中文版 | English
题名

纳米抗体 2S-1244 广谱抗 SARS-CoV-2 的中 和活性及其与 S 蛋白复合体结构的研究

其他题名
INVESTIGATION INTO THE BROAD-SPECTRUM NEUTRALIZATION ACTIVITY OF NANOBODY 2S-1244 AGAINST SARS-COV-2 AND THE STRUCTURAL ANALYSIS OF ITS COMPLEX WITH THE SPIKE PROTEIN
姓名
姓名拼音
ZHANG Chenhui
学号
12032627
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
刘映霞
论文答辩日期
2023-05-18
论文提交日期
2023-07-09
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

为应对 SARS-CoV-2 引起 COVID-19 大流行对人类健康造成的重大威胁,科 研人员开发出多种预防疫苗和中和抗体以应对病毒感染。然而,随着病毒在传播 过程中的不断变异,多种变异株相继出现。特别是 2021 年 Omicron 变异株的广 泛传播极大地增加了人体再次感染病毒的风险。与原始 SARS-CoV-2 株及其他变 异株相比,Omicron 变异株的刺突蛋白 (spike protein,S 蛋白) 产生多位点突变,这 些突变可显著抵抗 COVID-19 康复者、接种 mRNA 疫苗或灭活疫苗的个体所产生 抗体的中和能力。最近研究表明,包括 FDA 批准的单克隆抗体在内的大多数针对 SARS-CoV-2 特异性的单克隆抗体已经失去对 Omicron 变异株的功效。因此,迫切 需要研发新的疫苗或广谱中和抗体以应对 SARS-CoV-2 的变异。 纳米抗体 (Nanobody,Nbs) 是源自骆驼科动物抗体的新型单体抗原结合片段。 Nbs 的优点包括低免疫原性、高特异性、稳定性和亲和力。这些特性使其可以迅速 被筛选、廉价大规模生产、简便储存和运输。我们实验室筛选了一种针对 SARSCoV-2 的 2S-1244 纳米抗体,在此基础上,本项目开展了其与病毒结合的生物功能 学实验和结构生物学实验。本研究展示了该纳米抗体对多种变异株 (Alpha、Delta、 Omicron 等) 的高效中和活性,并利用冷冻电镜单颗粒重构技术对 2S-1244 与 S 蛋 白复合体的结构进行深入研究。 对 2S-1244 中和野生型及 Alpha、Beta、Gamma、Delta 及 Omicron 各亚型的 中和活性进行测定,结果表明 2S-1244 为靶向 SARS-CoV-2 刺突蛋白受体结构域 (receptor binding domain,RBD) 的广谱高效中和纳米抗体。为进一步探究该纳米抗 体中和 SARS-CoV-2 的机制,本研究利用冷冻电镜单颗粒重构技术,对 2S-1244 全长纳米抗体与 S 蛋白的复合物进行结构解析,得到整体分辨率为 3.94 Å 的 2S1244-S 蛋白复合体的结构。结构显示,S 蛋白的三个 RBD 区域在与 2S-1244 纳米 抗体结合后处于”up”状态,一个 2S-1244 抗体的两个 VH 部分分别与两个 S 蛋白 RBD 区域的三位点结合,最终形成三个 2S-1244 全长抗体的 6 个 VH 部分与两个 S 蛋白的 6 个 RBD 区域分别进行结合的复合物,该结合方式可能使得病毒聚集在 一起,遮挡 S 蛋白与宿主细胞表面受体血管紧张素转化酶 2 的结合位点,阻止了 S 蛋白与 ACE2 的识别,使病毒入侵宿主的第一步失败,从而阻断病毒感染。 综合以上结论,本文证明 2S-1244 是一种高效中和 SARS-CoV-2 的广谱纳米抗 体,并且解析了 2S-1244 中和 S 蛋白发挥作用的机制。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LUPALA C S, YE Y, CHEN H, et al. Mutations on RBD of SARS-CoV-2 Omicron variantresult in stronger binding to human ACE2 receptor[J]. Biochemical and biophysical researchcommunications, 2022, 590: 34-41.

