CHEN L, LI W X, FAN L Z, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 11.
[177] CHEN L, LI Y T, LI S P, et al. Peo/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184.
[178] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
[179] CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96.
[180] DIRICAN M, YAN C Y, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science & Engineering R-Reports, 2019, 136: 27-46.
[181] DUAN H, FAN M, CHEN W P, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Advanced Materials, 2019, 31(12): 7.
[182] FAN L, WEI S Y, LI S Y, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 31.
[183] FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019.
[184] FAN P, LIU H, MAROSZ V, et al. High performance composite polymer electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(23): 29.
[185] FANG R Y, XU B Y, GRUNDISH N S, et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries[J]. Angewandte Chemie-International Edition, 2021, 60(32): 17701-17706.
[186] GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): 27.
[187] HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical "ceramic-in-polymer" and "polymer-in-ceramic" electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 8.
[188] LI L S, DENG Y F, CHEN G H. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries[J]. Journal of Energy Chemistry, 2020, 50: 154-177.
[189] LIN D C, YUEN P Y, LIU Y Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus[J]. Advanced Materials, 2018, 30(32): 8.
[190] MIURA A, ROSERO-NAVARRO N C, SAKUDA A, et al. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery[J]. Nature Reviews Chemistry, 2019, 3(3): 189-198.
[191] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770.
[192] TANG S, GUO W, FU Y Z. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 29.
[193] TIAN Y S, SHI T, RICHARDS W D, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries[J]. Energy & Environmental Science, 2017, 10(5): 1150-1166.
[194] UMESHBABU E, ZHENG B Z, YANG Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes[J]. Electrochemical Energy Reviews, 2019, 2(2): 199-230.
[195] WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and peo cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 10.
[196] WANG C H, YANG Y F, LIU X J, et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by peo (litfsi) in all-solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(15): 13694-13702.
[197] WANG C W, GONG Y H, LIU B Y, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571.
[198] WANG X, ZHAI H W, QIE B Y, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60: 205-212.
[199] WEI T, WANG Z M, ZHANG Q, et al. Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review[J]. Crystengcomm, 2022, 24(28): 5014-5030.
[200] WEN S J, LUO C, WANG Q R, et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 47: 453-461.
[201] WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 31.
[202] WU N, CHIEN P H, QIAN Y M, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie-International Edition, 2020, 59(10): 4131-4137.
[203] XU L Q, LI J Y, DENG W T, et al. Garnet solid electrolyte for advanced all-solid-state li batteries[J]. Advanced Energy Materials, 2021, 11(2): 24.
[204] YAN Y Y, JU J W, DONG S M, et al. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery[J]. Advanced Science, 2021, 8(9): 9.
[205] ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
[206] ZHANG Q, CAO D X, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): 42.
[207] ZHANG W B, WEBER D A, WEIGAND H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(21): 17835-17845.
[208] ZHANG W Q, NIE J H, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419.
[209] ZHAO C L, LIU L L, QI X G, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): 20.
[210] ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074.
[211] ZHAO W J, YI J, HE P, et al. Solid-state electrolytes for lithium-ion batteries: Fundamentals, challenges and perspectives[J]. Electrochemical Energy Reviews, 2019, 2(4): 574-605.
[212] ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie-International Edition, 2016, 55(40): 12538-12542.
[213] ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839.
[214] ZHU P, YAN C Y, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4279-4285.
[215] ZHU Z Q, HONG M L, GUO D S, et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar
[5]quinone cathode[J]. Journal of the American Chemical Society, 2014, 136(47): 16461-16464.
[216] HU J K, HE P G, ZHANG B C, et al. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries[J]. Energy Storage Materials, 2020, 26: 283-289.
[217] LIU B, ZHANG Y, PAN G X, et al. Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(38): 21794-21801.
[218] SHI H D, ZHANG C J, LU P F, et al. Conducting and lithiophilic mxene/graphene framework for high-capacity, dendrite-free lithium-metal anodes[J]. ACS Nano, 2019, 13(12): 14308-14318.
