中文版 | English
题名

MOF衍生钴基催化剂的制备及其在氧析出反应中的应用

其他题名
SYNTHESIS OF MOF-DERIVED COBALT- BASED CATALYSTS AND THEIR APPLICATION IN OXYGEN EVOLUTION REACTION
姓名
姓名拼音
ZOU Wenlong
学号
12132100
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
JOKYO(徐强)
导师单位
化学系
论文答辩日期
2023-05-12
论文提交日期
2023-07-07
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
由于不可再生能源的过度消耗及其带来的环境污染等问题,开发清洁高效的新能源迫在眉睫。可充电锌-空气电池作为一种安全清洁的电化学能源储存系统,被广泛研究。然而,可充电锌-空气电池的充放电过程受限于动力学缓慢的氧析出反应(OER)。目前最好的OER 催化剂主要是铱(Ir)基和钌(Ru)基氧化物,但其价格昂贵且在地球上储存量很少,因此,开发高效的非贵金属基 OER 催化剂对推进可充电锌-空气电池的发展与应用非常重要。钴(Co)基氧化物因具有丰富的金属价态和较好的电催化稳定性而被广泛研究。目前,采用传统方法制备的钴基氧化物存在活性位点有限、比表面积小等缺点,为了解决这些问题,本论文以金属有机框架(MOF)衍生的钴基氧化物为研究对象,具体分为两个部分:
通过调控合成条件制备出了不同形貌的MOF 前驱体,进而衍生出具有独特形貌的Co3O4。研究发现,万寿菊状的Co3O4Co3O4-F)可调控金属位点的局部配位环境,展现了更好的 OER 活性。
通过对Co3O4-F进行磷化处理,获得了非晶相的磷修饰的Co3O4P-Co3O4)。由于钴局部配位环境的优化,P-Co3O4 OER 表现出优异的催化性能。与Co3O4-F 相比,P-Co3O4作为空气阴极装配成的可充电锌-空气电池的功率密度和循环寿命均得到了显著提升。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018, 3(4): 279-289.
[2] CHENG F, CHEN J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172-2192.
[3] ZHAO Z, FAN X, DING J, et al. Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization[J]. ACS Energy Letters, 2019, 4(9): 2259-2270.
[4] TAN P, CHEN B, XU H, et al. Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives[J]. Energy Environ Sci, 2017, 10(10): 2056-2080.
[5] LIU J-N, ZHAO C-X, WANG J, et al. A brief history of zinc–air batteries: 140 years of epic adventures[J]. Energy & Environmental Science, 2022, 15(11): 4542-4553.
[6] TRAN V A, DO H H, HA T D C, et al. Metal-organic framework for lithium and sodium-ion batteries: Progress and perspectivez[J]. Fuel, 2022, 319: 123856.
[7] 李联栋. 金属有机骨架衍生的非贵金属催化剂的制备及其在锌-空气电池中的应用[D]. 北京:北京化工大学, 2022.
[8] ZHANG F, CHEN L, ZHANG Y, et al. Engineering Co/CoO heterojunctions stitched in mulberry-like open-carbon nanocages via a metal-organic frameworks in-situ sacrificial strategy for performance-enhanced zinc-air batteries[J]. Chemical Engineering Journal, 2022, 447: 137490.
[9] ZHANG Y, DENG Y-P, WANG J, et al. Recent progress on flexible Zn-air batteries[J]. Energy Storage Materials, 2021, 35: 538-549.
[10] FU J, LIANG R, LIU G, et al. Recent progress in electrically rechargeable zinc–air batteries[J]. Advanced Materials, 2019, 31(31): 1805230.
[11] WU J, LIU B, FAN X, et al. Carbon‐based cathode materials for rechargeable zinc‐air batteries: From current collectors to bifunctional integrated air electrodes[J]. Carbon Energy, 2020, 2(3): 370-386.
[12] WANG Q, LI J, LI Y, et al. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction[J]. Nano Research, 2022, 15(10): 8751-8759.
[13] LI H, KELLY S, GUEVARRA D, et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces[J]. Nature Catalysis, 2021, 4(6): 463-468.
[14] LUO M, SUN W, XU B B, et al. Interface engineering of air electrocatalysts for rechargeable zinc–air batteries[J]. Advanced Energy Materials, 2021, 11(4): 2002762.