[2] KUMAR R, MURUGAN N A, SRIVASTAVA V. Improved binding affinity of omicron’s spikeprotein for the human angiotensin-converting enzyme 2 receptor is the key behind its increasedvirulence[J]. International journal of molecular sciences, 2022, 23(6): 3409.

[3] CHA H, KIM H, JOUNG Y, et al. Surface-enhanced Raman scattering-based immunoassay forsevere acute respiratory syndrome coronavirus 2[J]. Biosensors and Bioelectronics, 2022, 202:114008.

[4] FAN Y M, ZHANG Y L, LUO H, et al. Crosstalk between RNA viruses and DNA sensors: Roleof the cGAS-STING signalling pathway[J]. Reviews in Medical Virology, 2022, 32(5): e2343.

[5] SAMA B, SHANNON A, GAUFFRE P, et al. Identification and functional-structural characterization of the enzymes linked with stable genome size increase of (+) RNA viruses[J]. Virologie,2022: 150-151.

[6] LIYA G, YUGUANG W, JIAN L, et al. Studies on viral pneumonia related to novel coronavirusSARS-CoV-2, SARS-CoV, and MERS-CoV: a literature review[J]. Apmis, 2020, 128(6): 423-432.

[7] HOSCH S, MPINA M, NYAKURUNGU E, et al. Genomic surveillance enables the identification of co-infections with multiple SARS-CoV-2 lineages in Equatorial Guinea[J]. Frontiers inPublic Health, 2022, 9: 818401.

[8] GIOVANETTI M, BENEDETTI F, CAMPISI G, et al. Evolution patterns of SARS-CoV-2:Snapshot on its genome variants[J]. Biochemical and Biophysical Research Communications,2021, 538: 88-91.

[9] HOLMES E C, GOLDSTEIN S A, RASMUSSEN A L, et al. The origins of SARS-CoV-2: Acritical review[J]. Cell, 2021, 184(19): 4848-4856.

[10] SCHERER E M, BABIKER A, ADELMAN M W, et al. SARS-CoV-2 evolution and immuneescape in immunocompromised patients[J]. New England Journal of Medicine, 2022, 386(25):2436-2438.

[11] VIANA R, MOYO S, AMOAKO D G, et al. Rapid epidemic expansion of the SARS-CoV-2Omicron variant in southern Africa[J]. Nature, 2022, 603(7902): 679-686.

[12] SHRESTHA L B, FOSTER C, RAWLINSON W, et al. Evolution of the SARS-CoV-2 omicronvariants BA. 1 to BA. 5: Implications for immune escape and transmission[J]. Reviews inMedical Virology, 2022, 32(5): e2381.

[13] TELENTI A, HODCROFT E B, ROBERTSON D L. The evolution and biology of SARS-CoV-2variants[J]. Cold Spring Harbor perspectives in medicine, 2022, 12(5): a041390.

[14] YAN W, ZHENG Y, ZENG X, et al. Structural biology of SARS-CoV-2: open the door fornovel therapies[J]. Signal transduction and targeted therapy, 2022, 7(1): 26.

[15] CUI Z, LIU P, WANG N, et al. Structural and functional characterizations of infectivity andimmune evasion of SARS-CoV-2 Omicron[J]. Cell, 2022, 185(5): 860-871.

[16] ZHAO Y, ZHU Y, LIU X, et al. Structural basis for replicase polyprotein cleavage and substratespecificity of main protease from SARS-CoV-2[J]. Proceedings of the National Academy ofSciences, 2022, 119(16): e2117142119.

[17] OBERMEYER F, JANKOWIAK M, BARKAS N, et al. Analysis of 6.4 million SARS-CoV-2genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332.

