[1] WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
[2] TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669.
[3] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[4] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
[7] QIAN J, XU W, BHATTACHARYA P, et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15: 135-144.
[8] DENG D. Li-ion batteries: basics, progress, and challenges[J]. Energy Science & Engineering, 2015, 3(5): 385-418.
[9] LIU S, HOU H, HU W, et al. Binder-free integration of insoluble cubic CuCl nanoparticles with a homologous Cu substrate for lithium ion batteries[J]. RSC Advances, 2016, 6(5): 3742-3747.
[10] LIANG J, LI F, CHENG H-M. From laboratory to factory: Are the new electrode materials ready?[J]. Energy Storage Materials, 2017, 6: A1-A3.
[11] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of American Chemical Society, 2013, 135(4): 1167-1176.
[12] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
[13] KWON H, LEE J-H, ROH Y, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries[J]. Nature Communications, 2021, 12(1): 5537.
[14] FU X, DENG X, DENG Y, et al. Lithium perchlorate additive for dendritic-free and long-life Li metal batteries[J]. Energy & Fuels, 2022, 36(18): 11219-11226.
[15] LIU D-H, BAI Z, LI M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives[J]. Chemical Society Reviews, 2020, 49(15): 5407-5445.
[16] KIM T, SONG W, SON D, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. The Journal of Materials Chemistry A, 2019, 7: 2942-2964.
[17] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[18] KANG D W, PARK S S, CHOI H J, et al. One-dimensional porous Li-confinable hosts for high-rate and stable Li-metal batteries[J]. ACS Nano, 2022, 16(8): 11892-11901.
[19] ZOU P, WANG Y, CHIANG S W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9(1): 464.
[20] ZHANG H, ESHETU G G, JUDEZ X, et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives[J]. Angew Chem Int Ed Engl, 2018, 57(46): 15002-15027.
[21] LI N, WEI W, XIE K, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters, 2018, 18(3): 2067-2073.
[22] KE X, CHENG Y, LIU J, et al. Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13552-13561.
[23] JIN C, SHENG O, LUO J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186.
[24] HOU H, YAO Y, LIU S, et al. Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode[J]. Waste Manage, 2017, 65: 147-152.
[25] YUN Q, HE Y B, LV W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939.
[26] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[27] VHENG X B, ZHANG R, ZHAO C Z, et al. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review[J]. Chemical Reviews, 2017, 117(15): 10403–10473.
[28] CHEN S, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140–3151.
[29] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications , 2015, 6: 8058.
[30] LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Maerials, 2017, 29(13): 1604460.
[31] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Letters, 2017, 2(6): 1321-1326.
[32] LIU W, LIN D, PEI A, et al. Stabilizing lithium metal anodes by uniform li-ion flux distribution in nanochannel confinement[J]. Journal of American Chemical Society, 2016, 138(47): 15443-15450.
[33] RYOU M-H, LEE Y M, LEE Y, et al. Mechanical surface modification of lithium metal: Towards improved Li metal anode performance by directed Li plating[J]. Advanced Functional Materials, 2015, 25(6): 834-841.
[34] LI M, DU H, KUAI L, et al. Scalable dry production process of a superior 3D net-like carbon-based iron oxide anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition , 2017, 56(41): 12649-12653.
[35] ZHANG R, CHEN X R, CHEN X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition , 2017, 56(27): 7764-7768.
[36] LIU S, HOU H, LIU X, et al. High-performance hierarchical homologous scale-like CuCl/Cu foam anode for lithium ion battery[J]. Ceramics International, 2016, 42(7): 8310-8315.
[37] CHENG X B, YAN C, PENG H J, et al. Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free li metal anodes[J]. Energy Storage Materials, 2018, 10: 199-205.
[38] CUI X M, CHU Y, QIN L M, et al. Stabilizing Li metal anodes through a novel self-healing strategy[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11097-11104.
[39] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[40] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.
[41] GIRARD G M A, WANG X E, YUNIS R, et al. Sustainable, dendrite free lithium-metal electrode cycling achieved with polymer composite electrolytes based on a poly(ionic liquid) host[J]. Batteries & Supercaps, 2019, 2(3): 229-239.
[42] HAO F, VERMA A, MUKHERJEE P P. Electrodeposition stability of metal electrodes [J]. Energy Storage Materials, 2019, 20: 1-6.
[43] WU S, ZHANG Z, LAN M, et al. Lithiophilic Cu-CuO-Ni hybrid structure: Advanced current collectors toward stable lithium metal anodes[J]. Advanced Materials, 2018, 30(9): 1705830.
[44] LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10): 1605531.
[45] ZHANG X, FAN C L, HAN S C. Improving the initial coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density[J]. Journal of Materials Science, 2017, 52(17): 10418-10430.
[46] FANG C, LI J, ZHANG M, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572: 511–515.
[47] HAGEN M, QUIROGA-GONZALEZ E, DORFLER S, et al. Studies on preventing Li dendrite formation in Li-S batteries by using pre-lithiated Si microwire anodes[J]. Journal of Power Sources, 2014, 248: 1058-1066.
[48] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895.