[15] PAN J, XU Y Y, YANG H, et al. Advanced architectures and relatives of air electrodes in Zn-air batteries[J]. Advanced Science, 2018, 5(4): 1700691.
[16] SUN W, WANG F, ZHANG B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science, 2021, 371(6524): 46-51.
[17] LEONG K W, WANG Y, NI M, et al. Rechargeable Zn-air batteries: Recent trends and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111771.
[18] CHEN D, PAN L, PEI P, et al. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives[J]. Nano Research, 2022, 15(6): 5038-5063.
[19] SONG Z, DING J, LIU B, et al. Investigation of failure mechanism of rechargeable zinc–air batteries with poly (acrylic acid) alkaline gel electrolyte during discharge–charge cycles at different current densities[J]. Chemical Engineering Journal, 2022, 429: 132331.
[20] 方伟光. 过渡金属硫化物碳基双功能电催化剂在锌空电池中的应用[D]. 合肥:安徽大学, 2020.
[21] 杨鹏展. 金属有机骨架衍生的钴基硫化物作为双功能氧电催化剂的研究[D]. 哈尔滨:哈尔滨工业大学, 2021.
[22] SONG D, HU C, GAO Z, et al. Metal–organic frameworks (MOFs) derived materials used in Zn–air battery[J]. Materials, 2022, 15(17): 5837.
[23] JIANG Y, DENG Y P, LIANG R, et al. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high‐energy flexible Zn‐air batteries[J]. Advanced Energy Materials, 2019, 9(24): 1900911.
[24] GARCéS-PINEDA F A, BLASCO-AHICART M, NIETO-CASTRO D, et al. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media[J]. Nature Energy, 2019, 4(6): 519-525.
[25] THANGASAMY P, OH S, RANDRIAMAHAZAKA H, et al. Mechanistic insight into collectively exhaustive CoPi-NPC nanosheets for oxygen reduction reaction and Zn-air battery[J]. Applied Catalysis B: Environmental, 2022, 316: 121656.
[26] ZHU Y, YUE K, XIA C, et al. Recent Advances on MOF derivatives for non-noble metal oxygen electrocatalysts in Zinc-air batteries[J]. Nano-Micro Letters, 2021, 13(1)
[27] HOU C-C, WANG H-F, LI C, et al. From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications[J]. Energy & Environmental Science, 2020, 13(6): 1658-1693.
[28] DU J, LI F, SUN L. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(4): 2663-2695.
[29] LUO J, WANG X, GU Y, et al. Constructing hollow nanocages of Co3O4-CoMoO4 heterostructure for efficient electrocatalytic oxygen evolution reaction[J]. Applied Surface Science, 2022, 606: 154562.
[30] SUN K, PANG J, ZHENG Y, et al. Oxygen vacancies enriched MOF-derived MnO/C hybrids for high-performance aqueous zinc ion battery[J]. Journal of Alloys and Compounds, 2022, 923: 166470.
[31] ZHU K, SHI F, ZHU X, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction[J]. Nano Energy, 2020, 73: 104761.
[32] DOUKA A I, YANG H, HUANG L, et al. Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries[J]. EcoMat, 2021, 3(1)
[33] KUNDU A, KUILA T, MURMU N C, et al. Metal-organic frameworks-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: Recent trends and future perspectives[J]. Materials Horizons, 2023
[34] PU Z, LIU T, AMIINU I S, et al. Transition‐metal phosphides: activity origin, energy‐related electrocatalysis applications, and synthetic strategies[J]. Advanced Functional Materials, 2020, 30(45): 2004009.
[35] LI Y, DONG Z, JIAO L. Multifunctional transition metal‐based phosphides in energy‐related electrocatalysis[J]. Advanced Energy Materials, 2020, 10(11): 1902104.
[36] HUANG C-J, XU H-M, SHUAI T-Y, et al. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2022: 122313.
[37] CHAI R, ZHOU T, SUN D, et al. Bimetallic-MOF derived nickel-iron phosphide nanosheets on carbon cloth for efficacious oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(85): 36129-36138.
[38] WANG X, CHAI L, DING J, et al. Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution[J]. Nano Energy, 2019, 62: 745-753.
[39] ZHANG Y-C, HAN C, GAO J, et al. NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: a review[J]. Acs Catalysis, 2021, 11(20): 12485-12509.