[219] CHEN R J, ZHANG Y B, LIU T, et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9654-9661.
[220] CHI S S, LIU Y C, ZHAO N, et al. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 309-316.
[221] HAO X J, WENREN H Y, WANG X L, et al. A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet polymerization for lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2020, 558: 145-154.
[222] MA X, LIU M, WU Q P, et al. Composite electrolytes prepared by improving the interfacial compatibility of organic-inorganic electrolytes for dendrite-free, long-life all-solid lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022.
[223] YAO Q, ZHU Y, ZHENG C, et al. Intermolecular cross‐linking reinforces polymer binders for durable alloy‐type anode materials of sodium‐ion batteries[J]. Advanced Energy Materials, 2023, 13(9): 2202939.
[224] ZHANG J, SUN B, ZHAO Y, et al. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries[J]. Angewandte Chemie International Edition, 2017, 56(29): 8505-8509.
[225] LIU T, LESKES M, YU W, et al. Cycling Li-O2 batteries via lioh formation and decomposition[J]. Science, 2015, 350(6260): 530-533.
[226] VELICKY M, BISSETT M A, WOODS C R, et al. Photoelectrochemistry of pristine mono- and few-layer MOS2[J]. Nano Letters, 2016, 16(3): 2023-2032.
[227] YAO K P C, RISCH M, SAYED S Y, et al. Solid-state activation of Li2O2 oxidation kinetics and implications for Li–O2 batteries[J]. Energy & Environmental Science, 2015, 8(8): 2417-2426.
[228] GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269: 405-414.
[229] DONG Q Y, HONG B, FAN H L, et al. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode[J]. Energy Storage Materials, 2022, 45: 1220-1228.
[230] LIU Y Y, LIN D C, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10).
[231] PETRONGARI A, TUCCILLO M, CICCIOLI A, et al. Stable cycling of sodium metal anodes enabled by a sodium/silica‐gel host[J]. ChemElectroChem, 2023, 10(5).
[232] SANCHEZ-RAMIREZ N, MONJE I E, BELANGER D, et al. High rate and long-term cycling of silicon anodes with phosphonium-based ionic liquids as electrolytes for lithium-ion batteries[J]. Electrochimica Acta, 2023, 439.
[233] LI F, XU J, HOU Z, et al. Silicon anodes for high‐performance storage devices: Structural design, material compounding, advances in electrolytes and binders[J]. Chemnanomat, 2020, 6(5): 720-738.
[234] CHEN Z Y, ZHOU J J, GUO Y S, et al. A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery[J]. Electrochimica Acta, 2018, 282: 555-562.
[235] BRUCK A M, GANNETT C N, BOCK D C, et al. The electrochemistry of Fe3O4/polypyrrole composite electrodes in lithium-ion cells: The role of polypyrrole in capacity retention[J]. Journal of The Electrochemical Society, 2017, 164(1): A6260-A6267.
[236] VANITA V, WAIDHA A I, YADAV S, et al. Conductivity enhancement within garnet-rich polymer composite electrolytes via the addition of succinonitrile[J]. International Journal of Applied Ceramic Technology, 2022.
[237] JAMALUDDIN A, SIN Y Y, ADHITAMA E, et al. Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries[J]. Carbon, 2022, 197: 141-151.
[238] ZHANG S S, LI Z, CAI L R, et al. Enabling safer, ultralong lifespan all-solid-state Li-organic batteries[J]. Chemical Engineering Journal, 2021, 416.
[239] YANG Z Z, GEWIRTH A A, TRAHEY L. Investigation of fluoroethylene carbonate effects on Tin-based lithium-ion battery electrodes[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6557-6566.
[240] ZHANG T, DE MEATZA I, QI X, et al. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder[J]. Journal of Power Sources, 2017, 356: 97-102.
