[1] 庞武. 差动式气压驱动软体机器人的研究[D]. 上海: 上海交通大学机械工程专业硕士学位论文, 2018: 58-76.
[2] 王荪馨, 王彦明, 孔杰, 等. 一种柔性缩放的群机器人形态自修复方法[J]. 西北工业大学学报, 2022, 40(01): 206-214.
[3] 隋立明, 刘亭羽, 席作岩. 气动软体爬行机器人驱动方式的分析与实验[J]. 液压与气动,2018, No.327(11): 99-103.
[4] 徐聪. 基于振动驱动的旋转及攀爬软体机器人的研究[D]. 杭州: 浙江工业大学机械工程专业硕士学位论文, 2020: 47-63
[5] 李铁风, 李国瑞, 梁艺鸣, 等.软体机器人结构机理与驱动材料研究综述[J]. 力学学报,2016, 48(04): 756-766.
[6] 魏树军. 基于气动驱动器软体操作手的设计与控制[D]. 上海: 上海交通大学机械工程专业硕士学位论文, 2018: 29-41.
[7] LARSON C, PEELE B, LI S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074.
[8] KWOK S W, MORIN S A, MOSADEGH B, et al. Magnetic assembly of soft robots with hard components[J]. Advanced Functional Materials, 2014, 24(15): 2180-2187.
[9] 李健, 戴楚彦, 王扬威, 等. 面向草莓抓取的气动四叶片软体抓手研制[J]. 哈尔滨工业大学学报, 2022,54(01):1 05-113.
[10] KIM Y, YUK H, ZHAO R, et al. Printing ferromagnetic domains for untethered fasttransforming soft materials[J]. Nature, 2018, 558(7709): 274-279.
[11] LUQMAN M, SHAIKH H M, ANIS A, et al. A convenient and simple ionic polymer-metal composite (IPMC) actuator based on a platinum-coated sulfonated poly (ether ether ketone)–polyaniline composite membrane[J]. Polymers, 2022, 14(4): 668.
[12] DONG Y, YEUNG K W, TANG C Y, et al. Development of ionic liquid-based electroactive polymer composites using nanotechnology[J]. Nanotechnology Reviews, 2021, 10(1): 99-116.
[13] GONZALEZ D, GARCIA J, NEWELL B. Electromechanical characterization of a 3D printed dielectric material for dielectric electroactive polymer actuators[J]. Sensors and Actuators A: Physical, 2019, 297: 111565.
[14] WANG R, ZHANG C, TAN W, et al. Electroactive polymer-based soft actuator with integrated functions of multi-degree-of-freedom motion and perception[J]. Soft Robotics, 2023, 10(1): 119-128.
[15] BAR-COHEN Y, ANDERSON I A. Electroactive polymer (EAP) actuators—background review[J]. Mechanics of Soft Materials, 2019, 1(1): 5.
[16] KHAN M, LI T, HAYAT A, et al. Retracted: A concise review on the elastomeric behavior of electroactive polymer materials[J]. International Journal of Energy Research, 2021, 45(10):14306-14337.
[17] LEE Y, SONG W J, SUN J Y. Hydrogel soft robotics[J]. Materials Today Physics, 2020, 15: 100258.
[18] FUSI G, DEL GIUDICE D, SKARSETZ O, et al. Autonomous soft Robots empowered by chemical reaction networks[J]. Advanced Materials, 2023, 35(7): 2209870.
[19] XU Z, ZHOU Y, ZHANG B, et al. Recent progress on plant-inspired soft robotics with hydrogel building blocks: Fabrication, actuation and application[J]. Micromachines, 2021, 12(6): 608.
[20] YANG Y, HAN J, HUANG J, et al. Stretchable energy‐harvesting tactile interactive interface with liquid‐metal‐nanoparticle‐based electrodes[J]. Advanced Functional Materials, 2020, 30(29): 1909652.
[21] WON P, JEONG S, MAJIDI C, et al. Recent advances in liquid-metal-based wearable electronics and materials[J]. IScience, 2021, 24(7): 102698.
[22] YU Y, GUO J, MA B, et al. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics[J]. Science Bulletin, 2020, 65(20): 1752-1759.
[23] YE J, XING Z R, GAO J Y, et al. Liquid metal coil[J]. Materials Today Communications, 2022: 104120.
[24] YE J, YAO Y C, GAO J Y, et al. LM-Jelly: Liquid Metal Enabled Biomimetic Robotic Jellyfish[J]. Soft Robotics, 2022, 9(6): 1098-1107.
[25] JIN S W, PARK J, HONG S Y, et al. Stretchable loudspeaker using liquid metal microchannel[J]. Scientific reports, 2015, 5(1): 11695.
[26] GUO R, SHENG L, GONG H Y, et al. Liquid metal spiral coil enabled soft electromagnetic actuator[J]. Science China Technological Sciences, 2018, 61: 516-521.