[49] XIE K Y, WEI W F, YUAN K, et al. Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@Ni scaffold[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26091-26097.
[50] JANA A, GARCIA R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552-565.
[51] JIN C B, SHENG O W, LUO J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186.
[52] YU H L, ZHAO J N, BEN L B, et al. Dendrite-free lithium deposition with self aligned columnar structure in a carbonate-ether mixed electrolyte[J]. ACS Energy Letters, 2017, 2(6): 1296-1302.
[53] AURBACH D, MCCLOSKEY B D, NAZAR L F, et al. Advances in understanding mechanisms underpinning lithium–air batteries[J]. Nature Energy, 2016, 1(9): 16128.
[54] JIN S, XIN S, WANG L, et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-s batteries[J]. Advanced Materials, 2016, 28(41): 9094-9102.
[55] CHEN W L, HONG Y R, ZHAO Z H, et al. Directing the deposition of lithium metal to the inner concave surface of graphitic carbon tubes to enable lithium-metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(31): 16936-16942.
[56] CHEN X, CHEN X R, HOU T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances, 2019, 5(2): 7728.
[57] CHENG Y F, KE X, CHEN Y M, et al. Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries[J]. Nano Energy, 2019, 63:103854.
[58] DAI Q S, YAO J M, DU C C, et al. Cryo-EM studies of atomic-scale structures of interfaces in garnet-type electrolyte based solid-state batteries[J]. Advanced Functional Materials, 2022, 32(51): 2208682.
[59] DAS S. Highly concentrated nitrile functionalized disiloxane-LiFSI based non-flammable electrolyte for high energy density Li metal battery[J]. Journal of Electroanalytical Chemistry, 2020, 879: 114794.
[60] ABDUL AHAD S, BHATTACHARYA S, KILIAN S, et al. Lithiophilic nanowire guided Li deposition in Li metal batteries[J]. Small, 2023, 19(2): 2205142.
[61] WANG Y, REN L T, LIU J, et al. In situ construction of composite artificial solid electrolyte interphase for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50982-50991.
[62] PAL U, RAKOV D, LU B Y, et al. Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte[J]. Energy & Environmental Science, 2022, 15(5): 1907-1919.
[63] LU R C, SHOKRIEH A, LI C F, et al. PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes[J]. Nano Energy, 2022, 95: 107009.
[64] LIU S S, MA Y L, WANG J J, et al. Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode[J]. Chemical Engineering Journal, 2022, 427: 131625.
[65] LI Z P, ZHU K J, LIU P, et al. 3D confinement strategy for dendrite-free sodium metal batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100359.
[66] HU W, YAO Y Y, HUANG X, et al. CuO nanofilm-covered Cu microcone coating for a long cycle Li metal anode by in situ formed Li2O[J]. ACS Applied Energy Materials, 2022, 5(3): 3773-3782.
[67] HE Y B, ZOU P C, BAK S M, et al. Dual passivation of cathode and anode through electrode-electrolyte interface engineering enables long-lifespan Li metal-span batteries[J]. ACS Energy Letters, 2022, 7(9): 2866-2875.
[68] DI J, YANG J L, TIAN H, et al. Dendrites-free lithium metal anode enabled by synergistic surface structural engineering[J]. Advanced Functional Materials, 2022, 32(23): 2200474.
[69] ZHANG Z B, ZHOU X F, LIU Z P. Conformal coating of a carbon film on 3D hosts toward stable lithium anodes[J]. ACS Applied Energy Materials, 2021, 4(7): 7288-7297.
[70] YUE X Y, ZHOU Q Y, BAO J, et al. In situ construction of lithium silicide host with unhindered lithium spread for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2021, 31(9): 2008786.
[71] ZHOU H T, WANG X H, SHERIDAN E, et al. Boosting properties of 3D binder-free manganese oxide anodes by preformation of a solid electrolyte interphase[J]. Chemsuschem, 2015, 8(8): 1368-1380.
[72] GIMBLE N J, KRAYNAK L A, SCHNEIDER J D, et al. X-ray photoelectron spectroscopy as a probe for understanding the potential-dependent impact of fluoroethylene carbonate on the solid electrolyte interface formation in Na/Cu2Sb batteries[J]. Journal of Power Sources, 2021, 489: 229171.
[73] MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318.
[74] RASHEED T, NAVEED A, CHEN J H, et al. Revisiting the role of polymers as renewable and flexible materials for advanced batteries[J]. Energy Storage Materials, 2022, 45: 1012-1039.
[75] KONG L Y, LIU F G, HU X W, et al. An improved pretreatment method for recovering cathode materials from lithium-ion battery: Ultrasonic-assisted NaOH-enhanced dissolving[J]. Energy Sources, 2023, 45(1): 877-887.
[76] LEE Y K, CHO K Y, LEE S, et al. Construction of hierarchical surface on carbon fiber paper for lithium metal batteries with superior stability[J]. Advanced Energy Materials, 2023.
[77] PETRONGARI A, TUCCILLO M, CICCIOLI A, et al. Stable cycling of sodium metal anodes enabled by a sodium/silica-gel host[J]. ChemElectroChem, 2023.