[18] LAMBROU A S, SHIRK P, STEELE M K, et al. Genomic surveillance for SARS-CoV-2 variants: predominance of the delta (B. 1.617. 2) and omicron (B. 1.1. 529) variants—United States,June 2021–January 2022[J]. Morbidity and Mortality Weekly Report, 2022, 71(6): 206.

[19] PATHAK S, AGRAWAL N, GOYAL A. A Comprehensive Review on In Silico-predicted Potential Phytochemicals against SARS-CoV-2: Food for Thought for Researchers[J]. Letters inOrganic Chemistry, 2022, 19(11): 931-957.

[20] LAN T C, ALLAN M F, MALSICK L E, et al. Secondary structural ensembles of the SARSCoV-2 RNA genome in infected cells[J]. Nature communications, 2022, 13(1): 1128.

[21] NYSTROM S, HAMMARSTROM P. Amyloidogenesis of SARS-CoV-2 spike protein[J]. Journal of the American Chemical Society, 2022, 144(20): 8945-8950.

[22] BORGES V, ISIDRO J, TROVÃO N S, et al. SARS-CoV-2 introductions and early dynamicsof the epidemic in Portugal[J]. Communications Medicine, 2022, 2(1): 10.

[23] MERHI G, KOWEYES J, SALLOUM T, et al. SARS-CoV-2 genomic epidemiology: data andsequencing infrastructure[J]. Future Microbiology, 2022, 17(13): 1001-1007.

[24] PISANO M B, SICILIA P, ZEBALLOS M, et al. SARS-CoV-2 genomic surveillance enablesthe identification of Delta/Omicron co-infections in Argentina.[J]. medRxiv, 2022: 2022-03.

[25] WANG W, CHEN J, YU X, et al. Signaling mechanisms of SARS-CoV-2 Nucleocapsid proteinin viral infection, cell death and inflammation[J]. International Journal of Biological Sciences,2022, 18(12): 4704.

[26] MURALIDAR S, AMBI S V, SEKARAN S, et al. The emergence of COVID-19 as a globalpandemic: Understanding the epidemiology, immune response and potential therapeutic targetsof SARS-CoV-2[J]. Biochimie, 2020, 179: 85-100.

[27] MAGAZINE N, ZHANG T, WU Y, et al. Mutations and evolution of the SARS-CoV-2 spikeprotein[J]. Viruses, 2022, 14(3): 640.

[28] TAKEDA M. Proteolytic activation of SARS-CoV-2 spike protein[J]. Microbiology and immunology, 2022, 66(1): 15-23.

[29] BUONOCORE M, SANTORO A, GRIMALDI M, et al. Structural analysis of a simplifiedmodel reproducing SARS-CoV-2 S RBD/ACE2 binding site[J]. Heliyon, 2022, 8(11): e11568.

[30] YAMASOBA D, KIMURA I, NASSER H, et al. Virological characteristics of the SARS-CoV-2Omicron BA. 2 spike[J]. Cell, 2022, 185(12): 2103-2115.

[31] RAJAH M M, BERNIER A, BUCHRIESER J, et al. The mechanism and consequences ofSARS-CoV-2 spike-mediated fusion and syncytia formation[J]. Journal of Molecular Biology,2022, 434(6): 167280.

[32] HAN P, LI L, LIU S, et al. Receptor binding and complex structures of human ACE2 to spikeRBD from omicron and delta SARS-CoV-2[J]. Cell, 2022, 185(4): 630-640.

[33] PAPANIKOLAOU V, CHRYSOVERGIS A, RAGOS V, et al. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants[J]. Gene, 2022, 814:146134.

[34] HOTER A, NAIM H Y. Biochemical characterization of SARS-CoV-2 spike RBD mutationsand their impact on ACE2 receptor binding[J]. Frontiers in Molecular Biosciences, 2022, 9.

[35] LAN J, HE X, REN Y, et al. Structural insights into the SARS-CoV-2 Omicron RBD-ACE2interaction[J]. Cell research, 2022, 32(6): 593-595.