[40] PENG X, JIN X, GAO B, et al. Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting[J]. Journal of Catalysis, 2021, 398: 54-66.
[41] LYU Y, ZHENG J, XIAO Z, et al. Identifying the intrinsic relationship between the restructured oxide layer and oxygen evolution reaction performance on the cobalt pnictide catalyst[J]. Small, 2020, 16(14): 1906867.
[42] KUZNETSOV D A, HAN B, YU Y, et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis[J]. Joule, 2018, 2(2): 225-244.
[43] LUAN C, CORVA M, HAGEMANN U, et al. Atomic-scale insights into morphological, structural, and compositional evolution of CoOOH during oxygen evolution reaction[J]. Acs Catalysis, 2023, 13: 1400-1411.
[44] REITH L, HAUSMANN J N, MEBS S, et al. In situ detection of iron in oxidation states IV in cobalt‐iron oxyhydroxide reconstructed during oxygen evolution reaction[J]. Advanced Energy Materials, 2023: 2203886.
[45] RISCH M, RINGLEB F, KOHLHOFF M, et al. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis[J]. Energy & Environmental Science, 2015, 8(2): 661-674.
[46] FAN R-Y, XIE J-Y, YU N, et al. Interface design and composition regulation of cobalt-based electrocatalysts for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2022
[47] 杜妍. 金属氧化物氢氧敏材料及传感阵列的研发[D]. 武汉:华中科技大学, 2018.
[48] QI J, LIN Y P, CHEN D, et al. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation[J]. Angewandte Chemie, 2020, 132(23): 9002-9006.
[49] OUYANG T, WANG X T, MAI X Q, et al. Coupling magnetic single‐crystal Co2Mo3O8 with ultrathin nitrogen‐rich carbon layer for oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(29): 11948-11957.
[50] LI J, CHU D, DONG H, et al. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides[J]. Journal of the American Chemical Society, 2019, 142(1): 50-54.
[51] QIU B, WANG C, ZHANG N, et al. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation[J]. Acs Catalysis, 2019, 9(7): 6484-6490.
[52] LIU Y, MA C, ZHANG Q, et al. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids[J]. Advanced Materials, 2019, 31(21): 1900062.
[53] SUN S, SUN Y, ZHOU Y, et al. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides[J]. Angewandte Chemie, 2019, 131(18): 6103-6108.
[54] XIANG D, HAO X, JIN Z. Co2P/CoP quantum dots surface heterojunction derived from amorphous Co3O4 quantum dots for efficient photocatalytic H2 production[J]. Journal of Colloid and Interface Science, 2022, 627: 692-704.
[55] TAO L, GUO P, ZHU W, et al. Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2020, 41(12): 1855-1863.
[56] WANG X T, OUYANG T, WANG L, et al. Redox‐inert Fe3+ ions in octahedral sites of Co‐Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable Zinc–air batteries[J]. Angewandte Chemie, 2019, 131(38): 13425-13430.
[57] HUNG S F, HSU Y Y, CHANG C J, et al. Unraveling geometrical site confinement in highly efficient iron‐doped electrocatalysts toward oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(7): 1701686.
[58] SIM W J, NGUYEN M T, HUANG Z, et al. Efficient iron–cobalt oxide bifunctional electrode catalysts in rechargeable high current density zinc–air batteries[J]. Nanoscale, 2022, 14(22): 8012-8022.
[59] PENG Y, HAJIYANI H, PENTCHEVA R. Influence of Fe and Ni doping on the OER performance at the Co3O4 (001) surface: insights from DFT+ U calculations[J]. Acs Catalysis, 2021, 11(9): 5601-5613.
[60] LIU Y, YING Y, FEI L, et al. Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis[J]. Journal of the American Chemical Society, 2019, 141(20): 8136-8145.
[61] KIM B-J, FABBRI E, ABBOTT D F, et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(13): 5231-5240.
[62] ANANTHARAJ S, KUNDU S, NODA S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts[J]. Nano Energy, 2021, 80: 105514.
[63] BAI L, HSU C-S, ALEXANDER D T, et al. A cobalt–iron double-atom catalyst for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(36): 14190-14199.
[64] ZHANG R, PAN L, GUO B, et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction[J]. Journal of the American Chemical Society, 2023
[65] LIU J, GUO L. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis[J]. Matter, 2021, 4(9): 2850-2873.