[78] JI X L, LIU D Y, PRENDIVILLE D G, et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition[J]. Nano Today, 2012, 7(1): 10-20.
[79] ZHANG Y H, QIAN J F, XU W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12): 6889-6896.
[80] GAO T, NOKED M, PEARSE A J, et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation[J]. Journal of the American Chemical Society, 2015, 137(38): 12388-12393.
[81] YOO H D, LIANG Y L, LI Y F, et al. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 7001-7007.
[82] ZHOU G M, PAEK E, HWANG G S, et al. High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes[J]. Advanced Energy Materials, 2016, 6(2).
[83] PAN Q W, BARBASH D, SMITH D M, et al. Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries[J]. Advanced Energy Materials, 2017, 7(22).
[84] CHEN L J, CHEN H, WANG Z, et al. Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode[J]. Chemical Engineering Journal, 2019, 363: 270-277.
[85] CHI S S, WANG Q R, HAN B, et al. Lithiophilic zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition[J]. Nano Letters, 2020, 20(4): 2724-2732.
[86] LIU T C, GE J X, XU Y, et al. Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode[J]. Energy Storage Materials, 2020, 32: 261-271.
[87] NANDA S, MANTHIRAM A. Lithium degradation in lithium-sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling[J]. Energy & Environmental Science, 2020, 13(8): 2501-2514.
[88] YAN K, LU Z, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1: 16010.
[89] WANG W, ZHANG J L, YANG Q, et al. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22901-22909.
[90] YAN J, LIU F Q, HU Z Y, et al. Realizing dendrite-free lithium deposition with a composite separator[J]. Nano Letters, 2020, 20(5): 3798-3807.
[91] YIN D M, HUANG G, WANG S H, et al. Free-standing 3D nitrogen-carbon anchored Cu nanorod arrays: In situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8(3): 1425-1431.
[92] YUE X Y, BAO J, QIU Q Q, et al. Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode[J]. Chemical Engineering Journal, 2020, 391.
[93] ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348.
[94] WEI C L, FEI H F, AN Y L, et al. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li metal anode[J]. Journal of Materials Chemistry A, 2019, 7(32): 18861-18870.
[95] SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10.
[96] WANG X C, HE Y F, TU S B, et al. Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries[J]. Energy Storage Materials, 2022, 49: 135-143.
[97] WANG J, ZHANG J, DUAN S R, et al. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode[J]. Nano Letters, 2022.
[98] TAN L W, WEI C L, ZHANG Y C, et al. Lif-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries[J]. Chemical Engineering Journal, 2022, 442.
[99] SONG C L, LUO J R, MA L Y, et al. Dendrite-free lithium metal batteries achieved with Ce-MOF membrane coating with one-dimensional continuous oxygen-containing channels for rapid migration of Li ions[J]. Journal of Materials Chemistry A, 2022, 10(35): 18248-18255.
[100] SONG Y X, LU W Y, CHEN Y J, et al. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries[J]. Rare Metals, 2022, 41(4): 1255-1264.
[101] INAMOTO J, MARUYAMA S, MATSUO Y, et al. Effects of pre-lithiation on the electrochemical properties of graphene-like graphite[J]. Electrochemistry, 2019, 87(5): 260-264.
[102] WANG H T, TANG Y B. Artificial solid electrolyte interphase acting as "armor" to protect the anode materials for high-performance lithium-ion battery[J]. Chemical Research in Chinese Universities, 2020, 36(3): 402-409.
[103] HAN L, LIU T F, SHENG O W, et al. Undervalued roles of binder in modulating solid electrolyte interphase formation of silicon-based anode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45139-45148.
[104] YU Z, CUI Y, BAO Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes [J]. Cell Reports Physical Science, 2020, 1 (7): 100119.
[105] YOUNESI R, HAHLIN M, ROBERTS M, et al. The SEI layer formed on lithium metal in the presence of oxygen: A seldom considered component in the development of the Li-O2 battery[J]. Journal of Power Sources, 2013, 225: 40-45.
[106] ZHANG W J, DAHBI M, KOMABA S. Polymer binder: A key component in negative electrodes for high-energy Na-ion batteries[J]. Current Opinion in Chemical Engineering, 2016, 13: 36-44.
[107] LEE S Y, CHOI Y, HONG K S, et al. Influence of edta in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode[J]. Applied Surface Science, 2018, 447: 442-451.
[108] MARKEVICH E, SALITRA G, YOSHIDA H, et al. Stabilizing lithium-sulfur cells with practical loading and cycling conditions using Li2S8-containing ethereal electrolyte solution[J]. Journal of The Electrochemical Society, 2020, 167(14).
[109] LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advancd Materials, 2017, 29(10).
[110] YANG H, FEY E O, TRIMM B D, et al. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency[J]. Journal of Power Sources, 2014, 272: 900-908.
[111] GAO Y, YI R, LI Y C, et al. General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes[J]. Journal of the American Chemical Society, 2017, 139(48): 17359-17367.
[112] TU Z, CHOUDHURY S, ZACHMAN M J, et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes[J]. Nature Energy, 2018, 3(4): 310-316.
[113] SHI Q, ZHONG Y, WU M, et al. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America , 2018, 115(22): 5676-5680.