[36] VERMA S, PATIL V M, GUPTA M K. Mutation informatics: SARS-CoV-2 receptor-bindingdomain of the spike protein[J]. Drug Discovery Today, 2022.

[37] WANG Y, LIU C, ZHANG C, et al. Structural basis for SARS-CoV-2 Delta variant recognitionof ACE2 receptor and broadly neutralizing antibodies[J]. Nature communications, 2022, 13(1):871.

[38] DOLAN K A, DUTTA M, KERN D M, et al. Structure of SARS-CoV-2 M protein in lipidnanodiscs[J]. Elife, 2022, 11: e81702.

[39] ZHANG Z, NOMURA N, MURAMOTO Y, et al. Structure of SARS-CoV-2 membrane proteinessential for virus assembly[J]. Nature Communications, 2022, 13(1): 4399.

[40] MARQUES-PEREIRA C, PIRES M N, GOUVEIA R P, et al. SARS-CoV-2 membrane protein:from genomic data to structural new insights[J]. International Journal of Molecular Sciences,2022, 23(6): 2986.

[41] MAHTARIN R, ISLAM S, ISLAM M J, et al. Structure and dynamics of membrane protein inSARS-CoV-2[J]. Journal of Biomolecular Structure and Dynamics, 2022, 40(10): 4725-4738.

[42] ZENG R, QIU M, WAN Q, et al. Smartphone-based electrochemical immunoassay for pointof-care detection of SARS-CoV-2 nucleocapsid protein[J]. Analytical Chemistry, 2022, 94(43):15155-15161.

[43] AI J, ZHANG H, ZHANG Q, et al. Recombinant protein subunit vaccine booster followingtwo-dose inactivated vaccines dramatically enhanced anti-RBD responses and neutralizing titersagainst SARS-CoV-2 and Variants of Concern[J]. Cell research, 2022, 32(1): 103-106.

[44] VANN K R, ACHARYA A, JANG S M, et al. Binding of the SARS-CoV-2 envelope E proteinto human BRD4 is essential for infection[J]. Structure, 2022, 30(9): 1224-1232.

[45] CHEN I P, LONGBOTHAM J E, MCMAHON S, et al. Viral E protein neutralizes BET proteinmediated post-entry antagonism of SARS-CoV-2[J]. Cell reports, 2022, 40(3): 111088.

[46] SINGH P, CHAUHAN S S, PANDIT S, et al. The dual role of phytochemicals on SARS-CoV2 inhibition by targeting host and viral proteins[J]. Journal of traditional and complementarymedicine, 2022, 12(1): 90-99.

[47] WANG Y, FANG S, WU Y, et al. Discovery of SARS-CoV-2-E channel inhibitors as antiviralcandidates[J]. Acta Pharmacologica Sinica, 2022, 43(4): 781-787.

[48] LOW Z Y, ZABIDI N Z, YIP A J W, et al. SARS-CoV-2 non-structural proteins and their rolesin host immune evasion[J]. Viruses, 2022, 14(9): 1991.

[49] LEE J H, KOEPKE L, KIRCHHOFF F, et al. Interferon antagonists encoded by SARS-CoV-2at a glance[J]. Medical Microbiology and Immunology, 2022: 1-7.

[50] SHI F S, YU Y, LI Y L, et al. Expression Profile and Localization of SARS-CoV-2 NonstructuralReplicase Proteins in Infected Cells[J]. Microbiology Spectrum, 2022, 10(4): e00744-22.

[51] PORTILLA-MARTÍNEZ A, ORTIZ-FLORES M, HIDALGO I, et al. In silico evaluationof flavonoids as potential inhibitors of SARS-CoV-2 main nonstructural proteins (Nsps)—amentoflavone as a multitarget candidate[J]. Journal of Molecular Modeling, 2022, 28(12):1-19.

