[1]姜淑文, 齐民. 生物医用多孔金属材料的研究进展[J].材料科学与工程, 2002,(04):597-600.
[2]HERMAWAN H, PURNAMA A, DUBE D, et al. Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomaterialia, 2010, 6(5):1852-1860.
[3]DREVET R, ZHUKOVA Y, DUBINSKIY S, et al. Electrodeposition of cobalt-substituted calcium phosphate coatings on Ti22Nb6Zr alloy for bone implant applications[J]. Journal of Alloys and Compounds, 2019, 793:576-582.
[4]GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review[J]. Progress in Materials Science, 2009, 54(3):397-425.
[5]GOMEZ SANCHEZ A, BALLARRE J, ORELLANO J C, et al. Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study[J]. Journal of Materials Science: Materials in Medicine, 2013, 24:161-169.
[6]ZHANG Y, LI L, SHI Z J, et al. Porous tantalum rod implant is an effective and safe choice for early-stage femoral head necrosis: a meta-analysis of clinical trials[J]. European Journal of Orthopaedic Surgery & Traumatology, 2013, 23(2):211-217.
[7]NAGELS J, STOKDIJK M L, ROZING P M. Stress shielding and bone resorption in shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2003, 12(1):35-39.
[8]ZHENG Y F, GU X N, WITTE F. Biodegradable metals[J]. Materials Science and Engineering: R: Reports, 2014, 77:1-34.
[9]POINERN G, BRUNDAVANAM S, FAWCETT D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant[J]. american journal of biomedical engineering, 2012., 2(6):218-240
[10]VOJTĚCH D, KUBáSEK J, ERáK J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomaterialia, 2011, 7(9):3515-3522.
[11]张飞洋. 微波辅助法制备磷灰石涂层及性能研究[D];天津:天津大学, 2017:38-43
[12]任萌果. 钙磷生物玻璃陶瓷涂层包覆镁合金的制备及性能研究[D];天津:天津大学, 2014:66-71
[13]THAMARAISELVI T, RAJESWARI S. Biological evaluation of bioceramic materials-a review[J]. Carbon, 2004, 18(1):9-17.
[14]WU C, FAN W, ZHOU Y, et al. 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis[J]. Journal of Materials Chemistry, 2012, 22(24):12288-12295.
[15]TSIGKOU O, JONES J R, POLAK J M, et al. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements[J]. Biomaterials, 2009, 30(21):3542-3550.
[16]NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials[J]. Progress in Polymer Science, 2007, 32(8-9):762-798.
[17]冯海波. 以仿生思想造出新型骨修复材料 临床骨修复有了新方法[J]. 广东科技, 2014, 23(11):18-19.
[18]SUN Z P, ERCAN B, EVIS Z, et al. Microstructural, mechanical, and osteocompatibility properties of Mg2+/F(-)-doped nanophase hydroxyapatite[J]. J Biomed Mater Res A, 2010, 94(3):806-815.
[19]SATO M, SLAMOVICH E B, WEBSTER T J. Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings[J]. Biomaterials, 2005, 26(12):1349-1357.
[20]ZHANG B P, WANG Y, GENG L. Research on Mg-Zn-Ca Alloy as Degradable Biomaterial[J]. Biomaterials-Physics and Chemistry,2011.184-204
[21]DOU J, CHEN Y, YU H, et al. Research status of magnesium alloys by micro-arc oxidation: a review[J]. Surface Engineering, 2017, 33(10):731-738.
[22]VERSCHUREN E, HOENDEROP J, PETERS D, et al. Tubular flow activates magnesium transport in the distal convoluted tubule[J]. The FASEB Journal, 2019,33(4):5024-5044
[23]LI L Y, CUI L Y, ZENG R C, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review [J]. Acta Biomater, 2018, 79: 23-36.
[24]ZHAO D, WITTE F, LU F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective [J]. Biomaterials, 2017, 112: 287-302.
[25]CHOW D H K, WANG J, WAN P, et al. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits [J]. Bioact Mater, 2021, 6(11): 4176-4185.
[26]WAN P, TAN L, YANG K, et al. Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability:A Review[J]. Journal of Materials Science & Technology, 2016, 827-834
[27]LI N, ZHENG Y. Novel Magnesium Alloys Developed for Biomedical Application: A Review[J]. Journal of Materials Science & Technology, 2013, 29(6):489-502.