[114] TANG W, YIN X, CHEN Z, et al. Chemically polished lithium metal anode for high energy lithium metal batteries[J]. Energy Storage Materials, 2018, 14: 289-296.
[115] FUKUNISHI M, YABUUCHI N, DAHBI M, et al. Impact of the cut-off voltage on cyclability and passive interphase of Sn-polyacrylate composite electrodes for sodium-ion batteries[J]. Journal of Physical Chemistry C, 2016, 120(28): 15017-15026.
[116] ZHANG Z, PENG Z, ZHENG J, et al. The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network[J]. Journal of Materials Chemistry A, 2017, 5(19): 9339-9349.
[117] PROSINI P P, RONDINO F, MORENO M, et al. Electrochemical characterization of Cu-catalysed Si nanowires as an anode for lithium-ion cells[J]. Journal of Nanomaterials, 2020, 2020: 1-9.
[118] GUO L Y, HUANG F F, CAI M Z, et al. Organic-inorganic hybrid SEI induced by a new lithium salt for high-performance metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 32886-32893.
[119] MA X, CHEN H, LIU X, et al. Polymers for long‐cycle and highly safe lithium‐based batteries[J]. Macromolecular Materials and Engineering, 2022, 307(7): 2100923.
[120] CHENG S H S, HE K Q, LIU Y, et al. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte[J]. Electrochimica Acta, 2017, 253: 430-438.
[121] WU J F, LI X Y, ZHAO Y Z, et al. Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites[J]. Journal of Materials Chemistry A, 2018, 6(42): 20896-20903.
[122] ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
[123] LU Y, HUANG X, SONG Z, et al. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290.
[124] GUPTA A, SAKAMOTO J. Controlling ionic transport through the PEO-LiTFSI/LLZTO interface[J]. Electrochemical Society Interface, 2019, 28(2): 63-69.
[125] LIU C D, CAO G Q, WU Z H, et al. Surficial structure retention mechanism for LiNi0.8Co0.15Al0.05O2 in a full gradient cathode[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31991-31996.
[126] HUANG Z Y, PANG W Y, LIANG P, et al. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties[J]. Journal of Materials Chemistry A, 2019, 7(27): 16425-16436.
[127] LU J, LIU Y C, YAO P H, et al. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries[J]. Chemical Engineering Journal, 2019, 367: 230-238.
[128] XU L H, LI G B, GUAN J X, et al. Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries[J]. Journal of Energy Storage, 2019, 24.
[129] GAO L, LI J X, JU J G, et al. Polyvinylidene fluoride nanofibers with embedded Li6.4La3Zr1.4Ta0.6O12 fillers modified polymer electrolytes for high-capacity and long-life all-solid-state lithium metal batteries[J]. Composites Science and Technology, 2020, 200.
[130] YAN D E, MAI H W, CHEN W, et al. Enhanced electrochemical performance of garnet-based solid-state lithium metal battery with modified anodic and cathodic interfaces[J]. Chinese Journal of Chemical Engineering, 2022, 44: 140-147.
[131] XU K, XU C, JIANG Y J, et al. Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries[J]. Ionics, 2022, 28(7): 3243-3253.
[132] SU Y X, XU F, QIU Y Q, et al. Electrolyte based on laser-generated nano-garnet in poly(ethylene oxide) for solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2022, 443.
[133] QIU G R, SHI Y P, HUANG B L. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries[J]. Nano Research, 2022, 15(6): 5153-5160.
[134] LI L X, LI R, HUANG Z H, et al. A multifunctional gradient solid electrolyte remarkably improving interface compatibility and ion transport in solid-state lithium battery[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 30786-30795.
[135] JOLLY D S, MELVIN D L R, STEPHENS I D R, et al. Interfaces between ceramic and polymer electrolytes: A comparison of oxide and sulfide solid electrolytes for hybrid solid-state batteries[J]. Inorganics, 2022, 10(5).
[136] CAI D, QI X H, XIANG J Y, et al. A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery[J]. Chemical Engineering Journal, 2022, 435.
[137] MA X, LIU M, WU Q P, et al. Composite electrolytes prepared by improving the interfacial compatibility of organic-inorganic electrolytes for dendrite-free, long-life all-solid lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53828-53839.
[138] FENG C, WANG X C, ZENG G F, et al. Heat-resistant trilayer separators for high-performance lithium-ion batteries[J]. Physica Status Solidi-Rapid Research Letters, 2020, 14(1).
[139] WANG R, ZHANG X J, CAI Y C, et al. Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte[J]. Nano Research, 2019, 12(10): 2543-2548.
[140] YU J, KWOK S C T, LU Z H, et al. A ceramic-pvdf composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature[J]. ChemElectroChem, 2018, 5(19): 2873-2881.
[141] LI W W, SUN C Z, JIN J, et al. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(48): 27304-27312.
[142] HUANG Z Y, TONG R A, ZHANG J, et al. Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: A low-cost manufacture method for mass production of composite polymer electrolyte[J]. Journal of Power Sources, 2020, 451.
