中文版 | English
题名

基于粘接力调节有机硅热界面材料/铝界面热导研究

其他题名
RESEARCH ON ADJUSTING THE INTERFACE THERMAL CONDUCTANCE OF ORGANIC SILICON THERMAL INTERFACE MATERIAL/ ALUMINIUM BASED ON ADHESION FORCE
姓名
姓名拼音
JIANG Zhenghong
学号
12132524
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
曾小亮
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-22
论文提交日期
2023-07-07
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

为了强化电子器件内固体之间的传热能力,通常在界面之间填充导热 性能优异的热界面材料,而良好的粘接性能不仅能保证热界面材料导热性 能稳定发挥,也能保证界面处填缝的可靠性。本文基于分子设计,从聚合 物/填料体系的交联密度、填料种类及含量等本征结构参数入手,通过强化 粘接力来优化界面热导。结合基板表面粗糙度、热界面材料的表面能和热 导率,通过对界面热导预测模型进行适当简化并建立界面热导关于粘接力 的数学模型,对模型中的参数进行测试,得到了与理论计算值较为吻合的 不同粘接样品下的有机硅热界面材料/铝之间的界面热导的测量结果。 在铝粉有机硅热界面材料体系中,通过调节基体的交联密度、铝粉的 含量、硅烷偶联剂的含量来调节有机硅热界面材料与铝之间的粘接性能, 采用时域热反射法测量不同粘接力下的有机硅热界面材料与铝之间的界面 热导,结合粗糙度、表面能、热导率等参数及简化后的模型对界面热导进 行拟合并将拟合结果与实验结果对比,成功验证模型的准确性。 本文借助有机硅柔顺性和环氧官能团对粘接的促进作用,强化界面热 导的同时进一步将模型推广至氮化硼有机硅热界面材料体系中。并借助该 模型调整环氧大豆油及氨基硅油摩尔比、氮化硼含量、表面能、粗糙度等 参数调节有机硅热界面材料与铝之间的粘接性能来增强界面传热。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-07
参考文献列表