[66] GUO T, LI L, WANG Z. Recent development and future perspectives of amorphous transition metal‐based electrocatalysts for oxygen evolution reaction[J]. Advanced Energy Materials, 2022, 12(24): 2200827.
[67] KIM J-H, KAWASHIMA K, WYGANT B R, et al. Transformation of a cobalt carbide (Co3C) oxygen evolution precatalyst[J]. ACS Applied Energy Materials, 2018, 1(10): 5145-5150.
[68] REN Q, FENG Z, MO S, et al. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene[J]. Catalysis Today, 2019, 332: 160-167.
[69] XIAO Z, WANG Y, HUANG Y-C, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting[J]. Energy & Environmental Science, 2017, 10(12): 2563-2569.
[70] PAN L, WANG Q, LI Y, et al. Amorphous cobalt-cerium binary metal oxides as high performance electrocatalyst for oxygen evolution reaction[J]. Journal of Catalysis, 2020, 384: 14-21.
[71] MUTHUKUMAR P, RANGANATHAN P, PANNIPARA M, et al. Highly enhanced oer activity of amorphous Co3O4 via fabricating hybrid amorphous‐crystalline gold nanostructures[J]. ChemistrySelect, 2020, 5(30): 9357-9361.
[72] ZENG F, MEBRAHTU C, LIAO L, et al. Stability and deactivation of OER electrocatalysts: A review[J]. Journal of Energy Chemistry, 2022
[73] JADHAV H S, BANDAL H A, RAMAKRISHNA S, et al. Critical review, recent updates on zeolitic imidazolate framework‐67 (ZIF‐67) and its derivatives for electrochemical water splitting[J]. Advanced Materials, 2022, 34(11): 2107072.
[74] WANG X, YU L, GUAN B Y, et al. Metal–organic framework hybrid‐assisted formation of Co3O4/Co‐Fe oxide double‐shelled nanoboxes for enhanced oxygen evolution[J]. Advanced Materials, 2018, 30(29): 1801211.
[75] XIAO Z, HUANG Y-C, DONG C-L, et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2020, 142(28): 12087-12095.
[76] STEVENS M B, ENMAN L J, BATCHELLOR A S, et al. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts[J]. Chemistry of materials, 2017, 29(1): 120-140.
[77] WANG C, CHEN W, YUAN D, et al. Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions[J]. Nano Energy, 2020, 69: 104453.
[78] LAN X, HUANG N, WANG J, et al. A general and facile strategy for precisely controlling the crystal size of monodispersed metal–organic frameworks via separating the nucleation and growth[J]. Chemical Communications, 2018, 54(6): 584-587.
[79] 陈徐. 可充电柔性锌-空气电池的组件设计与优化及性能研究[D]. 上海:上海交通大学, 2019.
[80] ALSABBAN M M, ESWARAN M K, PERAMAIAH K, et al. Unusual activity of rationally designed cobalt phosphide/oxide heterostructure composite for hydrogen production in alkaline medium[J]. ACS nano, 2022, 16(3): 3906-3916.
[81] WANG Z, LIU H, GE R, et al. Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting[J]. Acs Catalysis, 2018, 8(3): 2236-2241.
[82] KANG B K, IM S Y, LEE J, et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction[J]. Nano Research, 2019, 12: 1605-1611.
[83] ZHANG Y-Q, TAO H-B, CHEN Z, et al. In situ grown cobalt phosphide (CoP) on perovskite nanofibers as an optimized trifunctional electrocatalyst for Zn–air batteries and overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(46): 26607-26617.
[84] ZHANG J, LI F, CHEN W, et al. Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction[J]. Electrochimica Acta, 2019, 300: 123-130.
[85] ROCHA G S, SILVA A L, SILVA L P, et al. Improved activity of pdo supported over Co3o4 in the electrocatalytic oxygen evolution reaction in a wide ph range[J]. Energy & Fuels, 2022, 36(20): 12719-12728.

所在学位评定分委会
材料与化工
国内图书分类号
TM911.48
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545197
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
邹文龙. MOF衍生钴基催化剂的制备及其在氧析出反应中的应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132100-邹文龙-材料科学与工程(3405KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邹文龙]的文章
百度学术
百度学术中相似的文章
[邹文龙]的文章
必应学术
必应学术中相似的文章
[邹文龙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。