[27] 尹富强, 赵玉辰, 李赵春. 镓基液态金属应用的研究进展[J]. 现代化工, 2022, 42(05): 24-29.
[28] 黄亚楠. 可拉伸液态金属/聚氨酯导电弹性体复合材料的制备与性能研究[D]. 北京: 北京化工大学材料科学与工程专业硕士学位论文, 2020: 45-54.
[29] 滕龙. 基于液态金属的柔性可回收电子器件的制备与应用研究[D]. 深圳: 深圳大学化学工程专业硕士学位论文, 2020: 45-58.
[30] 叶世超. 镓基液态金属表界面性质的研究及其应用[D]. 深圳: 深圳大学化学工程专业硕士学位论文, 2020: 45-58.
[31] DICKEY M D. Stretchable and soft electronics using liquid metals[J]. Advanced materials, 2017, 29(27): 1606425.
[32] COOPER C B, ARUTSELVAN K, LIU Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers[J]. Advanced Functional Materials, 2017, 27(20): 1605630.
[33] CHEN J, ZHANG J, LUO Z, et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring[J]. ACS Applied materials & interfaces, 2020, 12(19): 22200-22211.
[34] XU J, WANG Z, YOU J, et al. Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices[J]. Chemical Engineering Journal, 2020, 392: 123788.
[35] TUTIKA R, KMIEC S, HAQUE A B M T, et al. Liquid metal–elastomer soft composites with independently controllable and highly tunable droplet size and volume loading[J]. ACS Applied materials & interfaces, 2019, 11(19): 17873-17883.
[36] TUTIKA R, KMIEC S, HAQUE A B M T, et al. Liquid metal–elastomer soft composites with independently controllable and highly tunable droplet size and volume loading[J]. ACS Applied materials & interfaces, 2019, 11(19): 17873-17883.
[37] LIU H, LI M, OUYANG C, et al. Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors[J]. Small, 2018, 14(36): 1801711.
[38] CAI S, ALLIOUX F M, TANG J, et al. Soft liquid metal infused conductive sponges[J]. Advanced Materials Technologies, 2022, 7(8): 2101500.
[39] KIM M, ALROWAIS H, KIM C, et al. All-soft, battery-free, and wireless chemical sensing platform based on liquid metal for liquid-and gas-phase VOC detection[J]. Lab on a Chip, 2017, 17(13): 2323-2329.
[40] ZHANG C, ALLIOUX F M, RAHIM M A, et al. Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles[J]. Chemistry of Materials, 2020, 32(11): 4808-4819.
[41] VARGA M, LADD C, MA S, et al. On-skin liquid metal inertial sensor[J]. Lab on a Chip, 2017, 17(19): 3272-3278.
[42] ZHOU X, HE Y, ZENG J. Liquid metal antenna-based pressure sensor[J]. Smart Materials and Structures, 2019, 28(2): 025019.
[43] ZANDVAKILI M, HONARI M M, MOUSAVI P, et al. Gecko‐Gaskets for Multilayer, Complex, and Stretchable Liquid Metal Microwave Circuits and Antennas[J]. Advanced Materials Technologies, 2017, 2(11): 1700144..
[44] SONG L, GAO W, CHUI C O, et al. Wideband frequency reconfigurable patch antenna with switchable slots based on liquid metal and 3-D printed microfluidics[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 2886-2895.
[45] HAYES G J, SO J H, QUSBA A, et al. Flexible liquid metal alloy (EGaIn) microstrip patch antenna[J]. IEEE transactions on Antennas and Propagation, 2012, 60(5): 2151-2156.
[46] QUSBA A, RAMRAKHYANI A K, SO J H, et al. On the design of microfluidic implant coil for flexible telemetry system[J]. IEEE Sensors Journal, 2014, 14(4): 1074-1080.
[47] YAO B, XU X, ZHANG Q, et al. Highly stretchable and mechanically tunable antennas based on three-dimensional liquid metal network[J]. Materials Letters, 2020, 270: 127727.
[48]Qin Peng et al. A Gravity-Triggered Liquid Metal Patch Antenna with Reconfigurable Frequency[J]. Micromachines, 2021, 12(6) : 701-701.
[49] JOHNSTON L, YANG J, HAN J, et al. Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics[J]. Journal of Materials Chemistry C, 2022, 10(3): 921-931.
[50] YIM D R, PARK C W. Hybrid‐type stretchable interconnects with double‐layered liquid metal‐on‐polyimide serpentine structure[J]. ETRI Journal, 2022, 44(1): 147-154.
[51] KIM M, BROWN D K, BRAND O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal[J]. Nature communications, 2020, 11(1): 1002.
[52] ZHAO Z, SONI S, LEE T, et al. Smart Eutectic Gallium–Indium: From Properties to Applications[J]. Advanced Materials, 2023, 35(1): 2203391.