[28]CHEN J, LIANG S, FU D, et al. Design and in situ prepare a novel composite coating on Mg alloy for active anti-corrosion protection[J]. Journal of Alloys and Compounds, 2020, 831(8):154580.
[29]LIN Z, WANG T, YU X, et al. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: a review[J]. Journal of Alloys and Compounds, 2021,879:160453.
[30]CHEN J, XU Y, KOLAWOLE S K, et al. Systems, Properties, Surface Modification and Applications of Biodegradable Magnesium-Based Alloys: A Review[J]. Materials (Basel), 2022,15(14):5031
[31]施尔畏,夏长泰,王步国,仲维卓. 水热法的应用与发展[J]. 无机材料学报, 1996, (02):193-206.
[32]NATARAJAN S, SIVAN V, TENNYSON P G. Protective coatings on magnesium and its alloys: a critical review[J]. Corrosion Prevention & Control, 2004, (4):51.
[33]HARA N, KOBAYASHI Y, KAGAYA D, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions[J]. Corrosion Science, 2007, 49(1):166-175.
[34]龚福宝. 镁合金硅烷/Mg(OH)_2基复合涂层的耐蚀性能研究[D];重庆:重庆大学, 2016:57-60
[35]林易树. 镁合金表面钙镁磷复合涂层的水热法制备及性能研究[D]; 天津:天津大学, 2018:38-42.
[36]FENG J, CHEN Y, LIU X, et al. In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties[J]. Materials Chemistry and Physics, 2013, 143(1):322-329.
[37]张满意. 稀土镁合金水热法表面处理的研究[D];上海:上海交通大学, 2011:13-19
[38]ZHU Y, ZHAO Q, ZHANG Y-H, et al. Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water[J]. Surface and Coatings Technology, 2012, 206(11-12):2961-2966.
[39]王慧慧. 镁合金表面氧化锆基膜层的水热制备及腐蚀性能研究[D];太原:太原科技大学,2021:56-59
[40]钱志强, 葛飞, 刘海宁, et al. 一步水热法构筑镁合金超疏水表面及其性能研究[J]. 聊城大学学报(自然科学版), 2019, 32(01):38-43.
[41]KANNAN, BOBBY M. Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review[J]. Surface & Coatings Technology, 2016, 301:36-41.
[42]WITECKA M. Electrophoretically deposited high molecular weight chitosan/bioactive glass composite coatings on WE43 magnesium alloy[J]. Surface & Coatings Technology, 2021, 418(1):127237
[43]RA A, SRF B, MS A, et al. Ternary hydroxyapatite/chitosan/graphene oxide composite coating on AZ91D magnesium alloy by electrophoretic deposition - ScienceDirect [J]. Ceramics International, 2021,47(19):27071-27081
[44]SUKUROGLU E E. Investigation of antibacterial susceptibility of Ag-doped oxide coatings onto AZ91 magnesium alloy by microarc oxidation method[J]. Advances in Materials Science and Engineering, 2018, 1-7.
[45]MUHAFFEL F, CIMENOGLU H. Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy[J]. Surface and Coatings Technology, 2019, 357:822-832.
[46]ZHU Y, LIU W, NGAI T. Polymer coatings on magnesium‐based implants for orthopedic applications[J]. Journal of Polymer Science, 2021, 60(1):32-51.
[47]KANNAN LY CC ZQ LB C Z B. Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review[J]. Acta biomaterialia, 2018,79.
[48]GU X N, ZHENG Y F, LAN Q X, et al. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan[J]. Biomedical Materials, 2009, 4(4):044109.
[49]ALABBASI A, LIYANAARACHCHI S, KANNAN M B. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy[J]. Thin Solid Films,2012, 520(23):6841-6844.
[50]L, F, HW A, et al. Polydopamine-assisted surface modification for orthopaedic implants[J]. Journal of Orthopaedic Translation, 2019, 17:82-95.
[51]JAMESH M I, WU G, ZHAO Y, et al. Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium[J]. Corrosion Science, 2014, 86:239-251.
[52]JAMESH M I, WU G, ZHAO Y, et al. Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids[J]. Corrosion Science, 2014, 82:7-26.
[53]LIANG T, ZENG L, SHI Y, et al. In vitro and in vivo antibacterial performance of Zr & O PIII magnesium alloys with high concentration of oxygen vacancies[J]. Bioactive Materials, 2021, 6(10):3049-3061.