[143] ZHANG Y C, FEI H F, AN Y L, et al. High voltage, flexible and low cost all-solid-state lithium metal batteries with a wide working temperature range[J]. Chemistryselect, 2020, 5(3): 1214-1219.
[144] LUO S Q, ZHAO E Y, GU Y X, et al. Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries[J]. Chemical Engineering Journal, 2021, 421.
[145] CAMPANELLA D, KRACHKOVSKIY S, BERTONI G, et al. Metastable properties of a garnet type Li5La3Bi2O12 solid electrolyte towards low temperature pressure driven densification[J]. Journal of Materials Chemistry A, 2022, 11(1): 364-373.
[146] LU Z Y, PENG L, RONG Y, et al. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2023.
[147] ZHANG X X, FERGUS J W. Solid electrolytes for lithium batteries[J]. International Journal of Technology, 2018, 9(6): 1178-1186.
[148] ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785.
[149] YANG H, MU D B, WU B R, et al. Improving cathode/Li6.4La3Zr1.4Ta0.6O12 electrolyte interface with a hybrid PVDF-HFP-based buffer layer for solid lithium battery[J]. Journal of Materials Science, 2020, 55(25): 11451-11461.
[150] ZHANG Z, HUANG Y, GAO H, et al. An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance[J]. Ceramics International, 2020, 46(8): 11397-11405.
[151] QIU G R, SUN C W. A quasi-solid composite electrolyte with dual salts for dendrite-free lithium metal batteries[J]. New Journal of Chemistry, 2020, 44(5): 1817-1824.
[152] LIU W, LI W Y, ZHUO D, et al. Core-shell nanoparticle coating as an interfacial layer for dendrite free lithium metal anodes[J]. ACS Central Science, 2017, 3(2): 135-140.
[153] MINELLA C B, GAO P, ZHAO-KARGER Z, et al. Interlayer-expanded vanadium oxychloride as an electrode material for magnesium-based batteries[J]. ChemElectroChem, 2017, 4(3): 738-745.
[154] HONG Y S, LI N, CHEN H S, et al. In operando observation of chemical and mechanical stability of Li and na dendrites under quasi-zero electrochemical field[J]. Energy Storage Materials, 2018, 11: 118-126.
[155] LI Y B, SUN Y M, PEI A, et al. Robust pinhole-free Li3N solid electrolyte grown from molten lithium[J]. ACS Central Science, 2018, 4(1): 97-104.
[156] LI X, ZHENG J M, REN X D, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8(15).
[157] CHEN T, JIA W S, YAO Z Y, et al. Partly lithiated graphitic carbon foam as 3D porous current collectors for dendrite-free lithium metal anodes[J]. Electrochemistry Communications, 2019, 107.
[158] CAO C, LI Y, FENG Y Y, et al. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries[J]. Energy Storage Materials, 2019, 19: 401-407.
[159] CHEN X R, LI B Q, ZHU C, et al. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(39).
[160] YOON B, PARK J, LEE J, et al. High-rate cycling of lithium-metal batteries enabled by dual-salt electrolyte-assisted micropatterned interfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31777-31785.
[161] ZHANG W, HUANG Y, LIU Y, et al. Strategies toward stable nonaqueous alkali metal-O2 batteries[J]. Advanced Energy Materials, 2019, 9(24).
[162] ZHAO F, ZHOU X F, DENG W, et al. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes[J]. Nano Energy, 2019, 62: 55-63.
[163] YUAN Y X, WU F, CHEN G H, et al. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2019, 37: 197-203.
[164] DENG K R, ZENG Q G, WANG D, et al. Single-ion conducting gel polymer electrolytes: Design, preparation and application[J]. Journal of Materials Chemistry A, 2020, 8(4): 1557-1577.
[165] HU M F, MA Q Y, YUAN Y, et al. Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries[J]. Chemical Engineering Journal, 2020, 388.
[166] ZHANG T, LI Y J, CHEN N, et al. Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 681-687.
[167] ZHANG K, WU F, ZHANG K, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Materials, 2021, 41: 485-494.
[168] ZUO C, LI H P, CHEN G, et al. Fabrication of elastic cyclodextrin-based triblock polymer electrolytes for all-solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 9402-9411.
[169] HAGOPIAN A, TOUJA J, LOUVAIN N, et al. Importance of halide ions in the stabilization of hybrid sn-based coatings for lithium electrodes[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10319-10326.
[170] MIAO R R, YANG J, FENG X J, et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources, 2014, 271: 291-297.
[171] LU Z Y, ZHANG Z G, CHEN X C, et al. Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating[J]. Energy Storage Materials, 2018, 11: 47-56.
[172] SONG J, CHUN J, KIM A, et al. Dendrite-free Li metal anode for rechargeable Li-SO2 batteries employing surface modification with a NaAlCl4-2SO2 electrolyte[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34699-34705.
[173] FAN H L, DONG Q Y, GAO C H, et al. Encapsulating metallic lithium into carbon nanocages which enables a low-volume effect and a dendrite-free lithium metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30902-30910.
[174] CAO D X, SUN X, LI Q, et al. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations[J]. Matter, 2020, 3(1): 57-94.