[1] GUO C, LI Y, XU J, et al. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction[J]. Materials Horizons, 2022, 9(6): 1690-1699.
[2] 许居衍, 黄安君. 后摩尔时代的技术创新[J]. 电子与封装, 2020, 20(12): 3-6.
[3] BALL P. Computer engineering: Feeling the heat[J]. Nature, 2012, 492(7428): 174-176.
[4] RAMSEY J, JONES K W, MITRA A K. Thermal management solutions to advanced integrated and discrete Bipolar Junction (BJT) device structures[C]. International Conference on Environmental Systems, 2004.
[5] PHAM VL, XU J, PAN K, et al. Investigation of underfilling BGAs packages – Thermal fatigue[C]. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC). IEEE, 2020: 2252-2258.
[6] 许梦玫, 翟晓强, 李国柱等. 数据中心冷却技术的研究进展[J]. 建筑科学, 2018, 34(08): 124-132.
[7] CAHILL DG, BRAUN PV, GANG C, et al. Nanoscale thermal transport. II. 2003–2012[J]. Applied Physics Reviews, 2014, 1(1): 011305.
[8] NORRIS P M, HOPKINS P E. Examining interfacial diffuse phonon scattering through transient thermoreflectance measurements of thermal boundary conductance[J]. Journal of Heat Transfer, 2009, 131(4): 569-574.
[9] GRUJICIC M, ZHAO C L, DUSEL E C. The effect of thermal contact resistance on heat management in the electronic packaging[J]. Applied Surface Science, 2005, 246(1-3): 290-302.
[10] ZENG X, ZENG X, FAN J, et al. Ultrahigh energy-dissipation thermal interface materials through anneal-induced disentanglement[J]. ACS Materials Letters, 2022, 4(5): 874-881.
[11] 张俊顶, 王远弟, 张鹏等. 基于极小曲面的元器件散热优化模拟[J]. 应用数学与计算数学学报, 2018, 32(04): 995-1010.
[12] LYEO H K, CAHILL D G. Thermal conductance of interfaces between highly dissimilar materials[J]. Physical Review B, 2006, 73(14):4301.
[13] SARVAR F, WHALLEY D, CONWAY P. Thermal interface materials - a review of the state of the art[C]. 2006 1st Electronic Systemintegration Technology Conference (ESTC). IEEE, 2006:1292-1302.
[14] MA H, GAO B, WANG M, et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review[J]. Journal of Materials Science, 2020, 56(2): 1064-1086.
[15] ZHOU Y, WU S, LONG Y, et al. Recent advances in thermal interface materials[J]. ES Materials & Manufacturing, 2020, 7: 4-24.
[16] LARSON L, TANG Y, DURFEE L, et al. Engineered thermal interface material[C]. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). IEEE, 2014: 236-241.
[17] KHAN J, MOMIN S A, MARIATTI M. A review on advanced carbon-based thermal interface materials for electronic devices[J]. Carbon, 2020, 168: 65-112.
[18] JIA C, GENG X, LIU F, et al. Thermal behavior improvement of hollow sintered bricks integrated with both thermal insulation material (TIM) and Phase-Change Material (PCM)[J]. Case Studies in Thermal Engineering, 2021, 25(1): 100938.
[19] GOWDA A, ESLER D, PAISNER S N, et al. Reliability testing of silicone-based thermal greases [IC cooling applications][C]. IEEE Semiconductor Thermal Measurement & Management Symposium. IEEE, 2005: 64-71.
[20] YI H. Rapid thermal conductivity measurement with a hot disk sensor[J]. Thermochimica Acta, 2005, 436(1-2): 130-134.
[21] DENG Y, JIANG Y. High-performance, safe, and reliable soft-metal thermal pad for thermal management of electronics[J]. Applied Thermal Engineering, 2021, 199(7824): 117555.
[22] WANG W, ZHOU W, SHI H, et al. Soft and thermally conductive gels by introducing free-movable polymer chains into network[J]. Polymer, 2023, 267: 125642.
[23] SWARTZ E T, POHL R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61(3): 605-668.
[24] LITTLE W A. The transport of heat between dissimilar solids at low temperature[J]. Canadian Journal Physics, 1959: 37(3):334-349.
[25] SWARTZ E T, POHL R O. Thermal resistance at interfaces[J]. Applied Physics Letters, 1987, 51(26): 2200-2202.
[26] PEREZ D, LEWIS L J. Molecular-dynamics study of ablation of solids under femtosecond laser pulses[J]. Physical Review B, 2003, 67(18): 184102.
[27] HU M, KEBLINSKI P, SCHELLING P K. Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations[J]. Physical Review B, 2009, 79(10): 104305.
[28] HAO M, FISHER T S. High-throughput transient thermal interface testing method using time-domain thermal response[J]. International Journal of Heat and Mass Transfer, 2018, 127: 228-233.
[29] STACEY C, SIMPKIN A J, JARRETT R N. Techniques for reducing thermal contact resistance in steady-state thermal conductivity measurements on polymer composites[J]. International Journal of Thermophysics, 2016, 37(11): 107.
[30] ZHANG P, XUAN Y M, LI Q. A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux[J]. Experimental Thermal and Fluid Science, 2014, 54: 204-211.
[31] CAHILL, DAVID G. Thermal conductivity measurement from 30 to 750 K: the 3ω method[J]. Review of Scientific Instruments, 1990, 61(2): 802-808.
[32] WANG Z, SUN M, YAO G, et al. Reconstruction of thermal boundary resistance and intrinsic thermal conductivity of SiO2 -GaN-sapphire structure and temperature dependence[J]. International Journal of Thermal Sciences, 2015, 87: 178-186.
[33] XIAN Y, ZHANG P, ZHAI S, et al. Experimental characterization methods for thermal contact resistance: A review[J]. Applied Thermal Engineering, 2018, 130: 1530-1548.