[52] ZANDI M, SOLTANI S, TABIBZADEH A, et al. Partial sequence conservation of SARS-CoV2 NSP-2, NSP-12, and Spike in stool samples from Abadan, Iran[J]. Biotechnology and AppliedBiochemistry, 2023, 70(1): 201-209.

[53] BAI C, ZHONG Q, GAO G F. Overview of SARS-CoV-2 genome-encoded proteins[J]. ScienceChina Life Sciences, 2022, 65(2): 280-294.

[54] MORRISON C B, EDWARDS C E, SHAFFER K M, et al. SARS-CoV-2 infection of airwaycells causes intense viral and cell shedding, two spreading mechanisms affected by IL-13[J].Proceedings of the National Academy of Sciences, 2022, 119(16): e2119680119.

[55] PORTALES A E, MUSTAFÁ E R, MCCARTHY C I, et al. ACE2 internalization induced bya SARS-CoV-2 recombinant protein is modulated by angiotensin II type 1 and bradykinin 2receptors[J]. Life Sciences, 2022, 293: 120284.

[56] STROBELT R, ADLER J, PARAN N, et al. Imatinib inhibits SARS-CoV-2 infection by anoff-target-mechanism[J]. Scientific reports, 2022, 12(1): 1-11.

[57] RANGU R, WANDER P L, BARROW B M, et al. Going viral in the islet: mediators of SARSCoV-2 entry beyond ACE2[J]. Journal of Molecular Endocrinology, 2022, 69(2): R63-R79.

[58] LIU G, DU W, SANG X, et al. RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection[J]. Nature Communications, 2022, 13(1): 1444.

[59] PAIARDI G, RICHTER S, ORESTE P, et al. The binding of heparin to spike glycoproteininhibits SARS-CoV-2 infection by three mechanisms[J]. Journal of Biological Chemistry, 2022,298(2).

[60] GU W, GAN H, MA Y, et al. The molecular mechanism of SARS-CoV-2 evading host antiviralinnate immunity[J]. Virology journal, 2022, 19(1): 49.

[61] VAN BREEMEN R B, MUCHIRI R N, BATES T A, et al. Cannabinoids block cellular entry ofSARS-CoV-2 and the emerging variants[J]. Journal of natural products, 2022, 85(1): 176-184.

[62] JACKSON C B, FARZAN M, CHEN B, et al. Mechanisms of SARS-CoV-2 entry into cells[J].Nature reviews Molecular cell biology, 2022, 23(1): 3-20.

[63] ZHAO M M, ZHU Y, ZHANG L, et al. Novel cleavage sites identified in SARS-CoV-2 spikeprotein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies[J].Cell Discovery, 2022, 8(1): 53.

[64] ZHANG W, CHUA B Y, SELVA K J, et al. SARS-CoV-2 infection results in immune responsesin the respiratory tract and peripheral blood that suggest mechanisms of disease severity[J].Nature communications, 2022, 13(1): 2774.

[65] KAMAR N, ABRAVANEL F, MARION O, et al. Anti-SARS-CoV-2 spike protein and neutralizing antibodies at 1 and 3 months after three doses of SARS-CoV-2 vaccine in a large cohortof solid organ transplant patients[J]. American Journal of Transplantation, 2022, 22(5): 1467-1474.

[66] SHARMA D, RAWAT P, JANAKIRAMAN V, et al. Elucidating important structural featuresfor the binding affinity of spike-SARS-CoV-2 neutralizing antibody complexes[J]. Proteins:Structure, Function, and Bioinformatics, 2022, 90(3): 824-834.

[67] LIM H X, MASOMIAN M, KHALID K, et al. Identification of B-cell epitopes for eliciting neutralizing antibodies against the SARS-CoV-2 spike protein through bioinformatics andmonoclonal antibody targeting[J]. International Journal of Molecular Sciences, 2022, 23(8):4341.

[68] PADOAN A, COSMA C, DELLA ROCCA F, et al. A cohort analysis of SARS-CoV-2 antispike protein receptor binding domain (RBD) IgG levels and neutralizing antibodies in fullyvaccinated healthcare workers[J]. Clinical Chemistry and Laboratory Medicine (CCLM), 2022,60(7): 1110-1115.