[175] CHEN H, ADEKOYA D, HENCZ L, et al. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery[J]. Advanced Energy Materials, 2020, 10(21): 13.
[176] CHEN L, LI W X, FAN L Z, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 11.
[177] CHEN L, LI Y T, LI S P, et al. Peo/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184.
[178] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
[179] CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96.
[180] DIRICAN M, YAN C Y, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science & Engineering R-Reports, 2019, 136: 27-46.
[181] DUAN H, FAN M, CHEN W P, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Advanced Materials, 2019, 31(12): 7.
[182] FAN L, WEI S Y, LI S Y, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 31.
[183] FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019.
[184] FAN P, LIU H, MAROSZ V, et al. High performance composite polymer electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(23): 29.
[185] FANG R Y, XU B Y, GRUNDISH N S, et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries[J]. Angewandte Chemie-International Edition, 2021, 60(32): 17701-17706.
[186] GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): 27.
[187] HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical "ceramic-in-polymer" and "polymer-in-ceramic" electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 8.
[188] LI L S, DENG Y F, CHEN G H. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries[J]. Journal of Energy Chemistry, 2020, 50: 154-177.
[189] LIN D C, YUEN P Y, LIU Y Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus[J]. Advanced Materials, 2018, 30(32): 8.
[190] MIURA A, ROSERO-NAVARRO N C, SAKUDA A, et al. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery[J]. Nature Reviews Chemistry, 2019, 3(3): 189-198.
[191] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770.
[192] TANG S, GUO W, FU Y Z. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 29.
[193] TIAN Y S, SHI T, RICHARDS W D, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries[J]. Energy & Environmental Science, 2017, 10(5): 1150-1166.
[194] UMESHBABU E, ZHENG B Z, YANG Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes[J]. Electrochemical Energy Reviews, 2019, 2(2): 199-230.
[195] WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and peo cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 10.
[196] WANG C H, YANG Y F, LIU X J, et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by peo (litfsi) in all-solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(15): 13694-13702.
[197] WANG C W, GONG Y H, LIU B Y, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571.
[198] WANG X, ZHAI H W, QIE B Y, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60: 205-212.
[199] WEI T, WANG Z M, ZHANG Q, et al. Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review[J]. Crystengcomm, 2022, 24(28): 5014-5030.
[200] WEN S J, LUO C, WANG Q R, et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 47: 453-461.
[201] WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 31.
[202] WU N, CHIEN P H, QIAN Y M, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie-International Edition, 2020, 59(10): 4131-4137.
[203] XU L Q, LI J Y, DENG W T, et al. Garnet solid electrolyte for advanced all-solid-state li batteries[J]. Advanced Energy Materials, 2021, 11(2): 24.
[204] YAN Y Y, JU J W, DONG S M, et al. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery[J]. Advanced Science, 2021, 8(9): 9.
[205] ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
[206] ZHANG Q, CAO D X, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): 42.
[207] ZHANG W B, WEBER D A, WEIGAND H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(21): 17835-17845.
[208] ZHANG W Q, NIE J H, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419.
[209] ZHAO C L, LIU L L, QI X G, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): 20.
[210] ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074.
[211] ZHAO W J, YI J, HE P, et al. Solid-state electrolytes for lithium-ion batteries: Fundamentals, challenges and perspectives[J]. Electrochemical Energy Reviews, 2019, 2(4): 574-605.
[212] ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie-International Edition, 2016, 55(40): 12538-12542.
[213] ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839.
[214] ZHU P, YAN C Y, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4279-4285.
[215] ZHU Z Q, HONG M L, GUO D S, et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar
[5]quinone cathode[J]. Journal of the American Chemical Society, 2014, 136(47): 16461-16464.
[216] HU J K, HE P G, ZHANG B C, et al. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries[J]. Energy Storage Materials, 2020, 26: 283-289.
[217] LIU B, ZHANG Y, PAN G X, et al. Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(38): 21794-21801.
[218] SHI H D, ZHANG C J, LU P F, et al. Conducting and lithiophilic mxene/graphene framework for high-capacity, dendrite-free lithium-metal anodes[J]. ACS Nano, 2019, 13(12): 14308-14318.
[219] CHEN R J, ZHANG Y B, LIU T, et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9654-9661.
[220] CHI S S, LIU Y C, ZHAO N, et al. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 309-316.
[221] HAO X J, WENREN H Y, WANG X L, et al. A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet polymerization for lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2020, 558: 145-154.
[222] MA X, LIU M, WU Q P, et al. Composite electrolytes prepared by improving the interfacial compatibility of organic-inorganic electrolytes for dendrite-free, long-life all-solid lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022.
[223] YAO Q, ZHU Y, ZHENG C, et al. Intermolecular cross‐linking reinforces polymer binders for durable alloy‐type anode materials of sodium‐ion batteries[J]. Advanced Energy Materials, 2023, 13(9): 2202939.
[224] ZHANG J, SUN B, ZHAO Y, et al. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries[J]. Angewandte Chemie International Edition, 2017, 56(29): 8505-8509.
[225] LIU T, LESKES M, YU W, et al. Cycling Li-O2 batteries via lioh formation and decomposition[J]. Science, 2015, 350(6260): 530-533.