[54]ZHAO Y, WU G, PAN H, et al. Formation and electrochemical behavior of Al and O plasma-implanted biodegradable Mg-Y-RE alloy[J]. Materials Chemistry and Physics, 2012, 132(1):187-191.
[55]WU G, ZHANG X, ZHAO Y, et al. Plasma modified Mg–Nd–Zn–Zr alloy with enhanced surface corrosion resistance[J]. Corrosion Science, 2014, 78:121-129.
[56]GIULIERI S G, GRABER P, OCHSNER P E, et al. Management of infection associated with total hip arthroplasty according to a treatment algorithm[J]. Infection, 2004, 32(4):222-228.
[57]RAND J A. Survivorship analysis of total knee arthroplasty[J]. Journal of Bone & Joint Surgery American Volume, 1991, 73(3):397-409.
[58]KALERVO V, ANNE E, JUHANI O, et al. The conventionally ventilated operating theatre and air contamination control during cardiac surgery--bacteriological and particulate matter control garment options for low level contamination[J]. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery,1998, 14(2):206-210.
[59]CAMPOCCIA D, MONTANARO L, ARCIOLA C R. The significance of infection related to orthopedic devices and issues of antibiotic resistance[J]. Biomaterials, 2006, 27(11):2331-2339.
[60]KUBICA M, GUZIK K, KOZIEL J, et al. A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages[J]. PLoS ONE, 2008, 3(1):1409-1415
[61]ZHAO Q, YI L, JIANG L, et al. Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating[J]. Nanomedicine (Lond), 2019, 14(9):1109-1133.
[62]LIN J, NGUYEN N T, ZHANG C, et al. Antimicrobial Properties of MgO Nanostructures on Magnesium Substrates[J]. ACS Omega, 2020, 5(38):24613-24627.
[63]梁涛. 可降解镁基金属的耐蚀性能和抗菌性能研究[D]; 深圳:中国科学院大学(中国科学院深圳先进技术研究院),2017:35-39
[64]BROOKS E K, AHN R, TOBIAS M E, et al. Magnesium alloy AZ91 exhibits antimicrobial properties in vitro but not in vivo[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(1):221-227.
[65]LEMIRE J A, HARRISON J J, TURNER R J. Antimicrobial activity of metals: mechanisms, molecular targets and applications[J]. Nature Reviews Microbiology, 2013, 11(6):371-384.
[66]SOREN S, KUMAR S, MISHRA S, et al. Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method[J]. Microbial Pathogenesis, 2018, 119:145-151.
[67]GODOY-GALLARDO M, ECKHARD U, DELGADO L M, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications[J]. Bioact Mater, 2021, 6(12):4470-4490.
[68]SALAIE R N, BESINIS A, LE H, et al. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells[J]. Materials science & engineering, 2020, 107:110210.
[69]BERGER T J, SPADARO J A, CHAPIN S E, et al. Electrically Generated Silver Ions: Quantitative Effects on Bacterial and Mammalian Cells[J]. Antimicrobial Agents & Chemotherapy, 1976, 9(2):357-358.
[70]王瑜歆. 纳米银类产品的临床应用[J]. 中国医疗器械信息, 2021, 27(15):39-41.
[71]BöSWALD M, LUGAUER S, REGENFUS A, et al. Reduced rates of catheter-associated infection by use of a new silver-impregnated central venous catheter[J]. Infection, 1999, 27(S1):S56-S60.
[72]GOSHEGER G, HARDES J, AHRENS H, et al. Silver-coated megaendoprostheses in a rabbit model--an analysis of the infection rate and toxicological side effects[J]. Biomaterials, 2004, 25(24):5547-5556.
[73]MATSUMURA Y, YOSHIKATA K, KUNISAKI S, et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate[J]. Appl Environ Microbiol, 2003, 69(7):4278-4281.
[74]LIAU S Y, READ D C, PUGH W J, et al. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions[J]. Lett Appl Microbiol, 1997, 25(4):279-283.
[75]余宁翔. 多糖基纳米载银材料构建及其协同抗菌研究[D];南昌:南昌大学, 2020:77-81
[76]张维波. 多巴胺介导钛表面纳米银涂层的构建及其抗菌和成骨活性评价[D];济南:山东大学, 2019:45-49
[77]RAI M, YADAV A, GADE A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnol Adv, 2009, 27(1):76-83.