[69] LI G, ZHOU Z, DU P, et al. Heterologous mRNA vaccine booster increases neutralization ofSARS-CoV-2 Omicron BA. 2 variant[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 243.

[70] ÁLVAREZ-DÍAZ D A, MUÑOZ A L, TAVERA-RODRÍGUEZ P, et al. Low neutralizing antibody titers against the Mu variant of SARS-CoV-2 in 31 BNT162b2 vaccinated individuals inColombia[J]. Vaccines, 2022, 10(2): 180.

[71] WANG J J, ZHANG N, RICHARDSON S A, et al. Rapid lateral flow tests for the detection ofSARS-CoV-2 neutralizing antibodies[J]. Expert review of molecular diagnostics, 2021, 21(4):363-370.

[72] CHEN F, LIU Z, JIANG F. Prospects of neutralizing nanobodies against SARS-CoV-2[J].Frontiers in Immunology, 2021, 12: 690742.

[73] VALDÉS-TRESANCO M S, MOLINA-ZAPATA A, POSE A G, et al. Structural insights intothe design of synthetic nanobody libraries[J]. Molecules, 2022, 27(7): 2198.

[74] BHATTACHARYA M, CHATTERJEE S, LEE S S, et al. Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: Current update[J]. International Journal ofBiological Macromolecules, 2022.

[75] CHI X, ZHANG X, PAN S, et al. An ultrapotent RBD-targeted biparatopic nanobody neutralizesbroad SARS-CoV-2 variants[J]. Signal transduction and targeted therapy, 2022, 7(1): 44.

[76] MIKOLAJEK H, WECKENER M, BROTZAKIS Z F, et al. Correlation between the bindingaffinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes[J].Proceedings of the National Academy of Sciences, 2022, 119(31): e2205412119.

[77] RAMESH S, GOVINDARAJULU M, PARISE R S, et al. Emerging SARS-CoV-2 variants: areview of its mutations, its implications and vaccine efficacy[J]. Vaccines, 2021, 9(10): 1195.

[78] NAIDOO D B, CHUTURGOON A A. The Potential of Nanobodies for COVID-19 Diagnosticsand Therapeutics[J]. Molecular Diagnosis & Therapy, 2023: 1-34.

[79] WEISSENBERGER G, HENDERIKX R J, PETERS P J. Understanding the invisible hands ofsample preparation for cryo-EM[J]. Nature Methods, 2021, 18(5): 463-471.

[80] YE G, LIU B, LI F. Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain[J]. Nature communications, 2022, 13(1): 1214.

[81] EBERHARDT J, SANTOS-MARTINS D, TILLACK A F, et al. AutoDock Vina 1.2. 0: Newdocking methods, expanded force field, and python bindings[J]. Journal of chemical informationand modeling, 2021, 61(8): 3891-3898.

[82] CHATHAM J C, ZHANG J, WENDE A R. Role of O-linked N-acetylglucosamine proteinmodification in cellular (patho) physiology[J]. Physiological reviews, 2021, 101(2): 427-493.

[83] WANG Y, ZHAN W, LIU J, et al. A broadly neutralizing antibody against SARS-CoV-2 Omicron variant infection exhibiting a novel trimer dimer conformation in spike protein binding[J].Cell Research, 2022, 32(9): 862-865.

所在学位评定分委会
生物学
国内图书分类号
Q6-3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545307
专题南方科技大学医学院
推荐引用方式
GB/T 7714
张晨辉. 纳米抗体 2S-1244 广谱抗 SARS-CoV-2 的中 和活性及其与 S 蛋白复合体结构的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032627-张晨辉-南方科技大学医(18946KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张晨辉]的文章
百度学术
百度学术中相似的文章
[张晨辉]的文章
必应学术
必应学术中相似的文章
[张晨辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。