[53] LEE G H, LEE Y R, KIM H, et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics[J]. Nature Communications, 2022, 13(1): 2643.
[54] WU P, WANG Z, YAO X, et al. Recyclable conductive nanoclay for direct in situ printing flexible electronics[J]. Materials Horizons, 2021, 8(7): 2006-2017.
[55] WANG Q, YU Y, YANG J, et al. Fast fabrication of flexible functional circuits based on liquid metal dual‐trans printing[J]. Advanced Materials, 2015, 27(44): 7109-7116.
[56] LOPES P A, FERNANDES D F, SILVA A F, et al. Bi-phasic Ag–In–Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14552-14561.
[57] ZHANG P, WANG Q, GUO R, et al. Self-assembled ultrathin film of CNC/PVA–liquid metal composite as a multifunctional Janus material[J]. Materials Horizons, 2019, 6(8): 1643-1653.
[58] BO G, YU H, REN L, et al. Gallium–indium–tin liquid metal nanodroplet-based anisotropic conductive adhesives for flexible integrated electronics[J]. ACS Applied Nano Materials, 2021, 4(1): 550-557.
[59] KIM D, LEE J B. Magnetic-field-induced liquid metal droplet manipulation[J]. Journal of the Korean Physical Society, 2015, 66: 282-286.
[60] SIVAN V, TANG S Y, O'MULLANE A P, et al. Liquid metal marbles[J]. Advanced Functional Materials, 2013, 23(2): 144-152.
[61] CHEN Y, LIU Z, ZHU D, et al. Liquid metal droplets with high elasticity, mobility and mechanical robustness[J]. Materials Horizons, 2017, 4(4): 591-597.
[62] CHEN Y, ZHOU T, LI Y, et al. Robust fabrication of nonstick, noncorrosive, conductive graphene‐coated liquid metal droplets for droplet‐based, floating electrodes[J]. Advanced Functional Materials, 2018, 28(8): 1706277.
[63] HE X, NI M, WU J, et al. Hard-magnetic liquid metal droplets with excellent magnetic field dependent mobility and elasticity[J]. Journal of Materials Science & Technology, 2021, 92: 60-68.
[64] HE X, NI M, WU J, et al. Hard-magnetic liquid metal droplets with excellent magnetic field dependent mobility and elasticity[J]. Journal of Materials Science & Technology, 2021, 92: 60-68.
[65] CHEN R, XIONG Q, SONG R Z, et al. Magnetically controllable liquid metal marbles[J]. Advanced Materials Interfaces, 2019, 6(20): 1901057.
[66] HU L, WANG H, WANG X, et al. Magnetic liquid metals manipulated in the three-dimensional free space[J]. ACS applied materials & interfaces, 2019, 11(8): 8685-8692.
[67] COMBS A W, SHIROMA W A, OHTA A T. Ferrofluidic actuation of liquid metal for radio‐frequency applications[J]. Electronics Letters, 2018, 54(3): 151-153.
[68] SHU J, GE D A, WANG E, et al. A liquid metal artificial muscle[J]. Advanced Materials, 2021, 33(43): 2103062.
[69] LI G, DU J, ZHANG A, et al. Electrochemically controllable actuation of liquid metal droplets based on Marangoni effect[J]. Journal of Applied Physics, 2019, 126(8): 084505.
[70] XUE R, LIU W, JIANG T, et al. Pumping of Ionic Liquids by Liquid Metal-Enabled Electrocapillary Flow under DC-Biased AC Forcing[J]. Advanced Materials Interfaces, 2020, 7(14): 2000345.
[71] COLE T, TANG S Y. Liquid metals as soft electromechanical actuators[J]. Materials Advances, 2022, 3(1): 173-185.
[72] WANG M F, JIN M J, JIN X J, et al. Modeling of movement of liquid metal droplets driven by an electric field[J]. Physical Chemistry Chemical Physics, 2017, 19(28): 18505-18513.
[73] XIE J, LI F, KUANG S, et al. Modeling and motion control of a liquid metal droplet in a fluidic channel[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 942-950.
[74] EBRAHIMI N, BI C, CAPPELLERI D J, et al. Magnetic actuation methods in bio/soft robotics[J]. Advanced Functional Materials, 2021, 31(11): 2005137.
[75] YE J, XING Z R, GAO J Y, et al. Liquid metal coil[J]. Materials Today Communications, 2022: 104120.
[76] KOHLS N, DIAS B, MENSAH Y, et al. Compliant electromagnetic actuator architecture for soft robotics[C] // 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 9042-9049.
[77] MAO G, DRACK M, KARAMI-MOSAMMAM M, et al. Soft electromagnetic actuators[J]. Science advances, 2020, 6(26): eabc0251.
修改评论