[78]MARAMBIO-JONES C, HOEK E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12(5):1531-1551.
[79]LI, HAIFEI, LIAW, et al. In vitro investigation of Mg-Zn-Ca-Ag bulk metallic glasses for biomedical applications[J]. Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites, 2015,427(1):134-138
[80]ZHANG Q, SUN C, ZHAO Y, et al. Low Ag-Doped Titanium Dioxide Nanosheet Films with Outstanding Antimicrobial Property[J]. Environmental Science & Technology, 2010, 44(21):8270-8275.
[81]MINANDRI F, BONCHI C, FRANGIPANI E, et al. Promises and failures of gallium as an antibacterial agent[J]. Future Microbiol, 2014, 9(3):379-397.
[82]BRAUD A, HOEGY F, JEZEQUEL K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake pathway[J]. Environmental microbiology, 2009, 11(5):1079-1091.
[83]KELSON A B, CARNEVALI M, TRUONG-LE V. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms[J]. Current Opinion in Pharmacology, 2013, 13(5):707-716.
[84]SALES V D A W, TIM, OACUTE, et al. A Systematic Review of the Anti-inflammatory Effects of Gallium Compounds[J]. Current Medicinal Chemistry,2021, 28(15):2062-2076.
[85]WANG J, ZHANG S, SUN Z, et al. Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant[J]. Journal of Materials Sicence and Techology, 2019, 35(10):2336-2344
[86]LIN J, TONG X, SHI Z, et al. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications [J]. Acta Biomaterialia, 2020, 106(1):410-427
[87]GROESSNER-SCHREIBER B, NEUBERT A, MüLLER W-D, et al. Fibroblast growth on surface-modified dental implants: An in vitro study[J]. Journal of Biomedical Materials Research Part A, 2003, 64(4):591-599.
[88]Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53:211-220.
[89]LIANG T, ZENG L, SHI Y, et al. In vitro and in vivo antibacterial performance of Zr & O PIII magnesium alloys with high concentration of oxygen vacancies[J]. Bioact Mater, 2021, 6(10):3049-2061.
[90]CHENG M, QIAO Y, WANG Q, et al. Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility[J]. Colloids Surf B Biointerfaces, 2016, 148:200-210.
[91]EHRMAN J D, BENDER E T, STOJILOVIC N, et al. Microbial adhesion to zirconium alloys[J]. Colloids & Surfaces B Biointerfaces, 2006, 50(2):152-159.
[92]KANEKO Y, THOENDEL M, OLAKANMI O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity[J]. The Journal of clinical investigation, 117(4):877-888.
[93]朱元元, 杨双旺, 邱彦. 硝酸镓可降解涂层的体外抗菌实验[J].东南国防医药, 2014, 16(4): 346-348
[94]OLAKANMI O, BRITIGAN B E, SCHLESINGER L S. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages[J]. Infection and immunity, 2000, 68(10):5619-5627.
[95]DANIELA B, ANDREA S, WERNER Z, et al. In Vitro Activity of Gallium Maltolate against Staphylococci in Logarithmic, Stationary, and Biofilm Growth Phases: Comparison of Conventional and Calorimetric Susceptibility Testing Methods[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(1):157-163.
[96]BANIN E, LOZINSKI A, BRADY K M, et al. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(43):16761-16766.
[97]RZHEPISHEVSKA O, EKSTRAND-HAMMARSTRM B, POPP M, et al. The Antibacterial Activity of Ga3+ Is Influenced by Ligand Complexation as Well as the Bacterial Carbon Source[J]. Antimicrobial Agents & Chemotherapy, 2011, 55(12):5568-5580.
[98]STOJILJKOVIC I, KUMAR V, SRINIVASAN N. Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria[J]. Molecular Microbiology, 2010, 31(2):429-442.
[99]KATHARINA, RICHTE, NICKY, et al. A Topical Hydrogel with Deferiprone and Gallium-Protoporphyrin Targets Bacterial Iron Metabolism and Has Antibiofilm Activity[J]. Antimicrobial Agents & Chemotherapy, 2017.61(6):1-31
[100]REGIEL-FUTYRA, ANNA, KUS-LISKIEWICZ, et al. Development of Noncytotoxic Chitosan-Gold Nanocomposites as Efficient Antibacterial Materials[J]. American Chemical Society-Appl.Mater. Interfaces 2015, 7(2):1087–1099
[101]AL O, ALI D, ALARIFI S, et al. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells[J]. Environmental Toxicology, 2015, 30(1-2): 149-160.
