[1] Tawiah B, Yu B, Fei B. Advances in flame retardant poly(lactic acid) [J]. Polymers, 2018, 10(8): 876.
[2] Poddar M K, Dikshit P K. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites [J]. Nano Select, 2021, 2(9): 1605-1628.
[3] Mosallam A S, Bayraktar A, Elmikawi M, et al. Polymer composites in construction: An overview [J]. SOJ Materials Science & Engineering, 2013, 2(1): 25.
[4] Aranberri I, Montes S, Azcune I, et al. Fully biodegradable biocomposites with high chicken feather content [J]. Polymers (Basel), 2017, 9 (11): 593.
[5] Sabu Thomas K J, Malhotra S K, Koichi G, et al. Fully Biodegradable “Green" Composites [J]. Polymer, Composite,2013, 3 (2014): 431-434.
[6] 孙衍林,罗涌泉. 生物基材料在汽车行业的应用进展[J]. 上海塑料, 2021, 49(5): 44—48.
[7] Jost V. Packaging related properties of commercially available biopolymers - An overview of the status quo [J]. Express Polymer Letters, 2018, 12(5): 429-435.
[8] Bioplastics E. Bioplastics facts and figures [M]. Nova-Institute Hirth. 2019: 16.
[9] Xue Y J, Feng J B, Ma Z W, et al. Advances and challenges in eco-benign fire- retardant polylactide [J]. Materials Today Physics, 2021, 21: 100568.
[10] Boey J Y, Mohamad L, Khok Y S, et al. A review of the applications and biodegradation of polyhydroxyalkanoates and poly (lactic acid) and its composites [J]. Polymers, 2021, 13(10): 1544.
[11] 贾世玲. 聚乳酸的增韧改性及其耐低温性能研究[D]. 吉林:长春工业大学, 2022.
[12] 张敬勋. 聚碳酸亚丙醋在膜制品中的应用研究[D]. 青岛: 青岛科技大学, 2017.
[13] Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: a review[D]. Agronomy for Sustainable Development, 2012, 32(2): 501-529.
[14] Haider T P, Volker C, Kramm J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and onsociety[J]. Angewandte Chemie International Edition in English, 2019, 58(1): 50-62.
[15] Elsawy M A, Kim K H, Park J W, et al. Hydrolytic degradation of polylactic acid (PLA) and its composites[D]. Renewable and Sustainable Energy Reviews, 2017, 79: 1346-1352.
[16] Hamad K, Kaseem M, Yang H W, et al. Properties and medical applications of polylactic acid: a review[J]. Express Polymer Letters. 2015, 9(5): 435-455.
[17] 金琰, 蔡凡凡, 王立功, 等. 生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022, 38(5): 1784-1808.
[18] 郝艳平. 聚乳酸与聚亚丙基碳酸酯的改性研究[D]. 吉林:长春工业大学, 2013.
[19] Williams C K, Hillmyer M A. Polymers from renewable resources: A perspective for a special issue of polymer reviews [J]. Polymer Review, 2008, 48(1): 1-10.
[20] 郝艳萍. 聚乳酸增塑与对苯二甲酸丁二醇 酯增韧改性研究[D]. 吉林:长春吉林大学, 2016.
[21] Mikos A G, Lyman M D, Freed L E, et al. Wetting of poly(L-lactic acid) and poly(D,L-lactic-co-glycolic acid) foams for tissue culture [J]. Biomaterials, 1994, 15(1): 55-58.
[22] Jung Y, Kim S S, Kim Y H, et al. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering [J]. Biomaterials, 2005, 26(32): 6314-6322.
[23] Saini P, Arora M, Kumar M. Poly(lactic acid) blends in biomedical applications [J]. Advanced Drug Delivery Reviews, 2016, 107: 47-59.
[24] Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers [J]. Polymer Degradation Stability, 1998, 59(1-3): 145-152.
[25] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials [J]. Macromolecular Bioscience, 2004, 4(9): 835-864.
[26] Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: An overview [J]. Progress in Polymers Science, 2007, 32(4): 455-482.
[27] Nofar M, Park C B. Poly (lactic acid) foaming [J]. Progress in Polymer Science, 2014, 39(10): 1721-1741.
[28] Carothers W H, Dorough G L, Natta F J. Studies of polymerization and ring formation. X. The reversible polymerization of six -membered cyclic esters [J]. J American Chemistry Society, 1932, 54(2): 761-772.
[29] Kulkarni R K, Pani K C, Neuman C. Polylactic acid for surgical implants [J]. Plasticity Reconstruct Surgical, 1967, 39(4): 430.
[30] Leenslag J W, Pennings A J. Synthesis ofhigh - molecular - weight poly (L - lactide) initiated with tin 2 - ethylhexanoate [J]. Makromolekulare Chemistry and Physics, 1987, 188(8): 1809-1814.
[31] 雷燕湘. 聚乳酸技术与市场现状及发展前景[J]. 当代石油化工, 2007, 15(1): 39-43.