[226] VELICKY M, BISSETT M A, WOODS C R, et al. Photoelectrochemistry of pristine mono- and few-layer MOS2[J]. Nano Letters, 2016, 16(3): 2023-2032.
[227] YAO K P C, RISCH M, SAYED S Y, et al. Solid-state activation of Li2O2 oxidation kinetics and implications for Li–O2 batteries[J]. Energy & Environmental Science, 2015, 8(8): 2417-2426.
[228] GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269: 405-414.
[229] DONG Q Y, HONG B, FAN H L, et al. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode[J]. Energy Storage Materials, 2022, 45: 1220-1228.
[230] LIU Y Y, LIN D C, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10).
[231] PETRONGARI A, TUCCILLO M, CICCIOLI A, et al. Stable cycling of sodium metal anodes enabled by a sodium/silica‐gel host[J]. ChemElectroChem, 2023, 10(5).
[232] SANCHEZ-RAMIREZ N, MONJE I E, BELANGER D, et al. High rate and long-term cycling of silicon anodes with phosphonium-based ionic liquids as electrolytes for lithium-ion batteries[J]. Electrochimica Acta, 2023, 439.
[233] LI F, XU J, HOU Z, et al. Silicon anodes for high‐performance storage devices: Structural design, material compounding, advances in electrolytes and binders[J]. Chemnanomat, 2020, 6(5): 720-738.
[234] CHEN Z Y, ZHOU J J, GUO Y S, et al. A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery[J]. Electrochimica Acta, 2018, 282: 555-562.
[235] BRUCK A M, GANNETT C N, BOCK D C, et al. The electrochemistry of Fe3O4/polypyrrole composite electrodes in lithium-ion cells: The role of polypyrrole in capacity retention[J]. Journal of The Electrochemical Society, 2017, 164(1): A6260-A6267.
[236] VANITA V, WAIDHA A I, YADAV S, et al. Conductivity enhancement within garnet-rich polymer composite electrolytes via the addition of succinonitrile[J]. International Journal of Applied Ceramic Technology, 2022.
[237] JAMALUDDIN A, SIN Y Y, ADHITAMA E, et al. Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries[J]. Carbon, 2022, 197: 141-151.
[238] ZHANG S S, LI Z, CAI L R, et al. Enabling safer, ultralong lifespan all-solid-state Li-organic batteries[J]. Chemical Engineering Journal, 2021, 416.
[239] YANG Z Z, GEWIRTH A A, TRAHEY L. Investigation of fluoroethylene carbonate effects on Tin-based lithium-ion battery electrodes[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6557-6566.
[240] ZHANG T, DE MEATZA I, QI X, et al. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder[J]. Journal of Power Sources, 2017, 356: 97-102.
[241] ZHENG X M, YOU J H, FAN J J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis[J]. Nano Energy, 2020, 77.
[242] BYUN S, LIU Z, SHIN D O, et al. Alkali metal ion substituted carboxymethyl cellulose as anode polymeric binders for rapidly chargeable lithium-ion batteries[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2023.
[243] ASSEGIE A A, CHENG J H, KUO L M, et al. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery[J]. Nanoscale, 2018, 10(13): 6125-6138.
[244] SONG R, YAO J, XU R, et al. Metastable decomposition realizing dendrite‐free solid‐state Li metal batteries[J]. Advanced Energy Materials, 2023, 13(9): 2203631.
[245] SONG H B, HE T T, LIU J Y, et al. Conformal coating of lithium-zinc alloy on 3D conducting scaffold for high areal capacity dendrite-free lithium metal batteries[J]. Carbon, 2021, 181: 99-106.
[246] SUBRAMANI R, PHAM M N, LIN Y H, et al. Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries[J]. Chemical Engineering Journal, 2022, 431.
[247] SUN H, ZHU G Z, ZHU Y M, et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte[J]. Advanced Materials, 2020, 32(26).
[248] TAKLU B W, SU W N, NIKODIMOS Y, et al. Dual cucl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries[J]. Nano Energy, 2021, 90.
[249] TIAN Y, AN Y L, WEI C L, et al. Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from mxene and carbon dioxide[J]. Chemical Engineering Journal, 2021, 406.
[250] VISHNUGOPI B S, HAO F, VERMA A, et al. Surface diffusion manifestation in electrodeposition of metal anodes[J]. Physical Chemistry Chemical Physics, 2020, 22(20): 11286-11295.
[251] WANG G, CHEN C, CHEN Y H, et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode[J]. Angewandte Chemie-International Edition, 2020, 59(5): 2055-2060.
[252] WANG J X, YE Y D, ZHOU H M, et al. Regulating Li transport in Li-magnesium alloy for dendrite free Li metal anode[J]. Nano Research, 2022.
[253] WANG L, UOSAKI K, NOGUCHI H. Effect of electrolyte concentration on the solvation structure of gold/LiTFSI-DMSO solution interface[J]. Journal of Physical Chemistry C, 2020, 124(23): 12381-12389.
[254] WANG M Q, PENG Z, LUO W W, et al. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure[J]. Advanced Energy Materials, 2019, 9(12).