[102]SONG L, CONNOLLY M, FERNáNDEZ-CRUZ M L, et al. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines[J]. Nanotoxicology, 2014, 8(4):383-393.
[103]SAWAI J, KOJIMA H, IGARASHI H, et al. Antibacterial characteristics of magnesium oxide powder[J]. Wjmicrobiolbiotechnol, 2000, 16(2):187-194.
[104]NGUYEN N, GR ELLING N, WETTELAND C L, et al. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms[J]. entific Reports, 2018,8(1): 16260
[105]WETTELAND C L, NGUYEN N, LIU H. Concentration-Dependent Behaviors of Bone Marrow Derived Mesenchymal Stem Cells and Infectious Bacteria toward Magnesium Oxide Nanoparticles[J]. Acta Biomaterialia, 2016:341-356.
[106]SAWAI J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. Journal of Microbiological Methods, 2003, 54(2):177-182.
[107]ZHU Y, GU Y, QIAO S, et al. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium[J]. J Biomed Mater Res A, 2017, 105(3):871-878.
[108]ISABEL, C., SALDARRIAGA, et al. In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly(ethylene glycol)-based polymer coating - ScienceDirect[J]. Acta Biomaterialia, 2010, 6(3):1119-1124.
[109]FE RNANDEZ I, MEI H, LOCHHEAD M J, et al. The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings[J]. Biomaterials, 2007, 28(28):4105-4012.
[110]MADDIKERI R R, TOSATTI S, SCHULER M, et al. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces[J]. Journal of Biomedical Materials Research Part A, 2010, 84A(2):425-435.
[111]AL-ANI A, BODEN A, AL KOBAISI M, et al. The influence of PEG-thiol derivatives on controlling cellular and bacterial interactions with gold surfaces[J]. Applied Surface Science, 2018, 462:980-990.
[112]CURRIE E P, NORDE W, STUART M C. Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties[J]. Adv Colloid Interface,2003,100-102(28):205-165
[113]FOSS B L, GHIMIRE N, TANG R, et al. Bacteria and osteoblast adhesion to chitosan immobilized titanium surface: A race for the surface[J]. Colloids Surf B Biointerfaces, 2015, 134:370-276.
[114]GHIMIRE N, FOSS B L, SUN Y, et al. Interactions among osteoblastic cells, Staphylococcus aureus, and chitosan-immobilized titanium implants in a postoperative coculture system: An in vitro study[J]. J Biomed Mater Res A, 2016, 104(3):586-594.
[115]XIAO Y H, CHEN J H, FANG M, et al. Antibacterial effects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections[J]. J Oral Sci, 2008, 50(3):323-327.
[116]WANG H, MAEDA T, MIYAZAKI T. Preparation of bioactive and antibacterial PMMA-based bone cement by modification with quaternary ammonium and alkoxysilane[J]. J Biomater Appl, 2021, 36(2):311-320.
[117]SHI Z, NEOH K G, KANG E T, et al. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide[J]. Journal of Biomedical Materials Research Part A, 2010, 86A(4):865-872.
[118]MENDOZA G, REGIEL-FUTYRA A, ANDREU V, et al. Bactericidal Effect of Gold-Chitosan Nanocomposites in Coculture Models of Pathogenic Bacteria and Human Macrophages[J]. ACS Appl Mater Interfaces, 2017, 9(21):17693-17701.
[119]KRISHNA RAO K S V, RAMASUBBA REDDY P, LEE Y I, et al. Synthesis and characterization of chitosan-PEG-Ag nanocomposites for antimicrobial application[J]. Carbohydr Polym, 2012, 87(1):920-925.
[120]XU H, ZHANG G, XU K, et al. Mussel-inspired dual-functional PEG hydrogel inducing mineralization and inhibiting infection in maxillary bone reconstruction[J]. Mater Sci Eng C Mater Biol Appl, 2018, 90:379-386.
[121]EBY D M, SCHAEUBLIN N M, FARRINGTON K E, et al. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles[J]. Acs Nano, 2009, 3(4):984-994.