[241] ZHENG X M, YOU J H, FAN J J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis[J]. Nano Energy, 2020, 77.
[242] BYUN S, LIU Z, SHIN D O, et al. Alkali metal ion substituted carboxymethyl cellulose as anode polymeric binders for rapidly chargeable lithium-ion batteries[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2023.
[243] ASSEGIE A A, CHENG J H, KUO L M, et al. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery[J]. Nanoscale, 2018, 10(13): 6125-6138.
[244] SONG R, YAO J, XU R, et al. Metastable decomposition realizing dendrite‐free solid‐state Li metal batteries[J]. Advanced Energy Materials, 2023, 13(9): 2203631.
[245] SONG H B, HE T T, LIU J Y, et al. Conformal coating of lithium-zinc alloy on 3D conducting scaffold for high areal capacity dendrite-free lithium metal batteries[J]. Carbon, 2021, 181: 99-106.
[246] SUBRAMANI R, PHAM M N, LIN Y H, et al. Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries[J]. Chemical Engineering Journal, 2022, 431.
[247] SUN H, ZHU G Z, ZHU Y M, et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte[J]. Advanced Materials, 2020, 32(26).
[248] TAKLU B W, SU W N, NIKODIMOS Y, et al. Dual cucl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries[J]. Nano Energy, 2021, 90.
[249] TIAN Y, AN Y L, WEI C L, et al. Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from mxene and carbon dioxide[J]. Chemical Engineering Journal, 2021, 406.
[250] VISHNUGOPI B S, HAO F, VERMA A, et al. Surface diffusion manifestation in electrodeposition of metal anodes[J]. Physical Chemistry Chemical Physics, 2020, 22(20): 11286-11295.
[251] WANG G, CHEN C, CHEN Y H, et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode[J]. Angewandte Chemie-International Edition, 2020, 59(5): 2055-2060.
[252] WANG J X, YE Y D, ZHOU H M, et al. Regulating Li transport in Li-magnesium alloy for dendrite free Li metal anode[J]. Nano Research, 2022.
[253] WANG L, UOSAKI K, NOGUCHI H. Effect of electrolyte concentration on the solvation structure of gold/LiTFSI-DMSO solution interface[J]. Journal of Physical Chemistry C, 2020, 124(23): 12381-12389.
[254] WANG M Q, PENG Z, LUO W W, et al. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure[J]. Advanced Energy Materials, 2019, 9(12).
[255] WANG S S, ZHOU L, TUFAIL M K, et al. In-situ synthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries[J]. Chemical Engineering Journal, 2021, 415.
[256] WANG T, SALVATIERRA R V, TOUR J M. Detecting Li dendrites in a two-electrode battery system[J]. Advanced Materials, 2019, 31(14).
[257] WANG T S, LIU X B, WANG Y, et al. High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries[J]. Advanced Functional Materials, 2021, 31(2).
[258] WANG X S, PAN Z H, WU Y, et al. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode[J]. Nano Research, 2019, 12(3): 525-529.
[259] WANG S Z, ZHANG J T, JIA X H, et al. Synergistic regulating of dynamic trajectory and lithiophilic nucleation by heusler alloy for dendrite-free Li deposition[J]. Energy Storage Materials, 2022, 50: 505-513.
[260] WANG Y L, LIU F M, FAN G L, et al. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes[J]. Journal of the American Chemical Society, 2021, 143(7): 2829-2837.
[261] WANG L M, TANG Z F, LIN J, et al. A 3D Cu current collector with a biporous structure derived by a phase inversion tape casting method for stable Li metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(29): 17376-17385.
[262] WANG H, MATIOS E, LUO J M, et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries[J]. Chemical Society Reviews, 2020, 49(12): 3783-3805.
[263] VU T T, KIM B G, KIM J H, et al. Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its accurate prediction[J]. Journal of Materials Chemistry A, 2021, 9(40): 22833-22841.