[34] LIU J, ZHU J, TIAN M, et al. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method[J]. Review of Scientific Instruments, 2013, 84(3):223.
[35] PATRICK, E, HOPKINS, et al. Influence of Inelastic Scattering at Metal-Dielectric Interfaces[J]. Journal of Heat Transfer, 2008, 130(2):22401-22401.
[36] HOPKINS P E, PHINNEY L M, SERRANO J R, et al. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces[J]. Physical Review B, 2010, 82(8): 313-319.
[37] LOSEGO M D, GRADY M E, SOTTOS N R, et al. Effects of chemical bonding on heat transport across interfaces[J]. Nature materials, 2012, 11(6): 502-506.
[38] ZHANG C, ZHAO W, BI K, et al. Heat conduction across metal and nonmetal interface containing imbedded graphene layers[J]. Carbon, 2013, 64: 61-66.
[39] TAPHOUSE J H, SMITH O N L, MARDER S R, et al. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts[J]. Advanced Functional Materials, 2014, 24(4): 465-471.
[40] ZHENG K, SUN F, XIA T, et al. Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion[J]. ACS Applied Materials & Interfaces, 2015, 7: 23644-23649.
[41] WU D, HUANG C, ZHONG J, et al. Influence factors of the inter-nanowire thermal contact resistance in the stacked nanowires[J]. Physica B: Condensed Matter, 2018, 537: 150-154.
[42] CHANG G, SUN F, WANG L, et al. Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications[J]. ACS Applied Materials & Interfaces, 2019, 11(29):26507-26517.
[43] ZHENG X, WANG X, ZHANG T, et al. Study on the interfacial thermal conductance between metals and phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 168(48): 120823.
[44] 沈睦贤. 聚合物水凝胶的制备及粘接性能研究[D]. 上海:华东理工大学, 2014.
[45] APPEL E A, SCHERMAN O A. Gluing gels: A nanoparticle solution[J]. Nature Materials, 2014, 13(3): 231-232.
[46] MAZZOTTA M G, PUTNAM A A, NORTH M A, et al. Weak bonds in a biomimetic adhesive enhance toughness and performance[J]. Journal of the American Chemical Society, 2020, 142(10): 4762-4768.
[47] LI J, CELIZ A D, YANG J, et al. Tough adhesives for diverse wet surfaces[J]. Science, 2017, 357(6349): 378-381.
[48] MEREDITH H J, WILKER J J. The interplay of modulus, strength, and ductility in adhesive design using biomimetic polymer chemistry[J]. Advanced Functional Materials, 2015, 25(31): 5057-5065.
[49] RAHMAN M A, BOWLAND C, GE S R, et al. Design of tough adhesive from commodity thermoplastics through dynamic crosslinking[J]. Science Advances, 2021, 7(42): eabk2451.
[50] YUK H, ZHANG T, LIN S, et al. Tough bonding of hydrogels to diverse non-porous surfaces[J]. Nature Materials, 2016, 15(2): 190-196.
[51] XU B, HU S, HUNG S W, et al. Weaker bonding can give larger thermal conductance at highly mismatched interfaces[J]. Science Advanecs, 2021, 7(17): eabf8197.
[52] SUN F, ZHANG T, JOBBINS M M, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces[J]. Advanced Materials, 2014, 26(35): 6093-6099.
[53] 冰 刘 周 杨 静 李 丁. 硅烷偶联剂应用研究进展[J]. 江西化工, 2019: 146(06):75-77.
[54] C J, VAN, OSS, et al. Monopolar Surfaces[J]. Advances in Colloid and Interface Science, 1987: 28 (1987): 35-64.
[55] OSS C V, CHAUDHURY M K, GOOD R J. Interfacial lifshitz van der waals and polar interactions in macroscopic systems[J]. Chemical Reviews, 1988, 88(6): 927-941.
[56] FAGHIHNEJAD A, FELDMAN K E, YU J, et al. Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups[J]. Advanced Functional Materials, 2014, 24(16): 2322-2333.
[57] 孙方远. 飞秒激光抽运探测法固液界面热输运机理研究[D]. 北京:中国科学院(工程热物理研究所), 2014.
[58] NORRIS R J S A N S P M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique[J]. Journal of Heat Transfer, 2005, 127(3): 315-322.
[59] 袁超. 热界面材料热阻模型和导热强化研究[D]. 湖北: 华中科技大学, 2017.
[60] COOPER M G, MIKIC B B, YOVANOVICH M M. Thermal contact conductance[J]. International Journal of Heat and Mass Transfer, 1969, 12(3): 279-300.
[61] T RTSDP. Thermal contact resistance: the directional effect and other problems[J]. International Journal of Heat and Mass Transfer, 1970: 13(5):789-807.
[62] MIKIC B B. Thermal contact conductance;theoretical consideration[J]. International Journal of Heat and Mass Transfer, 1974: 17(2):205-214.
[63] HAMASAIID A, DARGUSCH M S, LOULOU T, et al. A predictive model for the thermal contact resistance at liquid–solid interfaces: Analytical developments and validation[J]. International Journal of Thermal Sciences, 2011, 50(8): 1445-1459.
[64] PRASHER R S. Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials[J]. Journal of Heat Transfer, 2001: 123(5): 969-975.
[65] 张荣, 刘卓航, 熊文伟等. 氮化硼/聚合物导热复合材料界面热阻调控研究进展[J]. 材料导报, 2023, (18): 1-22.

所在学位评定分委会
材料与化工
国内图书分类号
TB33
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545201
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
江政宏. 基于粘接力调节有机硅热界面材料/铝界面热导研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132524-江政宏-中国科学院深圳(3940KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[江政宏]的文章
百度学术
百度学术中相似的文章
[江政宏]的文章
必应学术
必应学术中相似的文章
[江政宏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。