[255] WANG S S, ZHOU L, TUFAIL M K, et al. In-situ synthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries[J]. Chemical Engineering Journal, 2021, 415.
[256] WANG T, SALVATIERRA R V, TOUR J M. Detecting Li dendrites in a two-electrode battery system[J]. Advanced Materials, 2019, 31(14).
[257] WANG T S, LIU X B, WANG Y, et al. High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries[J]. Advanced Functional Materials, 2021, 31(2).
[258] WANG X S, PAN Z H, WU Y, et al. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode[J]. Nano Research, 2019, 12(3): 525-529.
[259] WANG S Z, ZHANG J T, JIA X H, et al. Synergistic regulating of dynamic trajectory and lithiophilic nucleation by heusler alloy for dendrite-free Li deposition[J]. Energy Storage Materials, 2022, 50: 505-513.
[260] WANG Y L, LIU F M, FAN G L, et al. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes[J]. Journal of the American Chemical Society, 2021, 143(7): 2829-2837.
[261] WANG L M, TANG Z F, LIN J, et al. A 3D Cu current collector with a biporous structure derived by a phase inversion tape casting method for stable Li metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(29): 17376-17385.
[262] WANG H, MATIOS E, LUO J M, et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries[J]. Chemical Society Reviews, 2020, 49(12): 3783-3805.
[263] VU T T, KIM B G, KIM J H, et al. Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its accurate prediction[J]. Journal of Materials Chemistry A, 2021, 9(40): 22833-22841.
[264] TIAN A L, LUO K L, LI Z D, et al. F-N-S doped lithiophilic interphases for stable Li metal and alloy anodes[J]. Journal of Power Sources, 2021, 508.
[265] LI L S, DENG Y F, DUAN H H, et al. LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability[J]. Journal of Energy Chemistry, 2022, 65: 319-328.
[266] LI Y, YANG L W, DONG R, et al. A high strength asymmetric polymer-inorganic composite solid electrolyte for solid-state Li-ion batteries[J]. Electrochimica Acta, 2022, 404.
[267] LIU H R, FENG W, ZHAO M L, et al. Interface functionalization of composite electrolyte by Lix-CeO2 layer on the surface of Li6.4La3Zr1.4Ta0.6O12[J]. Electrochimica Acta, 2022, 435.
[268] SONG S F, DENG F, ZHAI Y F, et al. Ultrathin, dense, hybrid polymer/ceramic gel electrolyte for high energy lithium metal batteries[J]. Materials Letters, 2020, 279.
[269] TONG R A, CHEN L H, SHAO G, et al. An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide) solid electrolytes: Enhanced compatibility and cycle performance[J]. Journal of Power Sources, 2021, 492.
[270] ZHANG L, WANG Z T, ZHOU H, et al. Synergistic coupling of Li6.4La3Zr1.4Ta0.6O12 and fluoroethylene carbonate boosts electrochemical performances of poly(ethylene oxide)-based all-solid-state lithium batteries[J]. ChemElectroChem, 2022, 9(17).
[271] ZHANG X R, SUN Y X, MA C H, et al. Li6.4La3Zr1.4Ta0.6O12 reinforced polystyrene-poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide)-polystyrene pentablock copolymer-based composite solid electrolytes for solid-state lithium metal batteries[J]. Journal of Power Sources, 2022, 542.
[272] BAI C J, WU Z G, XIANG W, et al. Poly(ethylene oxide)/poly(vinylidene fluoride)/Li(6.4)La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries[J]. Journal of Power Sources, 2020, 472.
[273] CUI Y, MIAO D T, YU G F, et al. Novel quasi-solid-state composite electrolytes boost interfacial Li+ transport for long-cycling and dendrite-free lithium metal batteries[J]. Energy Storage Materials, 2023, 56: 258-266.
[274] FANG Z Q, ZHAO M, PENG Y, et al. Poly (vinylidene fluoride) binder reinforced poly (propylene carbonate)/3D garnet nanofiber composite polymer electrolyte toward dendrite-free lithium metal batteries[J]. Materials Today Energy, 2022, 24, 100952.
[275] FU Y D, YANG K, XUE S D, et al. Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries[J]. Advanced Functional Materials, 2023, 202210845.
[276] GUO Q Y, XU F L, SHEN L, et al. 20 mu m-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries[J]. Energy Material Advances, 2022, 9753506.
[277] GUPTA A, SAKAMOTO J. Controlling ionic transport through the peo-litfsi/llzto interface[J]. Electrochemical Society Interface, 2019, 28(2): 63-69.
[278] ZENG G F, ZHAO J Y, FENG C, et al. Flame-retardant bilayer separator with multifaceted van der waals interaction for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26402-26411.
[279] SONG S D, XU Y Q, RUAN Y L, et al. Isomeric Li-La-Zr-O amorphous-crystalline composite thin-film electrolytes for all-solid-state lithium batteries[J]. ACS Applied Energy Materials, 2021, 4(8): 8517-8528.
[280] SONG C, LI Z G, PENG J, et al. Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries[J]. Journal of Materials Chemistry A, 2022, 10(30): 16087-16094.
修改评论