[32] 夏璐. 聚乳酸合成及改性研究[D]. 江西:南昌大学, 2011.
[33] Tharanathan R N. Biodegradable films and composite coatings: past, present and future[J]. Trends in Food Science & Technology, 2003, 14(3): 71-78.
[34] Schneiderman D K, Hillmyer M A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers[J]. Macromolecules, 2017, 50(10): 3733-3750.
[35] Wenwen C, Chenze Q, Yao L. The degradation investigation of biodegradable PLA/PBAT blend: Thermal stability,-mechanical properties and PALS analysis [J]. Relation physics and chemistry, 2021, 180: 1879-1895.
[36] Bergsma J E, Rozema F R, Bos R R M, et al. Late degradation tissue response to poly (l-lactide) bone plates and screws [J]. Biomaterials, 1995, 16(1): 25-31.
[37] Rasal R M, Janorkar A V, Hirt D E. Poly (lactic acid) modifications [J]. Progress in Polymer Science, 2010, 35(3): 338-356.
[38] 胡航, 潘智超, 陈必正, 等. 生物基材料改性聚乳酸研究进展[J]. 当代化工研究, 2022, 118(17): 77-80.
[39] Broz M E, Vander Hart D L, Washburn N R. Structure and mechanical properties of poly (D, L-lactic acid)/poly (ε-caprolactone) blends[J]. Biomaterials Guildford, 2003, 24(23): 4181-4190.
[40] 郭杜宇, 翁方青, 伍强贤. 天然橡胶对聚乳酸的改性研究[J]. 华中师范大学学报:自然科学版, 2020(03): 413-418.
[41] Rathi S R, Coughlin E B, Hsu S L, et al. Effect of midblock on the morphologyand properties of blends of ABA triblock copolymers of PD-LA-block-PDLA with PLLA[J]. Polymer, 2012, 53(14): 3008-3016.
[42] 程海波, 陈学思, 肖海华, 等. 多臂聚乳酸对线型聚乳酸结晶的促进作用[J]. 应用化学, 2010(07): 754-758.
[43] 曾建兵, 何奕松, 刘广臣, 等. 高韧性聚乳酸/交联聚氨酯复合物及其制备方法[D]. 2015.
[44] Nelson D M, Trl Guer P, Brezzinski M A, et al. Production and dissolution of biogenic silica in the ocean; revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Clobal Biogeochemical Cycles, 1995, 9(3): 359-372.
[45] 梁君荣, 陈丹丹, 高亚辉, 等. 海洋硅藻硅质细胞壁结构的形成机理研究概述[J].海洋学报, 2010, 32(05): 1-8.
[46] 袁传军. 硅藻的特性及其在多种学科领域中的应用[J].化学教学, 2022, 428(11): 92-97.
[47] Egge J K, Aksnes D, et al. Silicate as regulating nutrient in phytoplankton competition [J]. Marine Ecology Progress Series , 1992, 83(2/3): 281-289.
[48] Sumper M, Brunner E, et al. Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana [J]. ChemBioChenm, 2008, 9(8): 1187-1194.
[49] 张德远, 王瑜, 蔡军等. 基于硅藻微纳结构的生物制造[J]. 科学通报, 2012, 57(24): 2249-2263.
[50] Nassif N, Livage J, et al. From diatoms to silica-based hybrids[J]. Chemical Society Reviews, 2011, 40(2): 849-859.
[51] 郭云亮, 张涑戎, 李立平. 偶联剂的种类和特点及应用[J]. 橡胶工业, 2003(11): 692-696.
[52] 张云浩, 翟兰兰, 王彦等. 硅烷偶联剂KH-570表面改性纳米SiO2[J]. 材料科学与工程学报, 2012, 30(05): 752-756.
[53] 刘会媛, 李德玲, 李星. 硅烷偶联剂KH-560改性纳米二氧化硅[J]. 化学世界, 2011, 52(08): 456-458+462.
[54] Zhuravlev L T. Concentration of hydroxyl groups on the surface of amorphous silicas[J]. Langmuir, 1987, 3: 316-318.
[55] 凌妍, 钟娇丽, 唐晓山, 等. 扫描电子显微镜的工作原理及应用[J]. 山东化工, 2018, 47(09): 78-79+83.
[56] 杜谷, 王坤阳, 冉敬, 等. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J]. 岩矿测试, 2014, 33(05): 625-633.
[57] 郭沁林. X射线光电子能谱[J]. 物理, 2007, 36(5): 6.
[58] 谢启源, 陈丹丹, 丁延伟. 热重分析技术及其在高分子表征中的应用[J]. 高分子学报, 2022, 53(02): 193-210.
[59] 马亚军, 朱张校, 等. 镍基纳米Al2O3粉末复合电刷镀镀层的耐磨性[J].清华大学学报:自然科学版, 2002, 42( 4): 498.
[60] Tokuyama S K. Amorphous spherical inorganic compound and process for preparation thereof[P]. Europe PubMed Central, 1982, 12(23): 476-497.
修改评论