[264] TIAN A L, LUO K L, LI Z D, et al. F-N-S doped lithiophilic interphases for stable Li metal and alloy anodes[J]. Journal of Power Sources, 2021, 508.
[265] LI L S, DENG Y F, DUAN H H, et al. LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability[J]. Journal of Energy Chemistry, 2022, 65: 319-328.
[266] LI Y, YANG L W, DONG R, et al. A high strength asymmetric polymer-inorganic composite solid electrolyte for solid-state Li-ion batteries[J]. Electrochimica Acta, 2022, 404.
[267] LIU H R, FENG W, ZHAO M L, et al. Interface functionalization of composite electrolyte by Lix-CeO2 layer on the surface of Li6.4La3Zr1.4Ta0.6O12[J]. Electrochimica Acta, 2022, 435.
[268] SONG S F, DENG F, ZHAI Y F, et al. Ultrathin, dense, hybrid polymer/ceramic gel electrolyte for high energy lithium metal batteries[J]. Materials Letters, 2020, 279.
[269] TONG R A, CHEN L H, SHAO G, et al. An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide) solid electrolytes: Enhanced compatibility and cycle performance[J]. Journal of Power Sources, 2021, 492.
[270] ZHANG L, WANG Z T, ZHOU H, et al. Synergistic coupling of Li6.4La3Zr1.4Ta0.6O12 and fluoroethylene carbonate boosts electrochemical performances of poly(ethylene oxide)-based all-solid-state lithium batteries[J]. ChemElectroChem, 2022, 9(17).
[271] ZHANG X R, SUN Y X, MA C H, et al. Li6.4La3Zr1.4Ta0.6O12 reinforced polystyrene-poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide)-polystyrene pentablock copolymer-based composite solid electrolytes for solid-state lithium metal batteries[J]. Journal of Power Sources, 2022, 542.
[272] BAI C J, WU Z G, XIANG W, et al. Poly(ethylene oxide)/poly(vinylidene fluoride)/Li(6.4)La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries[J]. Journal of Power Sources, 2020, 472.
[273] CUI Y, MIAO D T, YU G F, et al. Novel quasi-solid-state composite electrolytes boost interfacial Li+ transport for long-cycling and dendrite-free lithium metal batteries[J]. Energy Storage Materials, 2023, 56: 258-266.
[274] FANG Z Q, ZHAO M, PENG Y, et al. Poly (vinylidene fluoride) binder reinforced poly (propylene carbonate)/3D garnet nanofiber composite polymer electrolyte toward dendrite-free lithium metal batteries[J]. Materials Today Energy, 2022, 24, 100952.
[275] FU Y D, YANG K, XUE S D, et al. Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries[J]. Advanced Functional Materials, 2023, 202210845.
[276] GUO Q Y, XU F L, SHEN L, et al. 20 mu m-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries[J]. Energy Material Advances, 2022, 9753506.
[277] GUPTA A, SAKAMOTO J. Controlling ionic transport through the peo-litfsi/llzto interface[J]. Electrochemical Society Interface, 2019, 28(2): 63-69.
[278] ZENG G F, ZHAO J Y, FENG C, et al. Flame-retardant bilayer separator with multifaceted van der waals interaction for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26402-26411.
[279] SONG S D, XU Y Q, RUAN Y L, et al. Isomeric Li-La-Zr-O amorphous-crystalline composite thin-film electrolytes for all-solid-state lithium batteries[J]. ACS Applied Energy Materials, 2021, 4(8): 8517-8528.
[280] SONG C, LI Z G, PENG J, et al. Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries[J]. Journal of Materials Chemistry A, 2022, 10(30): 16087-16094.

所在学位评定分委会
物理学
国内图书分类号
TM912
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545174
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
李志强. 无负极锂金属电池的界面改性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930752-李志强-材料科学与工程(8796KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李志强]的文章
百度学术
百度学术中相似的文章
[李志强]的文章
必应学术
必应学术中相似的文章
[李志强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。