[122]ZHANG C, ZHOU Z, WANG X, et al. A multifunctional coating with silk fibroin/chitosan quaternary ammonium salt/heparin sodium for AZ31B magnesium alloy[J]. Materials Today Communications, 2023, 34:105070
[123]HU F, ZHOU Z, XU Q, et al. A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment[J]. Int J Biol Macromol, 2019, 129:1113-1119.
[124]赵月鑫, 陈滨. 巨噬细胞极化在骨组织工程免疫研究中的进展[J]. 中国组织工程研究, 2022, 26(13):2120-2126.
[125]李效宇, 蔡青, 尹昭懿, et al. 种植体骨结合过程中免疫细胞作用的研究进展[J]. 中国口腔种植学杂志, 2021, 26(03):196-201.
[126]廖安琪, 杨仁丽, 杨醒眉. 种植体周围炎的免疫应答机制及其影响因素的研究进展[J]. 口腔医学, 2021, 41(12):1143-1147.
[127]MOSS, JOE W E, RAMJI, et al. Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets [J]. Future Medicinal Chemistry,2016,72:1-14
[128]WANG M, YU Y, DAI K, et al. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation[J]. Biomater Sci, 2016, 4(11):1574-1583.
[129]MAZUR A, MAIER J, ROCK E, et al. Magnesium and the inflammatory response: potential physiopathological implications[J]. Archives of Biochemistry & Biophysics, 2007, 458(1):48-56.
[130]QIAO X, YANG J, SHANG Y, et al. Magnesium-doped Nanostructured Titanium Surface Modulates Macrophage-mediated Inflammatory Response for Ameliorative Osseointegration[J]. Int J Nanomedicine, 2020, 15:7185-7198.
[131]CHITAMBAR C R. The therapeutic potential of iron-targeting gallium compounds in human disease: From basic research to clinical application[J]. Pharmacol Res, 2017, 115:56-64.
[132]DROBYSKI W R, UL-HAQ R, MAJEWSKI D, et al. Modulation of in vitro and in vivo T-cell responses by transferrin- gallium and gallium nitrate[J]. Blood, 1996, 88(8):3056-3064.
[133]OROSZ C G, WAKELY E, BERGESE S D, et al. Prevention of murine cardiac allograft rejection with gallium nitrate. Comparison with anti-CD4 monoclonal antibody[J]. Transplantation, 1996, 61(5):783-791.
[134]APSELOFF G, HACKSHAW K V, WHITACRE C, et al. Gallium nitrate suppresses lupus in MRL/lpr mice[J]. Naunyn-Schmiedeberg's archives of pharmacology, 1997, 356(4):517.
[135]BERNSTEIN L R, TREVOR T, CLAIRE G, et al. Chemistry and Pharmacokinetics of Gallium Maltolate, a Compound With High Oral Gallium Bioavailability[J]. Met Based Drugs, 2000, 7(1):33-47.
[136]EBY G. Elimination of arthritis pain and inflammation for over 2 years with a single 90 min, topical 14% gallium nitrate treatment: Case reports and review of actions of gallium III[J]. Medical Hypotheses, 2005, 65(6):1136-1141.
[137]DONG J, FANG D, ZHANG L, et al. Gallium-doped titania nanotubes elicit anti-bacterial efficacy in vivo against Escherichia coli and Staphylococcus aureus biofilm[J]. Materialia, 2019,5:100209
[138]MITCHELL, G., THOMPSON, et al. Evaluation of Gallium Citrate Formulations against a Multidrug-Resistant Strain of Klebsiella pneumoniae in a Murine Wound Model of Infection[J]. Antimicrobial Agents & Chemotherapy, 2015.59(10):6484-6493
[139]CHOI JH L, J.H.Roh,K.H.Seo, Gallium nitrate ameliorates type II collagen-induced arthritis in mice[J]. International immunopharmacology, 2014, 20(1):269-275
[140]CHOI S R, BRITIGAN B E, NARAYANASAMY P. Treatment of Virulent Mycobacterium tuberculosis and HIV Coinfected Macrophages with Gallium Nanoparticles Inhibits Pathogen Growth and Modulates Macrophage Cytokine Production [J]. American society for Microbiology,mSphere, 2019, 4(4):1-11
[141]WANG, JIASHI, MING, et al. Organic Gallium Treatment Improves Osteoporotic Fracture Healing Through Affecting the OPG/RANKL Ratio and Expression of Serum Inflammatory Cytokines in Ovariectomized Rats[J].Biological Trace Element Research volume, 2018, 183:270–279
[142]YANG Q, YUAN W, LIU X, et al. Atomic Layer Deposited ZrO 2 Nanofilm on Mg-Sr Alloy for Enhanced Corrosion Resistance and Biocompatibility[J]. Acta Biomaterialia, 2017, 58:515-526
[143]WANG J, LI D, XIANG Y, et al. Hydrotalcite conversion coating on Mg alloy and its corrosion resistance[J]. Journal of Alloys & Compounds, 2010, 494(1-2):271-274.
[144]WINZER N, ATRENS A, SONG G, et al. A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys[J]. Advanced Engineering Materials, 2005,7(8): 659-693.
[145]陈媛媛, 唐晓宁, 崔帅, et al. 活性氧抗菌机理及其研究进展[J]. 工程科学学报,2022, 45(6):967-978.
[146]FLANNAGAN R S, COSíO G, GRINSTEIN S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies[J]. Nature Reviews Microbiology, 2009, 7(5):355-366.
[147]RUALES-LONFAT C, BENíTEZ N, SIENKIEWICZ A, et al. Deleterious effect of homogeneous and heterogeneous near-neutral photo-Fenton system on Escherichia coli. Comparison with photo-catalytic action of TiO2 during cell envelope disruption[J]. Applied Catalysis B: Environmental, 2014, 160-161:286-297.
[148]LIU Y, TIAN Y, HAN Q, et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application[J]. Chemical Engineering Journal, 2021, 410:128209.
[149]RIBEIRO M, MONTEIRO F J, FERRAZ M P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions[J]. Biomatter, 2012, 2(4): 176-194.
[150]KARAVOLOS M H, HORSBURGH M J, INGHAM E, et al. Role and regulation of the superoxide dismutases of Staphylococcus aureus[J]. Microbiology (Reading), 2003, 149(10): 2749-2758.
[151]CLEMENTS, MARK, O., et al. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in[J]. Journal of Bacteriology, 1999, 181(13):1-12
[152]BHASKAR, DAS, SAHOO, et al. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus[J]. Materials Science & Engineering C, 2018, 91:436-444
[153]WANG G, JIANG W, MO S, et al. Nonleaching Antibacterial Concept Demonstrated by In Situ Construction of 2D Nanoflakes on Magnesium[J]. Adv Sci (Weinh), 2020, 7(1): 1902089.
[154]ZHU Y, WU G, ZHANG Y-H, et al. Growth and characterization of Mg(OH)2 film on magnesium alloy AZ3 [J]. Applied Surface Science, 2011, 257(14):6129-6137.
[155]CAI S, JIA X, HAN Q, et al. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects[J]. Nano Research, 2017, 10(6):2056-2069.
[156]LI L, CAO L, XIANG X, et al. ROS‐Catalytic Transition‐Metal‐Based Enzymatic Nanoagents for Tumor and Bacterial Eradication[J]. Advanced Functional Materials, 2021, 32(1):2107530
[157]CARLSON C, HUSSAIN S M, SCHRAND A M, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species[J]. J Phys Chem B, 2008, 112(43):13608-13619.
[158]NGUYEN N T, GRELLING N, WETTELAND C L, et al. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms[J]. Sci Rep, 2018, 8(1):16260.
[159]DU W-L, NIU S-S, XU Y-L, et al. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions[J]. Carbohydrate Polymers, 2009, 75(3):385-389.
[160]JAUNG-GENGLIN Y-c Y-p C-c G H-l J. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall [J]. Acta Pharmacol Sin, 2004, 25 (7): 932-936
[161]FLANNAGAN R S, COSIO G, GRINSTEIN S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies[J]. Nat Rev Microbiol, 2009, 7(5):355-366.
[162]MURRAY P J, WYNN T A. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol, 2011, 11(11):723-737.
[163]BROZ P, MONACK D M. Newly described pattern recognition receptors team up against intracellular pathogens[J]. Nature Reviews Immunology, 2013, 13(8):551-565.
[164]GOMES M T R, CAMPOS P C, OLIVEIRA F S, et al. Critical Role of ASC Inflammasomes and Bacterial Type IV Secretion System in Caspase-1 Activation and Host Innate Resistance to Brucella abortus Infection[J]. Journal of Immunology, 2013, 190(7):3629.
修改评论